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Abstract In this paper, the growth of analytic function defined by L-S transforms convergent

in the right half plane is studied and some properties on the L-S transform F(s) and its relative

transforms f(s) are obtained.
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Some problems on the growth and the value distribution of analytic functions defined by

Dirichlet series have been studied for a long time and lots of important results were obtained in

[1], [2] and [3], but the correlative researches of L-S Transforms are seldom discussed. From [4]

and [5], Dirichlet series was regarded as a special example of L-S transforms and some properties

of Dirichlet series may be the same with L-S transforms [6]. Yu[1,4] first studied the growth

of Dirichlet series which was uniformly convergent in the complex plane, and obtained some

properties on its implicative series, then he extended the results to L-S transforms. In this

paper, we continue those studies on the L-S transforms which are convergent in the right half

plane and obtained some new results on its relative transforms.

Consider L-S transforms[5]

F (s) =

∫ +∞

0

e−sxdα(x), s = σ + it, (1)

where α(x) is a bounded variation on any interval [0, X ] (0 < X < +∞), and σ and t are real

variables. We choose a sequence {λn}:

0 = λ1 < λ2 < λ3 < · · · < λn ↑ +∞, (2)

which satisfies the following conditions:

lim
n→∞

(λn+1 − λn) < +∞ (3)
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and

lim
n→∞

n

λn
= D < +∞, lim

n→∞

lnA∗
n

λn

= 0, (4)

where

A∗
n = sup

λn<x≤λn+1,−∞<t<+∞

|

∫ x

λn

e−itydα(y)|.

According to Valiron-Knopp-Bohr formula[5] and the conditions of (3) and (4), it follows

that σF
u = 0, where σF

u is the uniformly convergent abscissa of (1). Then the transform F (s) is

analytic in the right half-plane. We set

Mu(σ, F ) = sup
0<x<+∞,−∞<t<+∞

|

∫ x

0

e−(σ+it)ydα(y)|, σ > 0,

µ(σ, F ) = max
1≤n<+∞

{A∗
ne−λnσ}, σ > 0.

By the second formula of (4), for any σ,

lim
n→∞

lnA∗
n − λnσ

λn

= −σ < 0 or lim
n→∞

lnA∗
ne−λnσ = −∞.

We can see that µ(σ, F ) exists.

Let {Pn} = {(λn,− lnA∗
n)} (n = 1, 2, . . .) be a sequence on the xOy plane. Make a convex

Newton polygon Π(F ) from {Pn} such that its vertices are in {Pn} and the other points are on

or above the edge of it. For any σ > 0, we draw a line over Pn with the slope −σ:

y + lnA∗
n = −σ(x − λn).

The ordinate of the crossover point between the line and the y-axis is − lnA∗
ne−λnσ. Therefore

− lnµ(σ, F ) = min1≤n<+∞{− lnA∗
ne−λnσ}. Let n(σ) = max {n; µ(σ, F ) = A∗

ne−λnσ} denote the

maximum term index of (1). Then µ(σ, F ) = A∗
n(σ)e

−λn(σ)σ.

Suppose that Gn = − lnA∗
n. Using the similar method to [1] gives:

lnµ(σ, F ) =







−G1, −σ < G2−G1

λ2−λ1
,

−G1 −
∫ σ

−
G2−G1
λ2−λ1

λn(x)dx, 0 > −σ ≥ G2−G1

λ2−λ1
.

It is obvious that lnµ(σ, F ) is a decreasing convex function in (0, +∞). We can also give the

definition of the order τu and the order τµ as follows

τu = lim
σ→0+

ln+ ln+ Mu(σ, F )

− lnσ
, τµ = lim

σ→0+

ln+ ln+ µ(σ, F )

− lnσ
.

Next, we will investigate the relation between the maximum modulus Mu(σ, F ) and the maximum

term µ(σ, F ) of F (s) defined by (1) convergent in the right half plane {s|Res = σ > 0}.

Theorem 1 Suppose that σF
u = 0, and the sequence (2) satisfies the conditions of (3) and (4).

Then ∀ε ∈ (0, 1), when σ is sufficiently close to 0+, τu = τµ holds.

Proof Firstly, let

I(x; σ + it) =

∫ x

0

e−(σ+it)ydα(y).
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From (3), there exists K > 0 satisfying 0 < λn+1 − λn ≤ K (n = 1, 2, 3, . . .). As σ(> 0)

sufficiently reaches 0, it follows eKσ < 3
2 . When x > λn, we have

∫ x

λn

e−itydα(y) =

∫ x

λn

eσydyI(y; σ + it)

= I(y; σ + it)eσy|xλn
− σ

∫ x

λn

eσyI(y; σ + it)dy.

For any σ > 0, and any x ∈ (λn, λn+1], it follows that

|

∫ x

λn

e−itydα(y)| ≤ Mu(σ, F )[|eσx + eσλn | + |eσx − eσλn |]

≤ 2Mu(σ, F )e(λn+K)σ ≤ 3Mu(σ, F )eλnσ,

then 1
3µ(σ, F ) ≤ Mu(σ, F ) and limσ→0+

ln+ ln+ µ(σ,F )
− ln σ

≤ limσ→0+
ln+ ln+ Mu(σ,F )

− ln σ
.

