A New Class of Minimally Spectrally Arbitrary Sign Patterns

LI Xi, SHAO Yan Ling, GAO Yu Bin (Department of Mathematics, North University of China, Shanxi 030051, China) (E-mail: xixi-200202@163.com)

Abstract If every monic real polynomial of degree n can be achieved as the characteristic polynomial of some matrix $B \in Q(A)$, then sign pattern A of order n is a spectrally arbitrary pattern. A sign pattern A is minimally spectrally arbitrary if it is spectrally arbitrary but is not spectrally arbitrary if any nonzero entry (or entries) of A is replaced by zero. In this article, we give some new sign patterns which are minimally spectrally arbitrary for order $n \geq 9$.

Keywords sign pattern; potentially nilpotent; spectrally arbitrary pattern.

Document code A MR(2000) Subject Classification 15A18; 05C50 Chinese Library Classification O157.6; O151.21

1. Introduction

A sign pattern A is a matrix whose entries come from $\{+, -, 0\}$. The sign pattern class of A, denoted Q(A), is

$$Q(A) = \{B = [b_{ij}] \in M_n(R) | \operatorname{sign} b_{ij} = a_{ij} \text{ for all } i, j\}.$$

A sign pattern $\check{A} = [\check{a}_{ij}]$ is a superpattern of a sign pattern $A = [a_{ij}]$ if $\check{a}_{ij} = a_{ij}$ whenever $a_{ij} \neq 0$. If \check{A} is a superpattern of A, then A is a subpattern of \check{A} . A subpattern of \check{A} which is not \check{A} itself is a proper subpattern of \check{A} .

A sign pattern A is sign nonsingular if every matrix $B \in Q(A)$ is nonsingular, and A is sign singular if every matrix $B \in Q(A)$ is singular. A sign pattern A is a spectrally arbitrary pattern (SAP) if for any given real monic polynomial g(x) of degree n, there is a real matrix $B \in Q(A)$ with characteristic polynomial g(x). If sign pattern A is a SAP and no proper subpattern of A is a SAP, then A is a minimally spectrally arbitrary pattern (MSAP). If there is a real matrix $B \in Q(A)$ with characteristic polynomial $g(x) = x^n$, then A is potentially nilpotent (PN). Note that each SAP must be PN.

The question of the existence of a SAP arose in [1]. The first SAP of order n for each $n \ge 2$ was provided in [5]. Later, some papers^[2-4] introduce some sign patterns which are SAPs for order $n \ge 2$. In this paper, we introduce some new sign patterns which are MSAPs for order

Received date: 2007-05-10; Accepted date: 2008-01-02

Foundation item: the National Natural Science Foundation of China (No. 10571163); the Natural Science Foundation of Shanxi Province (No. 20041010; 2007011017).

 $n \geq 9$. Much of this work is motivated by the inertia and spectral problems considered in [1].

2. Some preliminaries

Lemma 2.1^[1] Let A be a sign pattern of order n, and suppose that there exists some nilpotent realization $B \in Q(A)$ with at least n nonzero entries, say $b_{i_1j_1}, \ldots, b_{i_nj_n}$. Let X be the matrix obtained by replacing these entries in B by variables x_1, \ldots, x_n . If the Jacobian of the coefficients of the characteristic polynomial of X with respect to the variables x_1, \ldots, x_n is nonzero at $(x_1, \ldots, x_n) = (b_{i_1j_1}, \ldots, b_{i_nj_n})$, then every superpattern of A is spectrally arbitrary.

Let $n \geq 9$, and A be a sign pattern of order n as follows.

$$A = \begin{pmatrix} - & + & 0 & 0 & \cdots & \cdots & \cdots & \cdots & 0 & \eta \\ \beta_1 & 0 & + & 0 & \cdots & \cdots & \cdots & \cdots & \cdots & 0 \\ \beta_2 & 0 & 0 & + & \ddots & & & & \vdots \\ \vdots & \vdots & \vdots & \ddots & \ddots & \ddots & & & & \vdots \\ \beta_{n-7} & 0 & \vdots & & \ddots & + & \ddots & & \vdots \\ \beta_{n-6} & \beta_{n-4} & \vdots & & & \ddots & + & \ddots & & \vdots \\ 0 & \beta_{n-5} & 0 & \cdots & \cdots & \cdots & 0 & + & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & \cdots & \cdots & 0 & \alpha & + & \ddots & \vdots \\ 0 & \gamma_1 & 0 & \cdots & \cdots & \cdots & 0 & 0 & + & 0 \\ 0 & \gamma_2 & 0 & \cdots & \cdots & \cdots & \cdots & 0 & 0 \\ \gamma_3 & 0 & 0 & \cdots & \cdots & \cdots & \cdots & \cdots & 0 & 0 \end{pmatrix},$$
 (2.1)

