Journal of Mathematical Research & Exposition
May, 2008, Vol. 28, No. 2, pp. 383-388
DOI:10.3770/j.issn:1000-341X.2008.02.019
Http://jmre.dlut.edu.cn

A Pinching Theorem for Riemannian Foliations with
Parallel Mean Curvature in a Local-Symmetric
Riemannian Manifold

PENG Hui Chun', LI Zhi Bo?
(1. Department of Mathematics and Physics, North China Electric Power University,

Beijing 102206, China;
2. Department of Mathematics, Zhengzhou University, Henan 450052, China)
(E-mail: penghuichun@sina.com)

Abstract We discuss the Riemannian foliations with parallel mean curvature in a local-
symmetric Riemannian manifold, and obtain a pinching theorem about it.

Keywords Riemannian foliations; local-symmetric Riemannian manifold; mean curvature;

divergence.

Document code A
MR(2000) Subject Classification 53C42
Chinese Library Classification 0186.16

0. Introduction

Geometric notions in the theory of Riemannian submanifolds have their counterparts for
foliations on Riemannian manifolds. The harmonic foliations on Riemannian manifolds have

been extensively studied in recent yearsl!»35]

, many harmonic foliations which are not totally
geodesic are known. It is known that under some geometric restrictions, harmonicity implies
total geodesicness. But the geometric property of Riemannian foliations with parallel mean
curvature in spaces is still unknown. The purpose of this paper is to study the Riemannian
foliations with parallel mean curvature in a local-symmetric Riemannian manifold. Using the
method of Nakagawa and Takagil®, we calculate divergence of the vector field and obtain a

pinching theorem about Ricci curvature of 7. We get the following theorem:

Theorem Let M"tP(c) be a local-symmetric Riemannian manifold with constant sectional
curvature ¢ > 0. And let F be a Riemannian foliation in M"™"P(c) with parallel mean curvature
H (#0), n > 2, and for each leaf of F the Ricci curvature Ric > (>)(n — 1)e. Then

/ {§52+[(\/ﬁ—g)nzHQ—nc]S—i-chHQ}*l20.
Mn+p(c) 2 n

Corollary With the same conditions as the theorem, for the constant curvature ¢ > 0, if
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| =2nH? + /nn?H?* — nc |> Vén | H |, and —2 < S < £ then the second fundamental form
for each leaf of F is parallel, where D = /(—2nH? + \/nn2H?2 — nc)? — 6cn2H? — /6en | H |.

1. Preliminaries

Let (M, g) be an (n + p)-dimensional Riemannian manifold, and let F be a p-codimension
foliation on M with respect to a bundle-like metric. Considering F as an integrable distribution
on M, we denote the orthogonal distribution of F by F+, which is called the normal plane field.
For any vector field X on M, we decompose it as X = X'+ X", where X’ (resp. X") is tangent
(resp. normal)to F. We define two tensors A and h of type (1,2) on M by

AX,Y) = —(Vyr X", WX,Y)=—(VyX")" (1.1)

for any vector fields X and Y on M. Where V denotes the Riemannian connection with respect
to the Riemannian metric g of M"™*P(c).

The restriction of h to each leaf of F is so-called the second fundamental form of the leaf.
We define the second fundamental form B of the normal field 7+ by Ref. [1]

B(X,Y) = %{A(X, Y) + A(X,Y)} (1.2)

for any vector fields X and Y on M. We will use, throughout this paper, the following convention

on the range of indices unless otherwise stated.

ABC,...=1,....n+p;
ik, .. =12, ... ,m;
o, B,v,...=n+1,...,n+p.
Let e1,...,entp be a locally defined orthonormal frame field of M such that, restricting to
F,ei1,...,e, are tangent to F and €p41,...,en4p are normal to F. Let {wa} be the dual frame

field. The structure equations of M are given as follows!"
dwg = —waB ANwB,waB +wpa =0, (1.3)

1
dwap +wac Awep = Qup,Qup = —3 Z Rapcpwe N wp, (1.4)

where Rapcp is the curvature tensor of M. Restricting to F:

Wao = 07 Wiy = WaB, Wai = Wia, (15)
= S+ S A 15, =y = 0
dw; = —wij Awj,w;j +wji =0, (1.7)
1
dwij = —wik N wi; + gRijklwk N wy, (1_8)

