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0. Introduction

Geometric notions in the theory of Riemannian submanifolds have their counterparts for

foliations on Riemannian manifolds. The harmonic foliations on Riemannian manifolds have

been extensively studied in recent years[1,3,5], many harmonic foliations which are not totally

geodesic are known. It is known that under some geometric restrictions, harmonicity implies

total geodesicness. But the geometric property of Riemannian foliations with parallel mean

curvature in spaces is still unknown. The purpose of this paper is to study the Riemannian

foliations with parallel mean curvature in a local-symmetric Riemannian manifold. Using the

method of Nakagawa and Takagi[5], we calculate divergence of the vector field and obtain a

pinching theorem about Ricci curvature of F . We get the following theorem:

Theorem Let Mn+p(c) be a local-symmetric Riemannian manifold with constant sectional

curvature c > 0. And let F be a Riemannian foliation in Mn+p(c) with parallel mean curvature

H (6= 0), n ≥ 2, and for each leaf of F the Ricci curvature Ric ≥ (>)(n − 1)c. Then
∫

Mn+p(c)

{3

2
S2 + [(

√
n − 2

n
)n2H2 − nc]S + cn2H2} ∗ 1 ≥ 0.

Corollary With the same conditions as the theorem, for the constant curvature c ≥ 0, if
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| −2nH2 +
√

nn2H2 − nc |≥
√

6n | H |, and −D
3 < S < D

3 , then the second fundamental form

for each leaf of F is parallel, where D =
√

(−2nH2 +
√

nn2H2 − nc)2 − 6cn2H2 −
√

6cn | H |.

1. Preliminaries

Let (M, g) be an (n + p)-dimensional Riemannian manifold, and let F be a p-codimension

foliation on M with respect to a bundle-like metric. Considering F as an integrable distribution

on M , we denote the orthogonal distribution of F by F⊥, which is called the normal plane field.

For any vector field X on M , we decompose it as X = X ′ + X ′′, where X ′ (resp. X ′′) is tangent

(resp. normal)to F . We define two tensors A and h of type (1,2) on M by

A(X, Y ) = −(∇Y ′′X ′′)′, h(X, Y ) = −(∇Y ′X ′)′′ (1.1)

for any vector fields X and Y on M . Where ∇ denotes the Riemannian connection with respect

to the Riemannian metric g of Mn+p(c).

The restriction of h to each leaf of F is so-called the second fundamental form of the leaf.

We define the second fundamental form B of the normal field F⊥ by Ref. [1]

B(X, Y ) =
1

2
{A(X, Y ) + A(X, Y )} (1.2)

for any vector fields X and Y on M . We will use, throughout this paper, the following convention

on the range of indices unless otherwise stated.

A, B, C, . . . = 1, . . . , n + p;

i, j, k, . . . = 1, 2, . . . , n;

α, β, γ, . . . = n + 1, . . . , n + p.

Let e1, . . . , en+p be a locally defined orthonormal frame field of M such that, restricting to

F , e1, . . . , en are tangent to F and en+1, . . . , en+p are normal to F . Let {ωA} be the dual frame

field. The structure equations of M are given as follows[1]

dωA = −ωAB ∧ ωB, ωAB + ωBA = 0, (1.3)

dωAB + ωAC ∧ ωCB = ΩAB, ΩAB = −1

2

∑
RABCDωC ∧ ωD, (1.4)

where RABCD is the curvature tensor of M . Restricting to F :

ωα = 0, ωij = ωαβ , ωαi = ωiα, (1.5)

ωαi =
∑

hα
ijωj +

∑
Aj

αβωβ , hα
ij = hα

ji = hβ
jk = hβ

ik, (1.6)

dωi = −ωij ∧ ωj , ωij + ωji = 0, (1.7)

dωij = −ωik ∧ ωkj +
1

2
Rijklωk ∧ ωl, (1.8)

dωαβ = −ωαγ ∧ ωγβ +
1

2
Rαβklωk ∧ ωl, (1.9)
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where Rijkl and Rαβkl denote the curvature tensor of tangent connection and normal connection

of F . If the Riemannian connection ∇ on M is given by ∇eA
eB =

∑
ωCB(eA)eC , then the

components hA
BC (resp. AB

CD) of h (resp.A) with respect to {eA} and {ωA} are given by:

hα
ij = ωαi(ej), Ai

αβ = ωαi(eβ). (1.10)

The second fundamental form H of F is: H =
∑

a,i,j hα
ijωiωjeα. The length square of H is:

S =
∑

a,i,j(h
α
ij)

2. For each α, Hα denotes the matrix (hα
ij). ξ = 1

n

∑
α(trHα)eα is called the mean

curvature vector, H = ‖ξ‖ is called the mean curvature, where tr denotes the trace of the matrix

(hα
ij). The foliation F is said to be harmonic or minimal (resp. totally geodesic) if

∑
hα

jj = 0

(resp. hα
jj = 0). The normal plane field F⊥ is said to be minimal if trB =

∑
Ai

ααei = 0. The

normal plane field F⊥ is said to be totally geodesic, if B=0. The metric is bundle-like if and

only if Ai
αβ = −Ai

βα, which implies B = 0. The foliations F with bundle-like metric is called

Riemannian foliations. For a tensor field T = (T A1...Ar

B1...Bs
) on M , we define its 1-order covariant

derivatives by[1]

T A1...Ar

B1...BsCωc = dT A1...Ar

B1...Bs
−

∑
T

A1...Aa−1,C,Aa+1...Ar

B1...Bs
ωCAa

−
∑

T A1...Ar

B1...Bb−1,C,Bb+1...Bs
ωCBb

. (1.13)

Then we have the definiens of (hA
BCD), (AA

BCD). For details see Ref. [1] or [5].