where the entries α , γ_1 , γ_2 , γ_3 , $\eta \in \{+, -\}$ and $\beta_i \in \{+, -\}$ for $i = 1, 2, \ldots, n - 4$.

We shall demonstrate six patterns of form (2.1) are MSAPs, and the other sign patterns of form (2.1) are not SAPs. For convenience, suppose that $B = [b_{ij}] \in Q(A)$ has been scaled such that $b_{11} = -1$, $b_{i,i+1} = 1$ for i = 1, 2, ..., n-1 (otherwise they can be adjusted to be 1 by suitable similarities), and has the following form.

$$B = \begin{pmatrix}
-1 & 1 & 0 & 0 & \cdots & \cdots & \cdots & \cdots & 0 & b \\
d_1 & 0 & 1 & 0 & \cdots & \cdots & \cdots & \cdots & \cdots & 0 \\
d_2 & 0 & 0 & 1 & \ddots & & & & \vdots \\
\vdots & \vdots & \vdots & \ddots & \ddots & \ddots & & & & \vdots \\
d_{n-7} & 0 & \vdots & & \ddots & 1 & \ddots & & \vdots \\
d_{n-6} & d_{n-4} & \vdots & & & \ddots & 1 & \ddots & & \vdots \\
0 & d_{n-5} & 0 & \cdots & \cdots & 0 & 1 & \ddots & \vdots \\
0 & 0 & 0 & \cdots & \cdots & 0 & a & 1 & \ddots & \vdots \\
0 & c_1 & 0 & \cdots & \cdots & \cdots & 0 & 0 & 1 & 0 \\
0 & c_2 & 0 & \cdots & \cdots & \cdots & \cdots & \cdots & 0 & 0 \\
c_3 & 0 & 0 & \cdots & \cdots & \cdots & \cdots & \cdots & 0 & 0
\end{pmatrix}$$

$$(2.2)$$

Lemma 2.2 Let
$$f_B(\lambda) = \det(\lambda I - B) = \lambda^n + f_1 \lambda^{n-1} + f_2 \lambda^{n-2} + \dots + f_{n-1} \lambda + f_n$$
. Then

(1)
$$f_1 = 1 - a$$
,
 $f_2 = -a - bc_3 - d_1$,
 $f_3 = abc_3 + ad_1 - d_2$ (If $n = 9$, then $f_3 = abc_3 + ad_1 - d_2 - d_5$),
 $f_i = ad_{i-2} - d_{i-1}$, for $i = 4, 5, \dots, n-7$ ($n \ge 11$),
 $f_{n-6} = ad_{n-8} - d_{n-7} - d_{n-4}$ ($n \ge 10$),
 $f_{n-5} = -d_{n-4} + ad_{n-4} + ad_{n-7} - d_{n-6} - d_{n-5}$,
 $f_{n-4} = -d_{n-5} + ad_{n-6} + ad_{n-5} + ad_{n-4} + bc_3d_{n-4}$,
 $f_{n-3} = bc_3d_{n-5} - abc_3d_{n-4} + ad_{n-5} - c_1$,
 $f_{n-2} = -c_1 - abc_3d_{n-5} - c_2$,
 $f_{n-1} = -c_2 + bc_1c_3$,
 $f_n = bc_2c_3 - c_3$.

