The Analytic Function in the Right Half Plane Defined by Laplace-Stieltjes Transforms

KONG Yin Ying ${ }^{1}$, SUN Dao Chun ${ }^{2}$
(1. Department of Mathematics and Computer Science, Guangdong University of Business Studies, Guangdong 510320, China;
2. School of Mathematical Sciences, South China Normal University, Guangdong 510631, China)
(E-mail: kongcoco@tom.com)

Abstract

In this paper, the growth of analytic function defined by L-S transforms convergent in the right half plane is studied and some properties on the L-S transform $\mathrm{F}(\mathrm{s})$ and its relative transforms $\mathrm{f}(\mathrm{s})$ are obtained.

Keywords Laplace-Stieltjes transform; convergent half plane; Newton polygon; order.
Document code A
MR(2000) Subject Classification 44A10; 30D15
Chinese Library Classification O177.4; O174.52

Some problems on the growth and the value distribution of analytic functions defined by Dirichlet series have been studied for a long time and lots of important results were obtained in [1], [2] and [3], but the correlative researches of L-S Transforms are seldom discussed. From [4] and [5], Dirichlet series was regarded as a special example of L-S transforms and some properties of Dirichlet series may be the same with L-S transforms ${ }^{[6]}$. Yu ${ }^{[1,4]}$ first studied the growth of Dirichlet series which was uniformly convergent in the complex plane, and obtained some properties on its implicative series, then he extended the results to L-S transforms. In this paper, we continue those studies on the L-S transforms which are convergent in the right half plane and obtained some new results on its relative transforms.

Consider L-S transforms ${ }^{[5]}$

$$
\begin{equation*}
F(s)=\int_{0}^{+\infty} e^{-s x} \mathrm{~d} \alpha(x), \quad s=\sigma+i t \tag{1}
\end{equation*}
$$

where $\alpha(x)$ is a bounded variation on any interval $[0, X](0<X<+\infty)$, and σ and t are real variables. We choose a sequence $\left\{\lambda_{n}\right\}$:

$$
\begin{equation*}
0=\lambda_{1}<\lambda_{2}<\lambda_{3}<\cdots<\lambda_{n} \uparrow+\infty \tag{2}
\end{equation*}
$$

which satisfies the following conditions:

$$
\begin{equation*}
\varlimsup_{n \rightarrow \infty}\left(\lambda_{n+1}-\lambda_{n}\right)<+\infty \tag{3}
\end{equation*}
$$

Received date: 2006-04-17; Accepted date: 2007-01-26
Foundation item: the National Natural Science Foundation of China (No. 10471048); Specialized Research Fund for the Doctoral Program of Higher Education (No. 20050574002).
and

$$
\begin{equation*}
\varlimsup_{n \rightarrow \infty} \frac{n}{\lambda}=D<+\infty, \quad \varlimsup_{n \rightarrow \infty} \frac{\ln A_{n}^{*}}{\lambda_{n}}=0 \tag{4}
\end{equation*}
$$

where

$$
A_{n}^{*}=\sup _{\lambda_{n}<x \leq \lambda_{n+1},-\infty<t<+\infty}\left|\int_{\lambda_{n}}^{x} e^{-i t y} \mathrm{~d} \alpha(y)\right|
$$

According to Valiron-Knopp-Bohr formula ${ }^{[5]}$ and the conditions of (3) and (4), it follows that $\sigma_{u}^{F}=0$, where σ_{u}^{F} is the uniformly convergent abscissa of (1). Then the transform $F(s)$ is analytic in the right half-plane. We set

$$
\begin{gathered}
M_{u}(\sigma, F)=\sup _{0<x<+\infty,-\infty<t<+\infty}\left|\int_{0}^{x} e^{-(\sigma+i t) y} \mathrm{~d} \alpha(y)\right|, \quad \sigma>0 \\
\mu(\sigma, F)=\max _{1 \leq n<+\infty}\left\{A_{n}^{*} e^{-\lambda_{n} \sigma}\right\}, \quad \sigma>0
\end{gathered}
$$

