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Abstract The authors study the functional equation f [m] = 1/f and analyze the features

of its piecewise continuous solutions. All the piecewise continuous real solutions are obtained

constructively. The results generalize the ones in [2]. Moreover, the conclusion is drawn that

there is no circuit iterative roots for those functions not satisfying Babbage equation.
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1. Introduction

When the inverse of a function and its reciprocal do mean the same thing is an interesting

problem, which proposes a functional equation f−1 = 1/f . This equation was investigated by

many authors[1−3],[10]. Euler and Foran[3] demonstrated these functions f do exist and showed

that such a solution f on (0,∞) may have an infinite number of discontinuities. In 1998, the

equation in more general subsets of the real line R or of the complex plane C was discussed in

[2]. Naturally, people would like to ask when an iterate f [m] of a function f and the power fn

actually agree, i.e.,

f [m] = fn, (1)

where m, n ∈ Z. Here the iterate f [m] is defined by f [m](x) = f(f [m−1](x)) and f [0](x) = x for

all real or complex x and we note that f [−1] = f−1 when f is invertible. For m ≥ 2 and n ≥ 1,

Ng and Zhang[4] considered equation (1) and described all continuous real solutions.

In this paper we continue their work and consider equation (1) for m ∈ Z and n = −1, i.e.,

the functional equation

f [m] =
1

f
. (2)

We obtain all solutions in the class of piecewise continuous functions which are one to one from

some subset of the real line onto itself. We investigate the circuit number k(m) and k-circuit

solutions for different k. We give a construction of the piecewise continuous solutions on the

k-circuit domain intervals on the real line. This construction is universal which means that
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every piecewise continuous solution can be obtained in this way. Thus the main results in [2]

are generalized. Moreover, we get that there is no circuit iterative roots for those functions not

satisfying Babbage equation.

2. Preliminaries

If the equation (2) has a bijective solution on a subset D of R or C, then f has its inverse

f [−1] : D → D, and 0 6∈ D. As in [2], set 1/D := {1/x : x ∈ D}. Then D = 1/D if f : D → D is

a solution of equation (2). In fact, since f(D) = D, it is shown by induction that f [m](D) = D.

On the other hand, 1/f(D) = 1/D. Thus D = 1/D by (2).

Lemma 1 If f : D → D is bijective, then equation (2) has the following equivalent propositions

for given integers m and for all x ∈ D:

f [m−1](x) =
1

x
, (3)

f [1−m](x) =
1

x
. (4)

Proof Suppose that (2) holds. For all y ∈ D, there exists x ∈ D such that y = f(x). By (2),

f [m−1](y) = 1/y, which implies (3) holds.

Let (3) hold. For all x ∈ D, 1/x is also in D. Then f [1−m](x) = f [1−m](f [m−1](1/x)) = 1/x,

which shows that (4) holds.

Let (4) hold. For all x ∈ D, f(x) = f [1−m](f [m](x)) = 1/f [m](x). Thus (2) holds. 2

In virtue of Lemma 1, the equation (2) is simplified to the iterative roots of the special

function 1/x limited on some functional class. On the other hand, by Lemma 1, if f : D → D

satisfies equation (2), then for every integer s:

f [2s(m−1)](x) = x, and f [(2s+1)(m−1)](x) =
1

x
, ∀x ∈ D, (5)

which implies that 2m−2 is an iterative period of f . Without loss of generality, we only consider

(2) with the case m > 0. In fact, for m < 0, by Lemma 1, we need to consider its equivalent

equation (4), where the index 1−m is positive.

If f : D → D is a solution of equation (2), by (5), the following relation holds for all x ∈ D:

x
f

−−−−→ f(x)
f

−−−−→ · · ·
f

−−−−→ f [m−3](x)
f

−−−−→ f [m−2](x)

f

x









y

f

f [2m−3](x)
f

←−−−− f [2m−4](x)
f

←−−−− · · ·
f

←−−−− f [m](x)
f

←−−−− f [m−1](x) = 1
x

(6)

Thus, we need consider the Babbage equation which satisfies (6):

f [2(m−1)](x) = x. (7)

With respect to (3) and (7), a natural problem is: Are there smaller integers k such that

f [2(k−1)](x) = x? If such integers k do exist, what are they?