2. Calculus of the divergence

A vector field v =
∑

νAeA on Mn+p(c) is defined by

νk =
∑

hα
ijh

α
ijk, να = 0. (2.0)

By Ref. [1], we know that the divergence of the vector field v is defined by

δv = divv =
∑

νAA =
∑

νkk +
∑

ναα. (2.1)

Since F is a Riemannian foliations, i.e., Ai
αβ = −Ai

βα, we have

Ai
αα = 0. (2.2)

Taking exterior differentiation of (2.0) and giving attention to (2.2), we have

νkk =
∑

hα
ijkhα

ijk +
∑

hα
ijh

α
ijkk+

∑
hα

ijh
β
ijh

β
mkhα

mk +
∑

hα
ijh

α
jlh

β
lkhβ

kj +
∑

hα
ijh

α
jlh

β
lkhβ

ki +
∑

hα
ijh

α
ijβhβ

kk,

ναα =
∑

k,α

νkAk
αα = 0. (2.3)

By similar calculation to Refs. [1], [5], we have

hα
ijh

α
ijkk =

∑
hα

ijh
l
kkij − 2

∑
hα

ijh
β
ijh

α
lkhβ

lk + 4
∑

hα
ijh

β
jlh

α
lkhβ

ki − 2
∑

hα
ijh

α
jlh

β
lkhβ

ki−

2
∑

hα
ijh

β
jkhβ

klh
α
li + 2

∑
hα

ijh
β
jlh

α
lih

β
kk −

∑
hα

ijh
α
ijβhα

kk +
∑

hα
ijh

α
kkβhβ

ij−

4
∑

α

(
∑

k

hα
kk)2 + 4n

∑

α,i,j

(hα
ij)

2. (2.4)
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Now assume eα is the mean curvature vector. Hence
∑

k hβ
kk = 0 (β 6= α). From (1.11) we

have { ∑
k,c hα

kkcωc = ndH,
∑

k,c hβ
kkcωc = nHωβα (β 6= α).

(2.5)

Here H is the mean curvature. The vector eα is parallel in the normal bundle. This is equivalent

to[2] {
ωαβ = 0,

HαHβ = HβHα.
(2.6)

From (2.5) and (2.6) we have { ∑
k,c hα

kkcωc = ndH,

hβ
kkc = 0 (β 6= α).

(2.7)

We take exterior differentiation of (2.7):
{

hα
kkij = −∑

hβ
kkhβ

lih
α
lj − 2

∑
hα

klh
β
lih

β
kj −

∑
hα

kkβhβ
ij ,

hβ
kkij = −

∑
hα

kkhα
lih

β
lj − 2

∑
hβ

klh
α
lih

α
kj (β 6= α).

(2.8)

From (2.4) and (2.8) we have

hα
ijh

α
ijkk = − 2

∑
hα

ijh
β
ijh

α
lkhβ

lk + 2
∑

hα
ijh

β
jlh

α
lkhβ

ki − 2
∑

hα
ijh

α
jlh

β
lkhβ

ki−

2
∑

hα
ijh

β
jkhβ

klh
α
li +

∑
hα

ijh
β
jlh

α
lih

β
kk −

∑
hα

ijh
α
ijβhβ

kk−

c
∑

α

(
∑

k

hα
kk)2 + cn

∑

α,i,j

(hα
ij)

2. (2.9)

Substituting (2.9) into (2.3), we have

νkk =
∑

hα
ijkhα

ijk + 2
∑

hα
ijh

β
jlh

α
lkhβ

ki − 2
∑

hα
ijh

α
jlh

β
lkhβ

ki−
∑

hα
ijh

β
ijh

α
lkhβ

lk +
∑

hα
ijh

β
jlh

α
lih

β
kk−

c
∑

α

(
∑

k

hα
kk)2 + cn

∑

α,i,j

(hα
ij)

2. (2.10)

Let Hα denote the matrix (hα
ij). From (2.1)–(2.3), (2.10) it follows

δv =
∑

hα
ijkhα

ijk +
∑

α,β

tr(HαHβ − HβHα)(HαHβ − HβHα)−

∑

α,β

[tr(HαHβ)]2 +
∑

α,β

[tr(Hα)2Hβ]tr(Hβ)−

c
∑

α

(tr(Hα))2 + cn
∑

α

tr(Hα)2. (2.11)

3. Proof of the main theorems

From Ref. [2], we have:

Lemma Let Mn be a submanifold in Nn+p(c). Suppose that the mean curvature of Mn, H 6= 0,

and the Ricci curvature Ric ≥ (>)(n − 1)c. Then the second fundamental form about the mean
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curvature of M is semi-definite.