By the second formula of (4), for any σ,

$$
\overline{\lim _{n \rightarrow \infty}} \frac{\ln A_{n}^{*}-\lambda_{n} \sigma}{\lambda_{n}}=-\sigma<0 \quad \text { or } \quad \overline{\lim }_{n \rightarrow \infty} \ln A_{n}^{*} e^{-\lambda_{n} \sigma}=-\infty
$$

We can see that $\mu(\sigma, F)$ exists.
Let $\left\{P_{n}\right\}=\left\{\left(\lambda_{n},-\ln A_{n}^{*}\right)\right\}(n=1,2, \ldots)$ be a sequence on the xOy plane. Make a convex Newton polygon $\Pi(F)$ from $\left\{P_{n}\right\}$ such that its vertices are in $\left\{P_{n}\right\}$ and the other points are on or above the edge of it. For any $\sigma>0$, we draw a line over P_{n} with the slope $-\sigma$:

$$
y+\ln A_{n}^{*}=-\sigma\left(x-\lambda_{n}\right)
$$

The ordinate of the crossover point between the line and the y -axis is $-\ln A_{n}^{*} e^{-\lambda_{n} \sigma}$. Therefore $-\ln \mu(\sigma, F)=\min _{1 \leq n<+\infty}\left\{-\ln A_{n}^{*} e^{-\lambda_{n} \sigma}\right\}$. Let $n(\sigma)=\max \left\{n ; \mu(\sigma, F)=A_{n}^{*} e^{-\lambda_{n} \sigma}\right\}$ denote the maximum term index of (1). Then $\mu(\sigma, F)=A_{n(\sigma)}^{*} e^{-\lambda_{n(\sigma)} \sigma}$.

Suppose that $G_{n}=-\ln A_{n}^{*}$. Using the similar method to [1] gives:

$$
\ln \mu(\sigma, F)= \begin{cases}-G_{1}, & -\sigma<\frac{G_{2}-G_{1}}{\lambda_{1}-\lambda_{1}} \\ -G_{1}-\int_{-\frac{G_{2}-G_{1}}{\lambda_{2}-\lambda_{1}}}^{\sigma} \lambda_{n(x)} \mathrm{d} x, & 0>-\sigma \geq \frac{G_{2}-G_{1}}{\lambda_{2}-\lambda_{1}}\end{cases}
$$

It is obvious that $\ln \mu(\sigma, F)$ is a decreasing convex function in $(0,+\infty)$. We can also give the definition of the order τ_{u} and the order τ_{μ} as follows

$$
\tau_{u}=\varlimsup_{\sigma \rightarrow 0^{+}} \frac{\ln ^{+} \ln ^{+} M_{u}(\sigma, F)}{-\ln \sigma}, \quad \tau_{\mu}=\overline{\lim }_{\sigma \rightarrow 0^{+}} \frac{\ln ^{+} \ln ^{+} \mu(\sigma, F)}{-\ln \sigma} .
$$

Next, we will investigate the relation between the maximum modulus $M_{u}(\sigma, F)$ and the maximum term $\mu(\sigma, F)$ of $F(s)$ defined by (1) convergent in the right half plane $\{s \mid \operatorname{Re} s=\sigma>0\}$.

Theorem 1 Suppose that $\sigma_{u}^{F}=0$, and the sequence (2) satisfies the conditions of (3) and (4). Then $\forall \varepsilon \in(0,1)$, when σ is sufficiently close to $0^{+}, \tau_{u}=\tau_{\mu}$ holds.