Let F be a self-mapping on interval I. In the monographs[6,7], more general results on real

continuous iterative root f : I → I of F are given, and the solutions can be constructed by piece-
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wise defining. Assume that the domain of the function contains two disjoint connected intervals.

While two ranges of the function on two disjoint connected intervals do not contain each other,

the discussion becomes more difficult. As pointed out in [2], the solutions become interesting

only if they interact with different connected intervals, for example, they map one subinterval to

another subinterval and return to its beginning interval after finite times of iteration. We will

consider such solutions of (2) and give their complete descriptions.

Define piecewise continuous functional class E(D). Function f ∈ E(D) is called piecewise

continuous if the domain of f is the union of disjoint intervals {J1, J2, . . .} and the restriction of

f to each other Ji is continuous. We insist that each interval Ji be maximal in the sense that

if Ji ⊆ J for some interval J , and f is continuous on J , then Ji = J . For simplicity, assume

that each Ji is also nonsingular. Set E∗(D) is a subset containing all bijiective functions in E(D).

Note that for each f ∈ E∗(D), the restriction of f to every subinterval J ⊆ D is continuous and

strictly monotonic.

Definition 1 A finite sequence {I1, I2, . . . , Ik} of pairwise disjoint nondegenerate intervals is

called a k-circuit of f : D → D, if ∪k
j=1Ij ⊆ D, f |Ij

is continuous such that

f(Ij) = Ij+1, ∀j = 1, 2, . . . , k − 1, and f(Ik) = I1.

k is called circuit number.

3. Piecewise continuous solutions

If a bijective function f is a solution of equation (2), by the graph of (6), f must have k-circuit

for some positive integer k. We shall look for the set of these circuit numbers k for integer m in

(2).

Lemma 2 For m = 1mod(4), equation (2) has no 2-circuit solution.

Proof Suppose that f : D → D satisfies equation (2) on the 2-circuit {I1, I2} and m = 4n + 1

for some integer n. By (3), f satisfies

f [m−1](x) = f [4n](x) =
1

x
. (8)

Set f1 = f |I1 , f2 = f |I2 and φ := f2 ◦ f1 : I1 → I1, where ◦ denotes the composition of functions.

Then φ is continuous and monotonic on I1. From (8) we have that

f [4n](x) = φ[2n](x) =
1

x
. (9)

By the results in [6, Chp. XV, §4], equation (9) has no continuous and monotonic solutions

because 1/x is a strictly decreasing function. This contradicts the hypotheses. 2

For a given integer m, consider the irreducible decomposition of m− 1:

m− 1 = 2ℓ1pℓ2
2 · · · p

ℓs

s , (10)

where pi (s ≥ i ≥ 2) are primes such that 2 < p2 < p3 < · · · < ps, all ℓi (2 ≤ i ≤ s) are integers,

and ℓ1 ≥ 0, ℓi > 0, 2 ≤ i ≤ s.
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Set

P(m) =

{

P (m) := {2ℓ1+1pt2
2 · · · p

ts
s ∈ N\{2} : 0 ≤ ti ≤ ℓi, ∀i ≥ 2}, m = 1 (mod 4),

P (m) ∪ {2}, m 6= 1 (mod 4).

(11)

By the definition of P(m), we have

P(2) = {2}, P(3) = {2, 4}, P(4) = {2, 6}, P(5) = {8}, P(6) = {2, 10},

P(7) = {2, 4, 12}, P(8) = {2, 14}, P(9) = {16}, P(10) = {2, 6, 18},

Similarly, for m ≥ 11, it is easy to calculate P(m).

The following lemma is important for constructing the domain of solutions of (2).