Secondly, for any x > 0, there exists n ∈ N, λn < x ≤ λn+1, such that

∫ x

0

e−(σ+it)ydα(y) =
n−1
∑

k=1

∫ λk+1

λk

e−(σ+it)ydα(y) +

∫ x

λn

e−(σ+it)ydα(y).

Let

Ik(x; it) =

∫ x

λk

e−itydα(y), λk ≤ x ≤ λk+1.

For any t ∈ R, we have

|Ik(x; it)| ≤ A∗
k ≤ µ(σ, F )eλkσ, σ > 0. (5)

Hence for any x ∈ (λk, λk+1] and σ > 0, we have

∫ x

0

e−(σ+it)ydα(y) =

n−1
∑

k=1

[e−λk+1σIk(λk+1; it) + σ

∫ λk+1

λk

e−σyIk(y; it)dy]+

e−σxIn(x; it) + σ

∫ x

λn

e−σyIn(y; it)dy.

From (5) and ∀ε ∈ (0, 1), we obtain |Ik(x; it)| ≤ µ((1 − ε)σ, F )eλk(1−ε)σ. Then

|

∫ x

0

e−(σ+it)ydα(y)| ≤

n−1
∑

k=1

µ((1 − ε)σ, F )eλk(1−ε)σ(e−λk+1σ + |e−λk+1σ − e−λkσ|)+

µ((1 − ε)σ, F )eλn(1−ε)σ(e−σx + |e−σx − e−λnσ|)

=

n
∑

k=1

µ((1 − ε)σ, F )eλk(1−ε)σe−λkσ

≤µ((1 − ε)σ, F )
+∞
∑

k=1

e−λkεσ .

From the first formula of (4), it follows that for the above ε > 0, there exists N(ε) > 0, for any

n > N(ε), we have λn > n
D+ε

, such that

+∞
∑

k=1

e−λkεσ ≤

N(ε)
∑

k=1

e−λkεσ +

+∞
∑

k=N(ε)+1

e−k σε
D+ε < K(ε)

1

σ
, σ → +0,
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where K(ε) is a constant dependent on ε and (3). So for any ε ∈ (0, 1) and t ∈ R, it follows that

Mu(σ, F ) ≤ K(ε)µ((1 − ε)σ, F ) · 1
σ
.

Consequently, we have

lim
σ→0+

ln+ ln+ µ(σ, F )

− lnσ
≥ lim

σ→0+

ln+ ln+ Mu(σ, F )

− lnσ
.

The proof is completed.

Theorem 2 Suppose that L-S transforms (1) of the order τµ ∈ (0, +∞) satisfy (2),(3) and (4).

Then there will be only two situations on ln+ µ(σ, F ):

1) For ∀ηn ↓ 0(ηn < τµ), there exists {ξn} ∈ (0, 1), such that for ∀σ < ξn, ∀n ∈ N+, it follows

that ln+ µ(σ, F ) > σ−(τµ−ηn);

2) Otherwise there exists ηn ↓ 0(ηn < τµ) and σn ↓ 0+, then ln+ µ(σn, F ) = σ
−(τµ−ηn)
n .

Proof 1) is possible for τµ > 0, we only need to prove 2). Suppose that 1) is untrue. Take

εn ↓ 0(εn < τµ). Then there exists positive numbers σ′
1 < 1 and k1 ∈ N+, such that

ln+ µ(σ′
1, F ) ≤ σ′

1
−(τµ−εk1

)
.

Since τµ > 0, there exists positive number σ∗
1 < σ′

1 so that ln+ µ(σ∗
1 , F ) > σ∗

1
−(τµ−εk1

) and then

∃σ1 ∈ (σ∗
1 , σ′

1) satisfying ln+ µ(σ1, F ) = σ1
−(τµ−εk1

).

Take the other sequence {εk}(k > k1). Since 1) is untrue, there exists positive numbers

σ′
2 < σ∗

1 and k2 > k1, satisfying ln+ µ(σ′
2, F ) ≤ σ′

2
−(τµ−εk2

)
. For f(s) of the order τµ > 0, there

exists positive number σ∗
2 < σ′

2 such that

ln+ µ(σ∗
2 , F ) > σ∗

2
−(τµ−εk2

)
.

Therefore there exists σ2 ∈ (σ∗
2 , σ′

2) satisfying ln+ µ(σ2, F ) = σ2
−(τµ−εk2

). The rest may be

deduced analogously. So there exists εkn
↓ 0, and σn ↓ 0+ which satisfy

ln+ µ(σn, F ) = σn
−(τµ−εkn ).

Set ηn = εkn
, we can obtain 2). Theorem 2 is proved.

