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Abstract If every monic real polynomial of degree n can be achieved as the characteristic
polynomial of some matrix B € Q(A), then sign pattern A of order n is a spectrally arbitrary
pattern. A sign pattern A is minimally spectrally arbitrary if it is spectrally arbitrary but is not
spectrally arbitrary if any nonzero entry (or entries) of A is replaced by zero. In this article, we
give some new sign patterns which are minimally spectrally arbitrary for order n > 9.
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1. Introduction

A sign pattern A is a matrix whose entries come from {+, —,0}. The sign pattern class of
A, denoted Q(A), is

Q(A) = {B = [b”] S Mn(R”Slgnb” = Qjj for all ’L,j}

A sign pattern A = [a;;] is a superpattern of a sign pattern A = [a;;] if G;; = a;; whenever
a;; #0. If A is a superpattern of A, then A is a subpattern of A. A subpattern of A which is
not A itself is a proper subpattern of A.

A sign pattern A is sign nonsingular if every matrix B € Q(A) is nonsingular, and A is sign
singular if every matrix B € Q(A) is singular. A sign pattern A is a spectrally arbitrary pattern
(SAP) if for any given real monic polynomial g(x) of degree n, there is a real matrix B € Q(A)
with characteristic polynomial g(x). If sign pattern A is a SAP and no proper subpattern of A
is a SAP, then A is a minimally spectrally arbitrary pattern (MSAP). If there is a real matrix
B € Q(A) with characteristic polynomial g(x) = 2™, then A is potentially nilpotent (PN). Note
that each SAP must be PN.

The question of the existence of a SAP arose in [1]. The first SAP of order n for each n > 2
was provided in [5]. Later, some papers2~4 introduce some sign patterns which are SAPs for

order n > 2. In this paper, we introduce some new sign patterns which are MSAPs for order
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n > 9. Much of this work is motivated by the inertia and spectral problems considered in [1].

2. Some preliminaries

Lemma 2.11Y Let A be a sign pattern of order n, and suppose that there exists some nilpotent
realization B € Q(A) with at least n nonzero entries, say b, ..., b, ,. Let X be the matrix
obtained by replacing these entries in B by variables z1, ..., x,. If the Jacobian of the coefficients
of the characteristic polynomial of X with respect to the variables x1,...,x, Is nonzero at
(@1, y2n) = (biyjus-- -, biyj, ), then every superpattern of A is spectrally arbitrary.

Let n > 9, and A be a sign pattern of order n as follows.

Ba 0o 0 +
ﬁn77 0 +
A= : - - -, 2.1
ﬂn76 /8n74 : . + T : ( )
0 ﬂn—5 0 0 +
0 0 0
0 o0 0 0 + 0
Y2 0 0
3 0 0 0 O

where the entries a, v1, Y2, 73, n € {+,—}and g, € {+, -} fori=1,2,...,n — 4.

We shall demonstrate six patterns of form (2.1) are MSAPs, and the other sign patterns of
form (2.1) are not SAPs. For convenience, suppose that B = [b;;] € Q(A) has been scaled such
that b1 = —1, b ;41 = 1 for i = 1,2,...,n — 1 (otherwise they can be adjusted to be 1 by

suitable similarities), and has the following form.

-1 1 0 0 o0 e e eee 0
d1 0 R O T P
do 0 0 1
dnoz 0 R
B=1\ g ¢ doa Y (2.2)
0 dn_s O 0 1
0 0 0 1
ci 0 0 0 1 0
C2 O 1
es 0 0 0
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Lemma 2.2 Let fg(\) =det(M — B) = A" + fi\" "t + foA" 2+ .-+ f, 1A+ fu. Then
(1) i=1-a,
fo=—a—becs —dy,
fs =abes +ady —do (If n =9, then f3 = abes + ady — dy — ds),
fi=adi—o —di—1, fori=4,5,...,n—7 (n > 11),
frn—6 =adn_g —dn_7 —dn_4 (n > 10),
frn—s=—dn_a+ad,_4y+ad,_7—dy_¢—dp_s,
fn—a=—dn_5+ad,—¢+ adp_5 + ady_4 + bczdy,—4,
fn—3 =bczdy—5 — abesd,—4 + adp—5 — ¢,
fn—2 = —c1 — abczd,_5 — ca,
fn—1 = —c2 + bcycs,
fn = bcacs — cs.
(2) For arbitrary given di,

a(f15f27" '7fn715f7l)
a(auba Cl,CQ,Cg,dg,dg, .. '7dn—4)