Lemma 3 Suppose f ∈ E∗(D) satisfies equation (2). k is a positive integer. If f has k-circuit,

then k ∈ P(m). Furthermore, for k ∈ P(m), k > 2, k-circuit of f has the following forms:

{I1, I2, . . . , Ik
2

, 1/I1, 1/I2, . . . , 1/I k
2

}; (12)

For k = 2, k-circuit of f has two forms:

{I1, 1/I1}, if m ≡ 0 (mod 2), (13)

{I1, I2}, where I1 = 1/I1, I2 = 1/I2, if m ≡ 3 (mod 4). (14)

Proof Suppose that {I1, I2, . . . , Ik} is k-circuit of f . Note that Is = It if s ≡ t (mod k). Then

Ik = f(Ik−1) = · · · = f [m](Ik−m) = f [m](Ij) = 1/f(Ij) = 1/Ij+1,

where

j ≡ k −m (mod k) ≡ −m (mod k), 0 ≤ j ≤ k − 1, (15)

the symbol I0 denotes j ≡ 0 (mod k), i.e., I0 = Ik.

On the other hand,

Ij+1 = f [m](Ij+1−m) = f [m](I2j+1) = 1/f(I2j+1) = 1/I2j+2.

This implies that Ik = 1/Ij+1 = I2j+2. Therefore

2j + 2 = k (mod k) ≡ 0 (mod k). (16)

By (15) and (16), we have that k = j + 1 or

k = 2j + 2 =
2(m− 1)

2t− 1
, (17)

where t is some integer.

If k = j + 1, then for all 1 ≤ i ≤ k,

Ii = f [m](Ii−m) = f [m](Ii+j) = 1/f(Ii+j) = 1/Ii+j+1 = 1/Ii+k = 1/Ii.

Thus Ii must contain −1 or 1 for every i ∈ {1, 2, . . . , k}. Since those Ii, i ∈ {1, 2, . . . , k} are

disjoint to each other, by the Principle of Pigeon Nest, k must equal 2 and j = 1. Then from

(15), n is odd. In view of Lemma 2, we get that m = 3mod(4), which implies (12) holds.
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If k = 2j + 2 = (2(m− 1))/(2t− 1), for all 1 ≤ i ≤ k
2 , we have

Ii = f(Ii−1) = f [m](Ii−m) = f [m](Ii+j) = 1/f(Ii+j) = 1/Ii+j+1 = 1/Ii+ k
2

which implies form (13) occurs when j = 0 and form (14) occurs when j > 0. By (10) and (17),

we get that k ∈ P(m). 2

By Lemma 1, f [3] = 1/f if and only if f [−1] = 1/f . The result in [2, Lemma 4.1] is the special

case of m = 3 and P(3) = {2, 4} in Lemma 3. In view of Lemma 3, we have found the smaller

integer k than 2(m− 1) in (7), such that f [ k
2
](x) = 1

x
. Therefore, equation (2) is simplified.

Further, we can find that if k equals 2 in (12), the form (13) can be merged into form (12).

Next, we only consider forms (12) and (14).

Lemma 4 Suppose f ∈ E∗(∪i=k
i=1Ii), k ∈ P(m) and (I1, I2, . . . , Ik) be a k-circuit of function f .

(i) If k-circuit is of form (12). then f satisfies (2) if and only if

f [ k
2
](x) =

1

x
, ∀x ∈

i=k
⋃

i=1

Ii. (18)

(ii) If k-circuit is of form (14), then f satisfies (2) if and only if

f [2](x) =
1

x
, ∀x ∈ I1 ∪ I2. (19)

Proof For (i), if equation (18) holds, equation (2) also holds in virtue of (5).

Conversely, if equation (2) holds, by Lemma 3 and (17), that is,

f [m−1](x) = f [(2t−1) k
2
](x) =

1

x
,

then

f [k(2t−1)](x) = x. (20)

Define ϕ := f [k] : Ii → Ii. Then ϕ is continuous and monotonic. By (20), we have

ϕ[2t−1](x) = x.