Suppose that F (s) meets the conditions of (2), (3) and (4). Then it is analytic in the right

half-plane. In the following text, we only discuss the situation of τµ > 0. For any σ ∈ (0, 1], we

define the function V (σ) as follows:

10. When 0 < τµ < +∞:

Case 1) of Theorem 2, we set V (σ) = ln+ µ(σ, F ).

Case 2) of Theorem 2, for σn+1 < σ < σn, we set

V (σ) = max{ln+ µ(σ, F ), σ−(τµ−ηn)}, n = 1, 2, . . .

20. When τµ = +∞, set ln V (σ)
− ln σ

= maxσ≤x≤1
ln+ ln+ µ(x,F )

− ln x
.

Under case 10, V (σ) is a decreasing convex function on σ. Under case 20, V (σ) is a continuous

function on σ. Under both cases 10 and 20, we always have:

V (σ) ≥ ln+ µ(σ, F ), σ ∈ (0, 1] (6)
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and there exists a decreasing positive sequence {σ′
n} ց 0 such that

V (σ′
n) = lnµ(σ′

n, F ). (7)

So we have the following results:

(i) When σ → 0+, we see that lim
σ→0+

ln V (σ)
− ln σ

= τµ, then V (σ) > (lnσ)2.

(ii) Suppose that W (σ) = eV (σ). Then W (σ) is a decreasing function on σ and for any

h ∈ (0, +∞), it satisfies
∫ 1

0
W (σ+h)

W (σ) dσ < ∞.

Lemma 1 Suppose Ω(x) =
∫ 1

0
ex(1−σ)

W (σ) dσ is an increasing function of x(> 0) and we set

ν(x) = max
0<σ≤1

ex(1−σ)

W (σ)
=

ex(1−σx)

W (σx)
. (8)

Then ν(x)
2x

≤ Ω(x) ≤ ν(x), when x is sufficiently large.

Proof When x is sufficiently large, it follows that

Ω(x) ≥

∫ 1

σx

ex(1−σ)

W (σ)
dσ ≥

1

W (σx)

∫ 1

σx

ex(1−σ)dσ =
ex(1−σx) − 1

xW (σx)

>
ex(1−σx)

2xW (σx)
>

ν(x)

2x
.

In addition, we can easily get Ω(x) ≤ ν(x)
∫ 1

0
dσ = ν(x). The proof is completed.

Theorem 3 Suppose that F (s) satisfies σF
µ = 0. Then it is analytic in the right half-plane. We

set a new relative transform of F (s) as follows

f(s) =

∫ +∞

0

e−sxΩ(x)dα(x).

Then its associated abscissas of uniform convergence σf
µ = 1, and when Res > 1, we have

f(s) =

∫ 1

0

F (s + x − 1)

W (x)
dx. (9)

Proof Choose a sequence λn which satisfy (2), (3) and (4). Then we set

B∗
n = sup

λn<x<λn+1,−∞<t<+∞

|

∫ x

λn

e−ityΩ(y)dα(y)|.

By Theorem 3.1 of the paper [5], we have

A∗
nΩ(λn) ≤ B∗

n ≤ 2A∗
nΩ(λn+1).

Let K be a constant dependent of (3). Combining this with Lemma 1, we obtain

lnA∗
n + ln ν(λn) − ln 2λn ≤ lnB∗

n ≤ lnA∗
n + ln ν(λn + K) + ln 2. (10)

On the one hand, from (6) and (8), it follows that

ln ν(λn + K) ≤ (λn + K)(1 − σλn+K) − ln+ µ(σλn+K , F ) ≤ K − Kσλn+K + λn − lnA∗
n.
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On the other hand, from (7), there exists {σn} ↓ 0+ satisfying

ln ν(λn) ≥ λn(1 − σn) − V (σn) = λn(1 − σn) − log µ(σn, F ).

We choose {kn}, so that µ(σn, F ) = A∗
kn

e−λkn σn . Then

ln ν(λkn
) ≥ λkn

(1 − σn) − lnA∗
kn

+ λkn
σn = λkn

− lnA∗
kn

.

Consequently, from (10) and the above results, it follows that

lim
n→∞

lnB∗
n

λn

≥ lim
n→∞

lnA∗
kn

+ ln ν(λkn
) − ln 2λkn

λkn

≥ lim
n→∞

λkn
− ln 2λkn

λkn

= 1,

lim
n→∞

lnB∗
n

λn

≤ lim
n→∞

lnA∗
n + ln ν(λn + K) + ln 2

λn

≤ lim
n→∞

K − Kσλn+K + λn + ln 2

λn

= 1.

So, from the first formula of (4) and Theorem 1.3 of [5], we obtain σf
u = 1. When Res > 1, we

can change the integral order of f(s) since it is uniformly convergent in Res > 1,
∫ +∞

0

∫ 1

0

e−x(σ+s−1)

W (σ)
dσdα(x) =

∫ 1

0

∫ +∞

0

e−x(σ+s−1)

W (σ)
dα(x)dσ

and then we have the result (9).
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