=b*ci(a+bes + 1).

Proof (1)
A+1 -1 0 0 oo e e 0 —b
—d, A 10 e e e e o0
—ds 0 A =1
—dp—7 0 0 —1
FBN=| _4 « —dva 0 0 A -1
0 dn—5 0 0 A —1
0 0 A—a -1
—C1 0 0 —1 0
0 —C2 0 0 A =1
—c3 0 0 0 A

By adding A times of the ith row to the (i +1)st row, for i = 1,2,...,n—5, and expanding along

the third column in order, we have

At 1 1 o 0 0  —b
9 —dnos—dnaX —1 0 0 —bA»P
0 0 A—a -1 0 0
A) = ,
50 0 —e 0 A -1 0
0 —ey o 0 A -1
ey 0 O 0 0 A

where g(A) = A" 5(A 4+ 1) — 32"  d; A" 5%. Thus

BN =(—e3)[1+ A" 2(A = a)] + [AA + 1) — bes] [N (—=dn—5 — dn_sX)(A — a) — a1 X — c2] + AP g(A) (A — a)
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n—9
=A" = (a— 1A = (a+bes + di)A" " + (abes + adi — d2) A" P +a Y AT

=2
n—=_8 ]
S AN 4 (adn—s — dn—a — dn-7)A° + (adn—7 — dn—6 — dp—s5 + adn—4 — dp—a) N+
=3

(adn—6 + adn—5 — dn—5 + adn—a + besdn—a)N* + (besdn—5 — abesdn—s + adn—5 — c1)X>—
(C1 + abesdyn_5 + Cz))\2 + (bC1C3 — 02))\ + beacs — c3.

So result (1) is right.

(2) For arbitrary given dy, we have

6(f17f27"'7fn—17fn)
8(a,b, Cl,CQ,Cg,dQ,dg, .. .,dn,4)

-1 0 0 0 0
-1 —c3 0 0 —b
bes + di acs 0 0 ab
da 0 0 0 0
dn—9 0 0 0
= dn—s 0 0 0
dn77 + dn74 0 0 0
dn—6 + dn—5 + dn—a c3dn—a 0 0 bdy—4
_bc3dn74 + dnfs C3dn75 - andn74 -1 0 bdnfs - abdn74
—ngdnfs, —aC3dn75 -1 -1 —abdn,5
0 C1C3 bC3 -1 bCl
0 caC3 0 bes beo — 1
0 0
0
-1
a —1
0
a -1 0 0 0 0
a -1 0 0 -1
: a -1 -1 a—1
0 0 a a—1 bes+a
0 0 bes +a  —abes
0 0 —abcs 0
0 0 0 0
0 0 0 0

By expanding along the first row, adding a times of the ith row to the (i + 1)st row, for
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i=1,2,...,n— 3, and expanding along the fifth column, we have

a(fluf?w"afn—lufn)
8(&,1), Cl,CQ,Cg,dQ,dg, .. .,dn,4)

—c3 0 0 —b 0 0
c3dp—q 0 0 bdp_ga -1 bes
_ c3dy_5 -1 0 bd,_5 beg O _ b2c§(a + bes +1).
0 —1—-a -1 0 0 0
c1c3 bes -1 bey 0 0
CcoC3 0 becs besa—1 0 0

Thus result (2) follows.