Proof Firstly, let

$$
I(x ; \sigma+i t)=\int_{0}^{x} e^{-(\sigma+i t) y} \mathrm{~d} \alpha(y)
$$

From (3), there exists $K>0$ satisfying $0<\lambda_{n+1}-\lambda_{n} \leq K \quad(n=1,2,3, \ldots)$. As $\sigma(>0)$ sufficiently reaches 0 , it follows $e^{K \sigma}<\frac{3}{2}$. When $x>\lambda_{n}$, we have

$$
\begin{aligned}
\int_{\lambda_{n}}^{x} e^{-i t y} \mathrm{~d} \alpha(y) & =\int_{\lambda_{n}}^{x} e^{\sigma y} d_{y} I(y ; \sigma+i t) \\
& =\left.I(y ; \sigma+i t) e^{\sigma y}\right|_{\lambda_{n}} ^{x}-\sigma \int_{\lambda_{n}}^{x} e^{\sigma y} I(y ; \sigma+i t) \mathrm{d} y
\end{aligned}
$$

For any $\sigma>0$, and any $x \in\left(\lambda_{n}, \lambda_{n+1}\right]$, it follows that

$$
\begin{aligned}
\left|\int_{\lambda_{n}}^{x} e^{-i t y} \mathrm{~d} \alpha(y)\right| & \leq M_{u}(\sigma, F)\left[\left|e^{\sigma x}+e^{\sigma \lambda_{n}}\right|+\left|e^{\sigma x}-e^{\sigma \lambda_{n}}\right|\right] \\
& \leq 2 M_{u}(\sigma, F) e^{\left(\lambda_{n}+K\right) \sigma} \leq 3 M_{u}(\sigma, F) e^{\lambda_{n} \sigma}
\end{aligned}
$$

then $\frac{1}{3} \mu(\sigma, F) \leq M_{u}(\sigma, F)$ and $\varlimsup_{\sigma \rightarrow 0^{+}} \frac{\ln ^{+} \ln ^{+} \mu(\sigma, F)}{-\ln \sigma} \leq \varlimsup_{\sigma \rightarrow 0^{+}} \frac{\ln ^{+} \ln ^{+} M_{u}(\sigma, F)}{-\ln \sigma}$.
Secondly, for any $x>0$, there exists $n \in N, \lambda_{n}<x \leq \lambda_{n+1}$, such that

$$
\int_{0}^{x} e^{-(\sigma+i t) y} \mathrm{~d} \alpha(y)=\sum_{k=1}^{n-1} \int_{\lambda_{k}}^{\lambda_{k+1}} e^{-(\sigma+i t) y} \mathrm{~d} \alpha(y)+\int_{\lambda_{n}}^{x} e^{-(\sigma+i t) y} \mathrm{~d} \alpha(y)
$$

Let

$$
I_{k}(x ; i t)=\int_{\lambda_{k}}^{x} e^{-i t y} \mathrm{~d} \alpha(y), \quad \lambda_{k} \leq x \leq \lambda_{k+1}
$$

For any $t \in R$, we have

$$
\begin{equation*}
\left|I_{k}(x ; i t)\right| \leq A_{k}^{*} \leq \mu(\sigma, F) e^{\lambda_{k} \sigma}, \quad \sigma>0 \tag{5}
\end{equation*}
$$

Hence for any $x \in\left(\lambda_{k}, \lambda_{k+1}\right]$ and $\sigma>0$, we have

$$
\begin{aligned}
\int_{0}^{x} e^{-(\sigma+i t) y} \mathrm{~d} \alpha(y)= & \sum_{k=1}^{n-1}\left[e^{-\lambda_{k+1} \sigma} I_{k}\left(\lambda_{k+1} ; i t\right)+\sigma \int_{\lambda_{k}}^{\lambda_{k+1}} e^{-\sigma y} I_{k}(y ; i t) \mathrm{d} y\right]+ \\
& e^{-\sigma x} I_{n}(x ; i t)+\sigma \int_{\lambda_{n}}^{x} e^{-\sigma y} I_{n}(y ; i t) \mathrm{d} y
\end{aligned}
$$