(2) For arbitrary given d_1 ,

$$\frac{\partial(f_1, f_2, \dots, f_{n-1}, f_n)}{\partial(a, b, c_1, c_2, c_3, d_2, d_3, \dots, d_{n-4})} = b^2 c_3^3 (a + bc_3 + 1).$$

Proof (1)

$$f_B(\lambda) = \begin{bmatrix} \lambda + 1 & -1 & 0 & 0 & \cdots & \cdots & \cdots & \cdots & 0 & -b \\ -d_1 & \lambda & -1 & 0 & \cdots & \cdots & \cdots & \cdots & \cdots & \cdots & 0 \\ -d_2 & 0 & \lambda & -1 & \ddots & & & & \vdots \\ \vdots & \vdots & \ddots & \ddots & \ddots & \ddots & & & \vdots \\ -d_{n-7} & 0 & \cdots & 0 & \ddots & -1 & \ddots & & \vdots \\ -d_{n-6} & -d_{n-4} & 0 & \cdots & 0 & \lambda & -1 & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & \cdots & 0 & \lambda & -1 & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & \cdots & 0 & \lambda & -1 & \ddots & \vdots \\ 0 & -c_1 & 0 & \cdots & \cdots & 0 & \lambda & -1 & 0 \\ 0 & -c_2 & 0 & \cdots & \cdots & \cdots & 0 & \lambda & -1 \\ -c_3 & 0 & 0 & \cdots & \cdots & \cdots & \cdots & 0 & \lambda & -1 \\ \end{bmatrix}_n$$

$$\text{ling } \lambda \text{ times of the ith row to the } (i+1)st \text{ row, for } i=1,2,\ldots,n-5, \text{ and expanding}$$

By adding λ times of the ith row to the (i+1)st row, for $i=1,2,\ldots,n-5$, and expanding along the third column in order, we have

$$f_B(\lambda) = \begin{vmatrix} \lambda + 1 & -1 & 0 & 0 & 0 & -b \\ g(\lambda) & -d_{n-5} - d_{n-4}\lambda & -1 & 0 & 0 & -b\lambda^{n-5} \\ 0 & 0 & \lambda - a & -1 & 0 & 0 \\ 0 & -c_1 & 0 & \lambda & -1 & 0 \\ 0 & -c_2 & 0 & 0 & \lambda & -1 \\ -c_3 & 0 & 0 & 0 & 0 & \lambda \end{vmatrix},$$

where
$$g(\lambda) = \lambda^{n-5}(\lambda+1) - \sum_{i=1}^{n-6} d_i \lambda^{n-5-i}$$
. Thus

$$f_B(\lambda) = (-c_3)[1 + b\lambda^{n-3}(\lambda - a)] + [\lambda(\lambda + 1) - bc_3][\lambda^2(-d_{n-5} - d_{n-4}\lambda)(\lambda - a) - c_1\lambda - c_2] + \lambda^3g(\lambda)(\lambda - a)$$

$$=\lambda^{n} - (a-1)\lambda^{n-1} - (a+bc_3+d_1)\lambda^{n-2} + (abc_3+ad_1-d_2)\lambda^{n-3} + a\sum_{i=2}^{n-9} d_i\lambda^{n-2-i} - \sum_{i=3}^{n-8} d_i\lambda^{n-1-i} + (ad_{n-8} - d_{n-4} - d_{n-7})\lambda^6 + (ad_{n-7} - d_{n-6} - d_{n-5} + ad_{n-4} - d_{n-4})\lambda^5 + (ad_{n-6} + ad_{n-5} - d_{n-5} + ad_{n-4} + bc_3d_{n-4})\lambda^4 + (bc_3d_{n-5} - abc_3d_{n-4} + ad_{n-5} - c_1)\lambda^3 - (c_1 + abc_3d_{n-5} + c_2)\lambda^2 + (bc_1c_3 - c_2)\lambda + bc_2c_3 - c_3.$$

So result (1) is right.

(2) For arbitrary given d_1 , we have

By expanding along the first row, adding a times of the ith row to the (i + 1)st row, for

 $i = 1, 2, \dots, n - 3$, and expanding along the fifth column, we have

$$\frac{\partial(f_1, f_2, \dots, f_{n-1}, f_n)}{\partial(a, b, c_1, c_2, c_3, d_2, d_3, \dots, d_{n-4})} = - \begin{vmatrix} -c_3 & 0 & 0 & -b & 0 & 0 \\ c_3 d_{n-4} & 0 & 0 & b d_{n-4} & -1 & b c_3 \\ c_3 d_{n-5} & -1 & 0 & b d_{n-5} & b c_3 & 0 \\ 0 & -1 - a & -1 & 0 & 0 & 0 \\ c_1 c_3 & b c_3 & -1 & b c_1 & 0 & 0 \\ c_2 c_3 & 0 & b c_3 & b c_2 - 1 & 0 & 0 \end{vmatrix} = b^2 c_3^3 (a + b c_3 + 1).$$

Thus result (2) follows.

