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Abstract For p > 1, many improved or generalized results of the well-known Hardy’s inequality

have been established. In this paper, by means of the weight coefficient method, we establish

the following Hardy type inequality for p = −1:
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where ai > 0, i = 1, 2, . . . , n. For any fixed positive integer n ≥ 2, we study the best constant

Cn such that the inequality
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the Mathematica software, we give some examples.
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1. Introduction

A well-known Hardy’s inequality states[1]:
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is the best constant in (1), where p > 1, an ≥ 0, 0 <
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In [1–7], there are some strengthened and generalized results of (1). Let ak be substituted

by a
1/p
k and let p → +∞ in (1). Then (1) becomes Carleman inequality[1]:
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When p = 2 in (1), we have[2]
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When p = 3/2 in (1), we have[3]
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The Inequality (2) has the following strengthened results[4−5]:
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For p > 1, there is a strengthened result of (1) in [6],
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where

Cp =

{

1 − (1 − p−1)p−1 , p ≥ 2

1 − p−1 , 1 < p ≤ 2.

The Inequality (7) is generalized in [7] as follows:
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In this paper, in case p = −1, we establish the Hardy type inequalities which are similar

to (1) and (7) by the weight coefficients method. In Section 4, by means of the Mathematica

software, we give some examples.

2. Theorem 2.1 and its Proof

In this section, in case p = −1, we establish the Hardy type inequality which is similar to

(7).

Theorem 2.1 If the real numbers ai > 0, i = 1, 2, . . . , n, then we have

n
∑

i=1





1

i

i
∑

j=1

aj





−1

< 2

n
∑

i=1

(

1 − π2 − 9

3i

)

a−1
i . (9)



318 WEN J J and GAO C B

Proof By the weighted power mean inequality[7]

∑n
j=1 λjaj
∑n

j=1 λj
≥
(

∑n
j=1 λja

−1
j

∑n
j=1 λj

)−1

, λj > 0, aj > 0, j = 1, 2, . . . , n,

we obtain that
∑i

j=1 aj

i
=

∑i
j=1 j

i

∑i
j=1 j

aj

j
∑i

j=1 j
≥
∑i

j=1 j

i

[
∑i

j=1 j(
aj

j )−1

∑i
j=1 j

]−1

=
(
∑i

j=1 j)2

i





i
∑

j=1

j2

aj





−1

=
i(i + 1)2

4





i
∑

j=1

j2

aj





−1

,

that is,




1

i

i
∑

j=1

aj





−1

≤ 4

i(i + 1)2

i
∑

j=1

j2

aj
. (10)

According to (10), we get

n
∑

i=1





1

i

i
∑

j=1

aj





−1

≤
n
∑

i=1





4

i(i + 1)2

i
∑

j=1

j2

aj



 = 4

n
∑

i=1

[

i2
n
∑

k=i

1

k(k + 1)2

]

1

ai

≤ 4

n
∑

i=1

[

i2
∞
∑

k=i

1

k(k + 1)2

]

1

ai
=

n
∑

i=1

f(i)a−1
i ,

where f(i) := 4i2
∑∞

k=i
1

k(k+1)2 . Therefore,

n
∑

i=1





1

i

i
∑

j=1

aj





−1

≤
n
∑

i=1

f(i)a−1
i , (11)

and equality in (11) holds if and only if n → ∞, a1

1 = a2

2 = · · · = ai

i = · · · . By
∑∞

k=1
1
k2 = π2

6

and
∞
∑

k=i

1

k(k + 1)2
=

∞
∑

k=i

(

1

k
− 1

k + 1

)

−
∞
∑

k=i

1

(k + 1)2
=

1

i
+

i
∑

k=1

1

k2
− π2

6
,

we see that

f(i) := 4i2
∞
∑

k=i

1

k(k + 1)2
= 4i2

(

1

i
+

i
∑

k=1

1

k2
− π2

6

)

. (12)

Combining results (11) and (12), we only need to prove
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Thus, (13) is proved. By (11) and (13) and ϕ(i) is not identical to 0, we know (9) holds. This

completes the proof of Theorem 2.1. 2

3. The best property of the coefficients in the Inequality (9)

By the Inequality (9), in case p = −1, we have the following Hardy type inequality which is

similar to (1):

Theorem 3.1 If the real numbers ai > 0, i = 1, 2, . . . , n, we have
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Under the weight coefficients 1, 2, . . . , n, the coefficient 2 in (14) is the best constant. In other

words,
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Theorem 3.2 Under the weight coefficients 1, 2, . . . , n, the coefficient (π2 − 9)/3 in (9) is the
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Proof For f(i) ≤ 2(1 − C/i) (∀i ≥ 1), set i = 1, we obtain that
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4. The further problem

In the Inequality (14), the best constant 2 is independent of n, which motivates us to consider

the following problem.
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From (22), we know that (23) is equivalent to
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This completes the proof of Theorem 4.1. 2

Example 4.1 By (20), we know that y1, y2, . . . , yn can be expressed via Cn. Thus, the algebraic

equations which Cn satisfies have been obtained. By means of the Mathematica software, we get

C3 = 1.204692944799795, . . . , C4 = 1.2611004647671393, . . . ,

C5 = 1.3037394436929084, . . . , C6 = 1.337457769812323, . . . .
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