Following the result of Babbage equation in [6, Theorem 15.2], we have that f [k](x) = x for every

x ∈ Ii. Then

f [ k
2
](x) = f [(t−1)k] ◦ f [ k

2
](x) = f [(t−1)k+ k

2
](x) = f [(2t−1) k

2
](x) =

1

x
, x ∈ ∪i=k

i=1Ii,

which completes the proof of (i). (ii) can be similarly proved. 2

For any k ∈ P(m), we consider the solutions of equation (2) which contain one or more

disjoint piecewise continuous circuits. First of all, we shall describe these continuous solutions

of equation (2) defined over a single k-circuit. Note that if k = 2 in Lemma 4, then it follows

from (18) that f = 1/x is a unique piecewise continuous solution of equation (2) on a 2-circuit

with form (12). Therefore, we shall consider the case with form (12) only for k ≥ 4.

Theorem 1 Let k ∈ P(m), k ≥ 4 and g(x) = 1/x. Suppose I1, I2, . . . , Ik
2

are any mutually

disjoint intervals which do not contain ±1 or 0. f1, f2, . . . , f k
2
−1 are arbitrary, continuous and
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strictly monotonic on intervals I1, I2, . . . , Ik
2
−1 respectively, and fulfilling the condition

fi(Ii) = Ii+1, i = 1, 2, . . . ,
k

2
− 1. (21)

Then function

f(x) = fi(x), x ∈ Ii, i = 1, 2, . . . , k, (22)

where Iν+ k
2

:= g(Iν), ν = 1, 2, . . . , k
2 and function fν−1+ k

2

are defined on interval Iν−1+ k
2

as:

fν−1+ k
2

(x) = g ◦ f [−1]
ν ◦ f

[−1]
ν+1 ◦ · · · ◦ f

[−1]

ν−2+ k
2

(x), ν = 1, 2, . . . , k, (23)

is the k-circuit solution of equation (2). Further, every k-circuit solution in functional class

E∗(∪k
i=1Ii) arises in this way.

Proof First the definition of (23) is well-defined. In fact, note that g ◦ g = id, for all i ∈ N, we

have

fk+i = g ◦ f
[−1]
k
2
+i+1

◦ f
[−1]
k
2
+i+2

◦ · · · ◦ f
[−1]
k+i−2 ◦ f

[−1]
k+i−1

= g ◦ (f
[−1]
k
2
+i+1

◦ f
[−1]
k
2
+i+2

◦ · · · ◦ f
[−1]
k+i−2) ◦ (fk+i−2 ◦ fk+i−3 ◦ · · · ◦ f k

2
+i ◦ g[−1])

= g ◦ f k
2
+i ◦ g[−1].

With the similar computation, we have f k
2
+i = g ◦ fi ◦ g[−1]. Thus,

fk+i = g ◦ f k
2
+i ◦ g[−1] = g ◦ g ◦ fi ◦ (g ◦ g)[−1] = fi,

therefore when s = t (mod k), fs = ft.

Next, we will prove the function f in (22) is a solution of (2). In fact, f |Ii
= fi. By (21) and

(23), for every xi in Ii, i = 1, 2, . . . , k,

f [ k
2
](xi) = fi+ k

2
−1 ◦ fi+ k

2
−2 ◦ · · · ◦ fi+1 ◦ fi(xi)

=
(

g ◦ f
[−1]
i ◦ f

[−1]
i+1 ◦ · · · ◦ f

[−1]

i+ k
2
−2

)

◦ fi+ k
2
−2 ◦ · · · ◦ fi+1 ◦ fi(xi)

=
1

xi

.

Consequently, by Lemma 4, f satisfies equation (2) on the k-circuit.

Finally, we shall show that every k-circuit solution of equation (2) can be obtained in this

manner. Because intervals I1, I2, . . . , Ik are pairwise disjoint, k ≥ 4, By the Principle of Pigeon

Nest, for i = 1, 2, . . . , k/2, Ii ∩ {−1, 1} = ∅. By (22), functions f1, f2, . . . , f k
2
−1 are continuous,

strictly monotonic on intervals I1, I2, . . . , Ik
2
−1, and satisfy condition (21). In view of (18) and

(22), the relation (23) holds. 2

With the similar argument for 2-circuit of (12), we have the following results.