Lemma 2.3^[3] For $n \ge 2$, an irreducible spectrally arbitrary sign pattern of order n has at least 2n-1 nonzero entries.

Lemma 2.4 Suppose A is a sign pattern which has the form (2.1). If A is a SAP, then A is a MSAP.

Proof Let $T = [t_{ij}]$ be a subpattern of A and T be a SAP.

- (1) $t_{n-3,n-3} \neq 0$. Otherwise, the trace of T is negative.
- (2) $t_{n,1} \neq 0$ and $t_{i,i+1} \neq 0$, for i = 2, 3, ..., n-2. Otherwise, T is sign singular.
- (3) $t_{1,2} \neq 0$, $t_{1,n} \neq 0$, $t_{n-1,2} \neq 0$, and $t_{n-1,n} \neq 0$. Otherwise, T is sign nonsingular or sign singular.
- (4) T is a SAP, so there is a real matrix $B \in Q(T)$ which is nilpotent. Without loss of generality, suppose that B has the form (2.2). From $f_1 = f_2 = \cdots = f_n = 0$ as in Lemma 2.2, we can conclude that a = 1, $bc_3 = -1 d_1$, $d_i = -1$, for $i = 2, 3, \ldots, n 8$, $f_{n-6} = -1 d_{n-7} d_{n-4} = 0$, $f_{n-5} = d_{n-7} d_{n-6} d_{n-5} = 0$, $f_{n-4} = d_{n-6} d_1 d_{n-4} = 0$, $f_{n-3} = -d_1 d_{n-5} + d_{n-4} + d_1 d_{n-4} c_1 = 0$, $f_{n-2} = -c_1 c_2 + d_{n-5} + d_1 d_{n-5} = 0$, $f_{n-1} = -c_2 c_1 c_1 d_1 = 0$, and $f_n = -c_3 + bc_2 c_3 = 0$.
 - (4a) Clearly $d_i \neq 0$, for i = 2, 3, ..., n 8.
- (4b) $d_1 \neq 0$. Otherwise, $f_{n-1} = -c_2 c_1 = 0$ and $f_{n-4} = d_{n-6} = 0$, so $f_{n-2} = d_{n-5} = 0$. Then the number of nonzero entries of T is less than 2n 1, and we know T is not a SAP by Lemma 2.3.
 - (4c) $c_1 \neq 0$. Otherwise, $f_{n-1} = -c_2 = 0$, which is contrary to $t_{n-1,2} \neq 0$ in Case (3).
- (4d) $d_{n-5} \neq 0$. Otherwise, $f_{n-2} = -c_1 c_2 = 0$, so $f_{n-1} = -c_1 d_1 = 0$, which is contrary to Case (4b) and (4c).
- (4e) $d_{n-7} \neq 0$. Otherwise, from $f_{n-6} = -1 d_{n-4} = 0$, $f_{n-5} = -d_{n-5} d_{n-6} = 0$, and $f_{n-4} = d_{n-6} d_1 d_{n-4} = 0$, we have $d_{n-5} = d_1$. Then $f_{n-2} f_{n-1} = d_1^2 + d_1 + c_1 d_1 = 0$ and $f_{n-3} = -d_1^2 d_1 c_1 1 = 0$, thus $d_1 = 0$, which is contrary to Case (4b).
- (4f) $d_{n-6} \neq 0$. Otherwise, $f_{n-4} = -d_1 d_{n-4} = 0$. From $d_1 \neq 0$ in Case (4b), we have $d_{n-4} = 0$. But the resultant sign pattern cannot be spectrally arbitrary.

(4g) $d_{n-4} \neq 0$. Otherwise, $f_{n-4} = d_{n-6} = 0$, which is contrary to Case (4f). Thus, the result is right.

3. Main results

Let $A_1, A_2, A_3, A_4, A_5, A_6$ be sign patterns of form (2.1) as follows.