Lemma 2.3 Forn > 2, an irreducible spectrally arbitrary sign pattern of order n has at least

2n — 1 nonzero entries.

Lemma 2.4 Suppose A is a sign pattern which has the form (2.1). If A is a SAP, then A is a
MSAP.

Proof Let T = [t;;] be a subpattern of A and T be a SAP.

(1) tn—3,n-3 # 0. Otherwise, the trace of T' is negative.

(2) tp1#0and t; ;41 #0, for i =2,3,...,n— 2. Otherwise, T is sign singular.

() t12#0, t1.n #0, th_127#0, and t,,_1, # 0. Otherwise, T is sign nonsingular or sign
singular.

(4) T is a SAP, so there is a real matrix B € Q(T) which is nilpotent. Without loss of
generality, suppose that B has the form (2.2). From f; = fo = --- = f, = 0 as in Lemma
2.2, we can conclude that a = 1, bes = —1 —dy, d; = —1, for i = 2,3,...,n =8, fh_6 =
~1—dyp7—-dns=0, fps=dy7—dn6—dns5=0, fng =dn—didy_4 =0, fr3=
—didp—s5+dn_a+didn_s—c1 =0, fr—o = —c1—ca+dp_s5+didn—5 =0, fno1 = —co—c1—c1d1 =0,
and f, = —c3 + beacs = 0.

(4a) Clearly d; #0, fori =2,3,...,n— 8.

(4b) dy # 0. Otherwise, f,—1 = —ca —c; =0and f,_4 = dn—6 =0, 80 fn_a =dn_5 = 0.
Then the number of nonzero entries of T is less than 2n — 1, and we know T is not a SAP by
Lemma 2.3.

(4c) ¢1 # 0. Otherwise, f,—1 = —ca = 0, which is contrary to t,_1,2 # 0 in Case (3).

(4d) dy—5 # 0. Otherwise, fr,_o = —c1 —ca =0, so f,—1 = —c1d; = 0, which is contrary to
Case (4b) and (4c).

(4e) dn—7 # 0. Otherwise, from f,— ¢ = -1 —dp—4 =0, frn_5 = —dn—5 —dn—¢ = 0, and
Food = dn_g — didn_s = 0, we have dp_s = dy. Then fu_s — fa_1 = & +di + c1dy = 0 and
fo—3=—d? —dy —c; —1=0, thus d; = 0, which is contrary to Case (4b).

(4f) dn—e # 0. Otherwise, f,—4 = —did,—4 = 0. From dy # 0 in Case (4b), we have

dp—4 = 0. But the resultant sign pattern cannot be spectrally arbitrary.



394 LI X, SHAO Y L and GAO Y B

(4g) dp—4 # 0. Otherwise, f,—4 = d,—¢ = 0, which is contrary to Case (4f).
Thus, the result is right. O

3. Main results

Let Ay, As, A3, Ay, A5, Ag be sign patterns of form (2.1) as follows.

(1) a=+ 6=+, 0i=—fori=23,....n =8 Byv7=0ns==+, Pno6=0na=—,
Y1 =73 =—, 72 =1 =+, denoted by A;.

2) a=+=+8i=—fori=23,....n-7,Bn6=Pra=+, fns=—,72=0=—,
Y1 = 3 = +, denoted by A,.

B) a=+,0=+,0i=—,fori=23,...,n—4, 79 =n=—, y1 =3 = +, denoted by As.

4) a=+,8i=—fori=12,....n-7, Bo6=+, Bos=0Pna=—7N=7=—,
9 =1 =+, denoted by Ay.

(5) a=+,p=—,fori=1,2,....n—5, Bh_a =+, 11 =73 = —, 72 =1 = +, denoted by
As.

6) a=+,8=—,fori=1,2,...,n—6, Bp_5 = Brn—a =+, 11 =72 =73 = n = —, denoted
by Asg.

We shall prove that sign patterns A;, As, ..., Ag are MSAPs, and the other sign patterns of
form (2.1) are not SAPs.