1
dwap = —wWay Awyps + §Raﬁkzwk N wi, (1.9)
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where R;j; and Ragr; denote the curvature tensor of tangent connection and normal connection
of F. If the Riemannian connection V on M is given by V.,ep = > wcp(ea)ec, then the
components hf. (resp. AZp) of h (resp.A) with respect to {e4} and {wa} are given by:

hf‘j = waile;), Aflﬁ = waileg). (1.10)
The second fundamental form H of F is: H = Za” hijwiwjeq. The length square of H is:

— a2 « a 1 a :

S=30:;(hi;)?. Foreach a, H* denotes the matrix (h;). £ = 5 >, (trH%)eq is called the mean
curvature vector, H = ||€|| is called the mean curvature, where tr denotes the trace of the matrix
(hg;). The foliation F is said to be harmonic or minimal (resp. totally geodesic) if } h$; = 0
(resp. h$; = 0). The normal plane field F* is said to be minimal if trB = Y A} ,e; = 0. The
normal plane field F* is said to be totally geodesic, if B=0. The metric is bundle-like if and
only if Afxﬁ = —Aéa, which implies B = 0. The foliations F with bundle-like metric is called
Riemannian foliations. For a tensor field T = (Téll_'_'_g:) on M, we define its 1-order covariant
derivatives by!!

Al...AT _ Al...AT Al---Aaflxcha+l~~~AT Al...AT
TBl...BSCwC = dTBl...BS - E :TBl...BS wca, — E T81...Bb,l,C,Bb+1...BSwCBb' (1.13)

Then we have the definiens of (hiacp), (ABcp)- For details see Ref. [1] or [5].

2. Calculus of the divergence
A vector field v = > vaeas on M™TP(c) is defined by
v = Y h&hy ve = 0. (2.0)
By Ref. [1], we know that the divergence of the vector field v is defined by
5v:divv:ZuAA:Zka+ZVaa. (2.1)
Since F is a Riemannian foliations, i.e., A;ﬁ = —Aga, we have
Al =0. (2.2)
Taking exterior differentiation of (2.0) and giving attention to (2.2), we have
vk =D higeh + D h .t
D hGRERD ho Y T RERS R > WS RS Rk + Y T hEhS ghl
Vao = »_ kAl =0. (2.3)
kya

By similar calculation to Refs. [1], [5], we have
e = D hihiei; = 2D BGHGRGRG, 4D BGHOAGAY =23 kG~
2> RERD R RE + 2 R hERy, — > RS R he + Y B hgahl—

430 T hp)? +4n )y (he)? (2.4)
« k

a,1,]
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Now assume e, is the mean curvature vector. Hence ), hfk =0(0 # a). From (1.11) we

have

Zk,c higgewe = ndH,
Y —nH (2.5)
Zk,c kkeWe niiwga (ﬁ 7& Oé).

Here H is the mean curvature. The vector e, is parallel in the normal bundle. This is equivalent
t0[2]
Wap = 0,
2.6
{ HeHP = HPH®, (2.6)
From (2.5) and (2.6) we have

> ke Mpewe = ndH, 27
Fike =0 (8 # ).
We take exterior differentiation of (2.7):
{ s = — S iy, hﬁha 2Zhglhﬁhfj S hGshis 2.8)
Biowig = = Sy hihs — 2 HGhihg (8 # o).

From (2.4) and (2.8) we have
WS hSy = — 2 hEShLRG R +2>  hEhShihY — 2> " hehShy by —
2Zh%hf1€hﬁh +Zh%hf1h i — Zh Wi~

CZ thk —|—an ij . (2.9)
« k

i,

Substituting (2.9) into (2.3), we have
Vkk _Zhukh’zgk + 2Zh%h§lh’ h’fz 2Zh’13 jlhlﬁkhgl
> he B hg Ry, + Zh;;hflh hl —

CZ thk —|—an ij . (2.10)
a k

a,t,]
Let H® denote the matrix (h;). From (2.1)-(2.3), (2.10) it follows
0o =" hSphey + > tw(H"HP — HPH*)(H*H® — HPH*)—
a,B

S lr(HYHA)? + Y [te(H*)?HJtr(H)—
a3

cZ(tr(Ho‘))2 +antr(Ho‘)2. (2.11)

3. Proof of the main theorems
From Ref. [2], we have:

Lemma Let M™ be a submanifold in N**P(c). Suppose that the mean curvature of M™, H # 0,
and the Ricci curvature Ric > (>)(n — 1)c. Then the second fundamental form about the mean
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curvature of M is semi-definite.