From (5) and $\forall \varepsilon \in(0,1)$, we obtain $\left|I_{k}(x ; i t)\right| \leq \mu((1-\varepsilon) \sigma, F) e^{\lambda_{k}(1-\varepsilon) \sigma}$. Then

$$
\begin{aligned}
\left|\int_{0}^{x} e^{-(\sigma+i t) y} \mathrm{~d} \alpha(y)\right| \leq & \sum_{k=1}^{n-1} \mu((1-\varepsilon) \sigma, F) e^{\lambda_{k}(1-\varepsilon) \sigma}\left(e^{-\lambda_{k+1} \sigma}+\left|e^{-\lambda_{k+1} \sigma}-e^{-\lambda_{k} \sigma}\right|\right)+ \\
& \mu((1-\varepsilon) \sigma, F) e^{\lambda_{n}(1-\varepsilon) \sigma}\left(e^{-\sigma x}+\left|e^{-\sigma x}-e^{-\lambda_{n} \sigma}\right|\right) \\
= & \sum_{k=1}^{n} \mu((1-\varepsilon) \sigma, F) e^{\lambda_{k}(1-\varepsilon) \sigma} e^{-\lambda_{k} \sigma} \\
\leq & \mu((1-\varepsilon) \sigma, F) \sum_{k=1}^{+\infty} e^{-\lambda_{k} \varepsilon \sigma}
\end{aligned}
$$

From the first formula of (4), it follows that for the above $\varepsilon>0$, there exists $N(\varepsilon)>0$, for any $n>N(\varepsilon)$, we have $\lambda_{n}>\frac{n}{D+\varepsilon}$, such that

$$
\sum_{k=1}^{+\infty} e^{-\lambda_{k} \varepsilon \sigma} \leq \sum_{k=1}^{N(\varepsilon)} e^{-\lambda_{k} \varepsilon \sigma}+\sum_{k=N(\varepsilon)+1}^{+\infty} e^{-k \frac{\sigma \varepsilon}{D+\varepsilon}}<K(\varepsilon) \frac{1}{\sigma}, \quad \sigma \rightarrow+0
$$

where $K(\varepsilon)$ is a constant dependent on ε and (3). So for any $\varepsilon \in(0,1)$ and $t \in R$, it follows that $M_{u}(\sigma, F) \leq K(\varepsilon) \mu((1-\varepsilon) \sigma, F) \cdot \frac{1}{\sigma}$.

Consequently, we have

$$
\varlimsup_{\sigma \rightarrow 0^{+}} \frac{\ln ^{+} \ln ^{+} \mu(\sigma, F)}{-\ln \sigma} \geq \varlimsup_{\sigma \rightarrow 0^{+}} \frac{\ln ^{+} \ln ^{+} M_{u}(\sigma, F)}{-\ln \sigma}
$$

The proof is completed.
Theorem 2 Suppose that L-S transforms (1) of the order $\tau_{\mu} \in(0,+\infty)$ satisfy (2),(3) and (4). Then there will be only two situations on $\ln ^{+} \mu(\sigma, F)$:

1) For $\forall \eta_{n} \downarrow 0\left(\eta_{n}<\tau_{\mu}\right)$, there exists $\left\{\xi_{n}\right\} \in(0,1)$, such that for $\forall \sigma<\xi_{n}, \forall n \in N_{+}$, it follows that $\ln ^{+} \mu(\sigma, F)>\sigma^{-\left(\tau_{\mu}-\eta_{n}\right)}$;
2) Otherwise there exists $\eta_{n} \downarrow 0\left(\eta_{n}<\tau_{\mu}\right)$ and $\sigma_{n} \downarrow 0^{+}$, then $\ln ^{+} \mu\left(\sigma_{n}, F\right)=\sigma_{n}^{-\left(\tau_{\mu}-\eta_{n}\right)}$.

Proof 1) is possible for $\tau_{\mu}>0$, we only need to prove 2). Suppose that 1) is untrue. Take $\varepsilon_{n} \downarrow 0\left(\varepsilon_{n}<\tau_{\mu}\right)$. Then there exists positive numbers $\sigma_{1}^{\prime}<1$ and $k_{1} \in N_{+}$, such that

$$
\ln ^{+} \mu\left(\sigma_{1}^{\prime}, F\right) \leq \sigma_{1}^{\prime-\left(\tau_{\mu}-\varepsilon_{k_{1}}\right)}
$$

Since $\tau_{\mu}>0$, there exists positive number $\sigma_{1}^{*}<\sigma_{1}^{\prime}$ so that $\ln ^{+} \mu\left(\sigma_{1}^{*}, F\right)>\sigma_{1}^{*-\left(\tau_{\mu}-\varepsilon_{k_{1}}\right)}$ and then $\exists \sigma_{1} \in\left(\sigma_{1}^{*}, \sigma_{1}^{\prime}\right)$ satisfying $\ln ^{+} \mu\left(\sigma_{1}, F\right)=\sigma_{1}-\left(\tau_{\mu}-\varepsilon_{k_{1}}\right)$.