Theorem Let Mn+p(c) be a local-symmetric Riemannian manifold with constant sectional

curvature c > 0. And let F be a Riemannian foliation in Mn+p(c) with parallel mean curvature

H(6= 0), n ≥ 2, and for each leaf of F the Ricci curvature Ric ≥ (>)(n − 1)c. Then
∫

Mn+p(c)

{3

2
S2 + [(

√
n − 2

n
)n2H2 − nc]S + cn2H2} ∗ 1 ≥ 0.

Proof Assume F is a foliation with parallel mean curvature H(6= 0). Let en+1 = ξ/‖ξ‖ and

denote Hα = (hα
ij). Then from (2.11), we have

−δv+
∑

hα
ijkhα

ijk = N(HαHβ − HβHα) +
∑

α,β

[tr(HαHβ)]2−

∑

α,β

tr[(Hα)2Hβ]tr(Hβ) + c
∑

α

(trHα)2 − ncS. (3.1)

Let

∆1 = N(HαHβ − HβHα) +
∑

α,β

[tr(HαHβ)]2, (3.2)

∆2 = −
∑

α,β

tr[(Hα)2Hβ ]tr(Hβ) + c
∑

α

(trHα)2 − ncS. (3.3)

As en+1 is the mean curvature vector, we know that in (3.3), β in the first item and α in the

second item must be n + 1 so that the item is not zero. Then, we have

∆2 = −nH
∑

α,β

tr[(Hα)2Hn+1] + cn2H2 − ncS. (3.4)

Diagonalizing Hα for fixed α gives hα
ij = λiδij . By Schwarz inequality, we have

λ2
i (h

n+1
ij − 2H) ≤

√∑

i

λ4
i

∑

j

(hn+1
jj − 2H)2

≤
√

(
∑

i

λ2
i )

2[
∑

(hn+1
jj )2 − 4

∑
hn+1

jj + 4nH2] = (
∑

i

λ2
i )

√∑
(hn+1

jj )2. (3.5)

That is,

− nHtr[(Hα)2Hn+1] = −nHλ2
i (h

n+1
jj − 2H) − 2nH2

∑

i

λ2
i

≤ n | H | (
∑

i

λ2
i )

√∑
(hn+1

jj )2 − 2nH2
∑

i

λ2
i

≤ [
√

n
∑

(hn+1
jj )2 − 2nH2]

∑

i,j

(hα
ij)

2. (3.6)

By the Lemma we know that the second fundamental form about the mean curvature for each

leaf of F is semi-definited, which guarantees that ∀j (j = 1, . . . , n), hn+1
jj ≥ 0. So we have

∑
(hn+1

jj )2 ≤ (
∑

hn+1
jj )2 = n2H2. Then (3.6) becomes

−nHtr[(Hα)2Hn+1] ≤ [n2√nH2 − 2nH2]S, (3.7)
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where S is the length square of the second fundamental form of F . By (3.7) we know that

∆2 ≤ [n2√nH2 − 2nH2]S − ncS + cn2H2. (3.8)

Considering (3.3), and by Ref. [4] we know

∆1 ≤ 3

2
S2. (3.9)

Applying (3.1), (3.8) and (3.9), we obtain

−δv +
∑

hα
ijkhα

ijk ≤ 3

2
S2 + [n2

√
nH2 − 2nH2 − nc]S + cn2H2.

Integrating the inequality above, and by Green’s theorem, we have

0 ≤
∫

Mn+p(c)

∑
hα

ijkhα
ijk ∗ 1

≤
∫

Mn+p(c)

{3

2
S2 + [n2

√
nH2 − 2nH2 − nc]S + cn2H2} ∗ 1. (3.10)

The Theorem is proved. 2

Corollary With the same conditions as in the theorem, for the constant curvature c ≥ 0, if

| −2nH2 +
√

nn2H2 − nc |≥
√

6n | H |, and −D
3 < S < D

3 , then the second fundamental form

for each leaf of F is parallel, where

D =

√
(−2nH2 +

√
nn2H2 − nc)2 − 6cn2H2 −

√
6cn | H | .

Proof Considering function ϕ = 3
2S2 +[n2√nH2−2nH2−nc]S +cn2H2, discriminant of which

is ∆̃ = (−2nH2 +
√

nn2H2 − nc)2 − 6cn2H2, and for the factor ∆̃ ≥ 0, we know that there are

two different real roots for the equation ϕ(S) = 0:

S1 =
(
√

n − 2
n
)n2H2 − nc +

√
∆̃

−3
, S2 =

−[(
√

n − 2
n
)n2H2 − nc] +

√
∆̃

3
.

When S1 < S < S2, ϕ ≤ 0. That is, ϕ ≤ 0 when −D
3 ≤ S1 < S < S2 ≤ D

3 . By the Theorem, we

deduce that
∑

hα
ijkhα

ijk = 0 under this condition, i.e., hα
ijk = 0. The Corollary obviously holds.
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