Theorem Let M"P(c) be a local-symmetric Riemannian manifold with constant sectional
curvature ¢ > 0. And let F be a Riemannian foliation in M"™"P(c) with parallel mean curvature
H(#0), n > 2, and for each leaf of F the Ricci curvature Ric > (>)(n — 1)c. Then

/ {§SQ+[(\/ﬁ—g)nzHQ—nc]S—FchHQ}*l20.
Mner() 2 n

Proof Assume F is a foliation with parallel mean curvature H(# 0). Let e,+1 = £/[|€] and
denote H, = (h;). Then from (2.11), we have

—ov+ > hSphey = N(H*H? — HPH*) + > [tr(H*H")]*—

o,

> wr[(HY)2Her(H?) + ¢ > (trH*)? = ncS. (3.1)

a,3 «

Let
Ay = N(H*H® — H'H*) + ) [te(H*H)]?, (3.2)
a3
Ztr [(H*)2HPtr(HP) +CZ trH*)? — ncS. (3.3)
a3

As e, 1 is the mean curvature vector, we know that in (3.3), § in the first item and « in the

second item must be n + 1 so that the item is not zero. Then, we have

Ny = —nHZ tr[(H*)2H™ ] + en? H? — neS. (3.4)
a,p
Diagonalizing H® for fixed « gives h{; = A\;d;5. By Schwarz inequality, we have

)\?(h:l;rl \/Z )\42 hn+1 H)2
< \/(Z A2 (2 =4y R 4 anH?) = ZV VD (R, (3.5)

That is,

— nHtr[(H*)?H" ] = —nHX (B} — 2H) — 2nH? Y "\

<n|H| (ZA%)W/Z (h)2 —2nHQZ/\2

<[WVn) ( h"+1 —2nH? Y (h)?. (3.6)
4,J
By the Lemma we know that the second fundamental form about the mean curvature for each
leaf of F is semi-definited, which guarantees that Vj (j = 1,...,n), h?fl > 0. So we have
Z(h?jrl)2 <X h?;rl)Q =n2H?. Then (3.6) becomes

—nHtr[(HY)?H" ) < [n®nH? — 2nH?|S, (3.7)
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where S is the length square of the second fundamental form of F. By (3.7) we know that
Ay < [n?VnH? — 2nH?S — neS + en®H?. (3.8)
Considering (3.3), and by Ref. [4] we know
A < 252. (3.9)
Applying (3.1), (3.8) and (3.9), we obtain
—0v + Z hhise < gSQ + [n?/nH? — 2nH? — ne]S + cn*H>.

Integrating the inequality above, and by Green’s theorem, we have

0< / Ry * 1
Mn+P(c) Z ghigk
g/ {§S2+ [n?VnH? — 2nH? — nc)S + en*H?} * 1. (3.10)
Mntr(c)

The Theorem is proved. O

Corollary With the same conditions as in the theorem, for the constant curvature ¢ > 0, if
| =2nH? + /nn?H?* — nc |> Vén | H |, and —2 < S < £ then the second fundamental form

for each leaf of F is parallel, where

D= \/(—2nH2 + vnn2H? —ne)? — 6en2H? —V6en | H | .

Proof Considering function ¢ = 25%+ [n?\/nH? —2nH? —nc]S+ cn? H?, discriminant of which
is A = (=2nH? + \/nn*H? — nc)? — 6en®H2, and for the factor A > 0, we know that there are
two different real roots for the equation ¢(S) = 0:
(vVn—2)n?H? — nc+ VA & = —[(vn— 2)n?H? — nd + VA

—3 s P2 — 3 .
When S; < S5 < 52, ¢ <0. That is, ¢ < 0 when —% <5 <5<8 L %. By the Theorem, we
deduce that > hy by = 0 under this condition, i.e., A = 0. The Corollary obviously holds.

S1 =
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