Take the other sequence $\left\{\varepsilon_{k}\right\}\left(k>k_{1}\right)$. Since 1) is untrue, there exists positive numbers $\sigma_{2}^{\prime}<\sigma_{1}^{*}$ and $k_{2}>k_{1}$, satisfying $\ln ^{+} \mu\left(\sigma_{2}^{\prime}, F\right) \leq \sigma_{2}^{\prime-\left(\tau_{\mu}-\varepsilon_{k_{2}}\right)}$. For $f(s)$ of the order $\tau_{\mu}>0$, there exists positive number $\sigma_{2}^{*}<\sigma_{2}^{\prime}$ such that

$$
\ln ^{+} \mu\left(\sigma_{2}^{*}, F\right)>\sigma_{2}^{*-\left(\tau_{\mu}-\varepsilon_{k_{2}}\right)}
$$

Therefore there exists $\sigma_{2} \in\left(\sigma_{2}^{*}, \sigma_{2}^{\prime}\right)$ satisfying $\ln ^{+} \mu\left(\sigma_{2}, F\right)=\sigma_{2}{ }^{-\left(\tau_{\mu}-\varepsilon_{k_{2}}\right)}$. The rest may be deduced analogously. So there exists $\varepsilon_{k_{n}} \downarrow 0$, and $\sigma_{n} \downarrow 0^{+}$which satisfy

$$
\ln ^{+} \mu\left(\sigma_{n}, F\right)={\sigma_{n}}^{-\left(\tau_{\mu}-\varepsilon_{k_{n}}\right)}
$$

Set $\eta_{n}=\varepsilon_{k_{n}}$, we can obtain 2). Theorem 2 is proved.
Suppose that $F(s)$ meets the conditions of (2), (3) and (4). Then it is analytic in the right half-plane. In the following text, we only discuss the situation of $\tau_{\mu}>0$. For any $\sigma \in(0,1]$, we define the function $V(\sigma)$ as follows:
1^{0}. When $0<\tau_{\mu}<+\infty$:
Case 1) of Theorem 2, we set $V(\sigma)=\ln ^{+} \mu(\sigma, F)$.
Case 2) of Theorem 2, for $\sigma_{n+1}<\sigma<\sigma_{n}$, we set

$$
V(\sigma)=\max \left\{\ln ^{+} \mu(\sigma, F), \sigma^{-\left(\tau_{\mu}-\eta_{n}\right)}\right\}, \quad n=1,2, \ldots
$$

2^{0}. When $\tau_{\mu}=+\infty$, set $\frac{\ln V(\sigma)}{-\ln \sigma}=\max _{\sigma \leq x \leq 1} \frac{\ln ^{+} \ln ^{+} \mu(x, F)}{-\ln x}$.
Under case $1^{0}, V(\sigma)$ is a decreasing convex function on σ. Under case $2^{0}, V(\sigma)$ is a continuous function on σ. Under both cases 1^{0} and 2^{0}, we always have:

$$
\begin{equation*}
V(\sigma) \geq \ln ^{+} \mu(\sigma, F), \quad \sigma \in(0,1] \tag{6}
\end{equation*}
$$

and there exists a decreasing positive sequence $\left\{\sigma_{n}^{\prime}\right\} \searrow 0$ such that

$$
\begin{equation*}
V\left(\sigma_{n}^{\prime}\right)=\ln \mu\left(\sigma_{n}^{\prime}, F\right) \tag{7}
\end{equation*}
$$

So we have the following results:
(i) When $\sigma \rightarrow 0^{+}$, we see that $\lim _{\sigma \rightarrow 0^{+}} \frac{\ln V(\sigma)}{-\ln \sigma}=\tau_{\mu}$, then $V(\sigma)>(\ln \sigma)^{2}$.
(ii) Suppose that $W(\sigma)=e^{V(\sigma)}$. Then $W(\sigma)$ is a decreasing function on σ and for any $h \in(0,+\infty)$, it satisfies $\int_{0}^{1} \frac{W(\sigma+h)}{W(\sigma)} \mathrm{d} \sigma<\infty$.