Theorem 2 Let g(x) = 1/x, and I1 and I2 be two arbitrary disjoint intervals satisfying Ii =

1/Ii, i = 1, 2. Suppose f1 is an arbitrary, continuous and strictly monotonic function on I1,

fulfilling the condition f1(I1) = I2. Define the function f2(x) for x ∈ I2, by

f2(x) = g ◦ f
[−1]
1 (x). (24)
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Then the formula

f(x) = fi(x), x ∈ Ii, i = 1, 2, (25)

defines 2-circuit solution of equation (2). Further, every 2-circuit solution in E∗(∪2
i=1Ii) arises in

this way.

Piecewise continuous solutions of equation (2) enjoy the following characterization.

Theorem 3 Let f be a piecewise continuous function and, J = {J1, J2, . . .} be the associated

sequence of maximal intervals of continuity of f . Then f satisfies equation (2) if and only if

J can be partitioned into {Ji|i = 1, 2, . . .} such that for every i, Ji is a k-circuit for f , where

k ∈ P(m) is defined in Lemma 3, f |Ji
is continuous and satisfies equation (2).

Proof It is easy to see that if f has the structure stated above, then f satisfies (2).

On the other hand, suppose that f satisfies equation (2). Then for every i, the connected set

Ji is mapped to an interval. Since f is piecewise continuous, f−1 is also piecewise continuous

with the same sequence of maximal intervals. It follows that f(Ji) must be a member of J .

Then there exits k ∈ P(m) such that {Ji, f(Ji), . . . , f
k−1(Ji)} is a k-circuit of f . 2

Example 1 There is a piecewise continuous solution to equation (2) for m = 4k+3, k = 1, 2, . . .,

on R\{0}:

f(x) =

{

−x3, x ∈ (0, +∞),

− 1
3
√

x
, x ∈ (−∞, 0).

Example 2 Let m = 5 in equation (2). There exists a piecewise continuous solutions f :

f(x) =































































x + 1
2 , x ∈ (0, 1

4 ),
12x−3
16x+4 , x ∈ (1

4 , 1
2 ),

4
4x+1 , x ∈ (1

2 , 3
4 ),

x
6−4x

, x ∈ (3
4 , 1),

6x− 4, x ∈ (1, 4
3 ),

x+4
4x

, x ∈ (4
3 , 2),

4x+16
12−3x

, x ∈ (2, 4),
2x

x+2 , x ∈ (4, +∞).

Example 3 Let m = 10 in equation (2). There are three solutions f1, f2, f3:

f1(x) =











































1
4x

, x ∈ [ 1
12 , 1

8 ],
1
2x, x ∈ [16 , 1

4 ],
1
2x, x ∈ [13 , 1

2 ],

2x, x ∈ [2, 3],

2x, x ∈ [4, 6],
4
x
, x ∈ [8, 12],

f2(x) =



















































3
3x+1 , x ∈ (0, 1

3 ],
9x

3x+2 , x ∈ (1
3 , 2

3 ],
3x−1
1−x

, x ∈ (2
3 , 1),

1, x = 1,
x−1
3−x

, x ∈ (1, 3
2 ),

2x+3
9 , x ∈ [32 , 3),

x+3
3x

, x ∈ [3, +∞),
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f3(x) =



















































1
x+1 , x ∈ (3n− 2, 3n− 1],
1

x+1 , x ∈ (3n− 1, 3n],
1

x−2 , x ∈ (3n, 3n + 1],

1, x = 1,
x+1

x
, x ∈ [ 1

3n−1 , 1
3n−2 ),

x+1
x

, x ∈ [ 1
3n

, 1
3n−1 ),

1−2x
x

, x ∈ [ 1
3n+1 , 1

3n
),

where n ∈ N. The domains of f2 and f3 are connected. f2 has five discontinuities: 1/3, 2/3, 1, 3/2, 3

on (0,∞). While f3 has infinitely many discontinuities. What’s more, the domain of f3 is the

union of {1} and a sequence of 6-circuits.

Remark When integer n > 1, there is no k-circuit solutions for equation (1). In fact, set

y = f(x). Then equation (1) can be deduced to f [m−1](y) = yn. that f [j(m−1)](y) = y does not

hold for every positive integer j. In general, if function F (x) does not satisfy Babbage equation,

then the iterative equation f [m](x) = F (x) has no circuit solution.
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