Theorem 3.1 Let A have form (2.1). Then A is a SAP if and only if A is one of the sign
patterns Ay, A, ..., Ag.

Proof Sufficiency. Let B be a matrix of form (2.2) and denote J = b?ci(a + bes + 1). If

1 91 1 52 10
b dy,ds,ds,...,dn_4q)=(1,=-,-2,3,—=, =,do,...,dp_8, =, — =, =, ——
(a7 ,C1,C2,C3, 01, a2, A3, 5 4) ( 3 3 2’9 d2 d 8 9 9’3 9)
with d; = —1, for i = 2,...,n — 8, then B € Q(A;) is nilpotent, and J = —3% £ 0. If
1 25 3 27 3 6 2
b di,de,ds,...,dn_4)=(1,—=,2,—-5,—, =, do,...,dp_g,——, —, ——, —
((I, ,C1, C2, C3, 01,42, 43, ) 4) ( 5 99 2 8 25° 25 5 25)
with d; = —1, for i = 2,...,n — 8, then B € Q(A,) is nilpotent, and J = —(22)2 # 0. If
1 8§ 2 2 1
b di,ds,ds,...,dn—q)=(1,—2,1,-3,9,2,do,...,dp_g,—=,—=, —=, —=
((I, ,C1,C2,C3,01,02,d3, ’ 4) ( 3 2 8 9 9 3 9)
with d; = —1, for i = 2,...,n — 8, then B € Q(Aj3) is nilpotent, and J = —81 # 0. If
21 1 1 11 2 2
b dy,ds,ds,...,dn_4)=(1,3,—=, =, —=,—=,do,...,dp_g,—=, =, — =, ——
(a7 ,C1,C2,C3,Q1, 02, A3, 5 4) ( 33 6 2 2 8 373 3 3)
with d; = —1, for i = 2,...,n — 8, then B € Q(A4) is nilpotent, and J = —% #0. If
41 1 3 27 15 12 20
b di,do,ds,...,dp_4)=(1,7,—=, =, ——,——,do,...,dpn_g,——,——, ——, —
(CL, ,C1,C2,C3,d1, 02,03, ) 4) ( 77 28 4 2 8 7 7 7 7)
with d; = —1, for i = 2,...,n — 8, then B € Q(As5) is nilpotent, and J = —13z # 0. If
1 1 1 8 10 2 5
b di,ds,ds,...,dn_4)=(1,-3,—=,—=,—=, —2,ds,...,dp_8,—=, ——, =, =
(CL, ,C1,C2,C3,01,02,03, ) 4) ( 3 3 3 2 8 3 3°3 3)
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with d; = —1, for i = 2,...,n — 8, then B € Q(4) is nilpotent, and J = —1 # 0. By Lemma
2.1, we know that Ay, Ao, ..., Ag are SAPs.

Necessity. Suppose sign pattern A of form (2.1) is spectrally arbitrary. Then there is a real
matrix B € Q(A) which is nilpotent. Without loss of generality, suppose that B has the form
(2.2). From f; = fo =--- = f,, = 0 as in Lemma 2.2, and by the fact that there are n equations

and n+ 1 unknowns, we can express the other n unknowns by d;. So we can conclude that a = 1,

= = - di—di-1 4l o1 _ d
d; = -1, for i = 2,3,...,n—8, dp—g = (di+1)2(1—dy)’ C2 = 1—d;’ C1 = di—1° dp—s5 = (di+1)(1—d1)’
— da(di—di=1) — dy _ (dat1)? _ 1-d
dn_ﬁ = m, dn_7 = m, C3 = di=1 and b = di+1” From the value of dl,

we can conclude the signs of the other n unknowns. Thus A must be one of the sign patterns
A; i1=1,2,...,06).

Theorem 3.2 A; (1 <i<6) are MSAPs, and every superpattern of them is a SAP.

Proof By Theorem 3.1, Lemmas 2.1 and 2.4, the result is clear. O
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