Lemma 1 Suppose $\Omega(x)=\int_{0}^{1} \frac{e^{x(1-\sigma)}}{W(\sigma)} \mathrm{d} \sigma$ is an increasing function of $x(>0)$ and we set

$$
\begin{equation*}
\nu(x)=\max _{0<\sigma \leq 1} \frac{e^{x(1-\sigma)}}{W(\sigma)}=\frac{e^{x\left(1-\sigma_{x}\right)}}{W\left(\sigma_{x}\right)} \tag{8}
\end{equation*}
$$

Then $\frac{\nu(x)}{2 x} \leq \Omega(x) \leq \nu(x)$, when x is sufficiently large.
Proof When x is sufficiently large, it follows that

$$
\begin{aligned}
\Omega(x) & \geq \int_{\sigma_{x}}^{1} \frac{e^{x(1-\sigma)}}{W(\sigma)} \mathrm{d} \sigma \geq \frac{1}{W\left(\sigma_{x}\right)} \int_{\sigma_{x}}^{1} e^{x(1-\sigma)} \mathrm{d} \sigma=\frac{e^{x\left(1-\sigma_{x}\right)}-1}{x W\left(\sigma_{x}\right)} \\
& >\frac{e^{x\left(1-\sigma_{x}\right)}}{2 x W\left(\sigma_{x}\right)}>\frac{\nu(x)}{2 x}
\end{aligned}
$$

In addition, we can easily get $\Omega(x) \leq \nu(x) \int_{0}^{1} \mathrm{~d} \sigma=\nu(x)$. The proof is completed.
Theorem 3 Suppose that $F(s)$ satisfies $\sigma_{\mu}^{F}=0$. Then it is analytic in the right half-plane. We set a new relative transform of $F(s)$ as follows

$$
f(s)=\int_{0}^{+\infty} e^{-s x} \Omega(x) \mathrm{d} \alpha(x)
$$

Then its associated abscissas of uniform convergence $\sigma_{\mu}^{f}=1$, and when $\operatorname{Re} s>1$, we have

$$
\begin{equation*}
f(s)=\int_{0}^{1} \frac{F(s+x-1)}{W(x)} \mathrm{d} x \tag{9}
\end{equation*}
$$

Proof Choose a sequence λ_{n} which satisfy (2), (3) and (4). Then we set

$$
B_{n}^{*}=\sup _{\lambda_{n}<x<\lambda_{n+1},-\infty<t<+\infty}\left|\int_{\lambda_{n}}^{x} e^{-i t y} \Omega(y) \mathrm{d} \alpha(y)\right|
$$

By Theorem 3.1 of the paper [5], we have

$$
A_{n}^{*} \Omega\left(\lambda_{n}\right) \leq B_{n}^{*} \leq 2 A_{n}^{*} \Omega\left(\lambda_{n+1}\right)
$$

Let K be a constant dependent of (3). Combining this with Lemma 1, we obtain

$$
\begin{equation*}
\ln A_{n}^{*}+\ln \nu\left(\lambda_{n}\right)-\ln 2 \lambda_{n} \leq \ln B_{n}^{*} \leq \ln A_{n}^{*}+\ln \nu\left(\lambda_{n}+K\right)+\ln 2 \tag{10}
\end{equation*}
$$

On the one hand, from (6) and (8), it follows that

$$
\ln \nu\left(\lambda_{n}+K\right) \leq\left(\lambda_{n}+K\right)\left(1-\sigma_{\lambda_{n}+K}\right)-\ln ^{+} \mu\left(\sigma_{\lambda_{n}+K}, F\right) \leq K-K \sigma_{\lambda_{n}+K}+\lambda_{n}-\ln A_{n}^{*}
$$

On the other hand, from (7), there exists $\left\{\sigma_{n}\right\} \downarrow 0^{+}$satisfying

$$
\ln \nu\left(\lambda_{n}\right) \geq \lambda_{n}\left(1-\sigma_{n}\right)-V\left(\sigma_{n}\right)=\lambda_{n}\left(1-\sigma_{n}\right)-\log \mu\left(\sigma_{n}, F\right)
$$

We choose $\left\{k_{n}\right\}$, so that $\mu\left(\sigma_{n}, F\right)=A_{k_{n}}^{*} e^{-\lambda_{k_{n}} \sigma_{n}}$. Then

$$
\ln \nu\left(\lambda_{k_{n}}\right) \geq \lambda_{k_{n}}\left(1-\sigma_{n}\right)-\ln A_{k_{n}}^{*}+\lambda_{k_{n}} \sigma_{n}=\lambda_{k_{n}}-\ln A_{k_{n}}^{*} .
$$

Consequently, from (10) and the above results, it follows that

$$
\begin{aligned}
\varlimsup_{n \rightarrow \infty} \frac{\ln B_{n}^{*}}{\lambda_{n}} & \geq \varlimsup_{n \rightarrow \infty} \frac{\ln A_{k_{n}}^{*}+\ln \nu\left(\lambda_{k_{n}}\right)-\ln 2 \lambda_{k_{n}}}{\lambda_{k_{n}}} \\
& \geq \varlimsup_{n \rightarrow \infty} \frac{\lambda_{k_{n}}-\ln 2 \lambda_{k_{n}}}{\lambda_{k_{n}}}=1, \\
\varlimsup_{n \rightarrow \infty} \frac{\ln B_{n}^{*}}{\lambda_{n}} & \leq \varlimsup_{n \rightarrow \infty} \frac{\ln A_{n}^{*}+\ln \nu\left(\lambda_{n}+K\right)+\ln 2}{\lambda_{n}} \\
& \leq \varlimsup_{n \rightarrow \infty} \frac{K-K \sigma_{\lambda_{n}+K}+\lambda_{n}+\ln 2}{\lambda_{n}}=1 .
\end{aligned}
$$

So, from the first formula of (4) and Theorem 1.3 of [5], we obtain $\sigma_{u}^{f}=1$. When Res >1, we can change the integral order of $f(s)$ since it is uniformly convergent in $\operatorname{Re} s>1$,

$$
\int_{0}^{+\infty} \int_{0}^{1} \frac{e^{-x(\sigma+s-1)}}{W(\sigma)} \mathrm{d} \sigma \mathrm{~d} \alpha(x)=\int_{0}^{1} \int_{0}^{+\infty} \frac{e^{-x(\sigma+s-1)}}{W(\sigma)} \mathrm{d} \alpha(x) \mathrm{d} \sigma
$$

and then we have the result (9).

References

[1] YU Jiarong. Diriechlet Series and the Random Dirichlet Series [M]. Beijing, Science Press, 1997.
[2] SUN Daochun, YU Jiarong. On the distribution of values of random Dirichlet series. II [J]. Chinese Ann. Math. Ser. B, 19990, 11(1): 33-44.
[3] KONG Yinying, SUN Daochun. On the rearrangements of the coefficients of two Dirichlet series [J]. Math. Practice Theory, 2005, 35(11): 188-193. (in Chinese)
[4] YU Jiarong. Sur les droites de Borel de certaines fonctions entiéres [J]. Ann. Ec. Norm. Sup., 1951, 68(3): 65-104.
[5] YU Jiarong. On the Borel lines of entire functions defined by Laplace-Stieltjes transforms [J]. Acta Math. Sinica, 1963, 13: 471-484. (in Chinese)
[6] KONG Yinying, SUN Daochun. The growth of Laplace-Stieltjes transform convergent in the complex plane [J]. Bull. Calcutta Math. Soc., 2006, 98(2): 109-116.