- (1) $\alpha = +, \beta_1 = +, \beta_i = -, \text{ for } i = 2, 3, \dots, n-8, \beta_{n-7} = \beta_{n-5} = +, \beta_{n-6} = \beta_{n-4} = -, \gamma_1 = \gamma_3 = -, \gamma_2 = \eta = +, \text{ denoted by } A_1.$
- (2) $\alpha = +, \beta_1 = +, \beta_i = -$, for $i = 2, 3, ..., n-7, \beta_{n-6} = \beta_{n-4} = +, \beta_{n-5} = -, \gamma_2 = \eta = -, \gamma_1 = \gamma_3 = +$, denoted by A_2 .
 - (3) $\alpha = +, \beta_1 = +, \beta_i = -, \text{ for } i = 2, 3, ..., n 4, \gamma_2 = \eta = -, \gamma_1 = \gamma_3 = +, \text{ denoted by } A_3.$
- (4) $\alpha = +$, $\beta_i = -$, for i = 1, 2, ..., n 7, $\beta_{n-6} = +$, $\beta_{n-5} = \beta_{n-4} = -$, $\gamma_1 = \gamma_3 = -$, $\gamma_2 = \eta = +$, denoted by A_4 .
- (5) $\alpha = +, \beta_i = -, \text{ for } i = 1, 2, \dots, n-5, \beta_{n-4} = +, \gamma_1 = \gamma_3 = -, \gamma_2 = \eta = +, \text{ denoted by } A_5.$
- (6) $\alpha = +, \beta_i = -$, for $i = 1, 2, ..., n 6, \beta_{n-5} = \beta_{n-4} = +, \gamma_1 = \gamma_2 = \gamma_3 = \eta = -$, denoted by A_6 .

We shall prove that sign patterns A_1, A_2, \ldots, A_6 are MSAPs, and the other sign patterns of form (2.1) are not SAPs.

Theorem 3.1 Let A have form (2.1). Then A is a SAP if and only if A is one of the sign patterns A_1, A_2, \ldots, A_6 .

Proof Sufficiency. Let B be a matrix of form (2.2) and denote $J = b^2 c_3^3 (a + bc_3 + 1)$. If

$$(a, b, c_1, c_2, c_3, d_1, d_2, d_3, \dots, d_{n-4}) = (1, \frac{1}{3}, -2, 3, -\frac{9}{2}, \frac{1}{2}, d_2, \dots, d_{n-8}, \frac{1}{9}, -\frac{5}{9}, \frac{2}{3}, -\frac{10}{9})$$

with $d_i = -1$, for $i = 2, \ldots, n - 8$, then $B \in Q(A_1)$ is nilpotent, and $J = -\frac{81}{16} \neq 0$. If

$$(a, b, c_1, c_2, c_3, d_1, d_2, d_3, \dots, d_{n-4}) = (1, -\frac{1}{5}, 2, -5, \frac{25}{2}, \frac{3}{2}, d_2, \dots, d_{n-8}, -\frac{27}{25}, \frac{3}{25}, -\frac{6}{5}, \frac{2}{25})$$

with $d_i = -1$, for i = 2, ..., n - 8, then $B \in Q(A_2)$ is nilpotent, and $J = -(\frac{25}{4})^2 \neq 0$. If

$$(a, b, c_1, c_2, c_3, d_1, d_2, d_3, \dots, d_{n-4}) = (1, -\frac{1}{3}, 1, -3, 9, 2, d_2, \dots, d_{n-8}, -\frac{8}{9}, -\frac{2}{9}, -\frac{2}{3}, -\frac{1}{9})$$

with $d_i = -1$, for i = 2, ..., n - 8, then $B \in Q(A_3)$ is nilpotent, and $J = -81 \neq 0$. If

$$(a, b, c_1, c_2, c_3, d_1, d_2, d_3, \dots, d_{n-4}) = (1, 3, -\frac{2}{3}, \frac{1}{3}, -\frac{1}{6}, -\frac{1}{2}, d_2, \dots, d_{n-8}, -\frac{1}{3}, \frac{1}{3}, -\frac{2}{3}, -\frac{2}{3})$$

with $d_i = -1$, for $i = 2, \ldots, n - 8$, then $B \in Q(A_4)$ is nilpotent, and $J = -\frac{1}{16} \neq 0$. If

$$(a, b, c_1, c_2, c_3, d_1, d_2, d_3, \dots, d_{n-4}) = (1, 7, -\frac{4}{7}, \frac{1}{7}, -\frac{1}{28}, -\frac{3}{4}, d_2, \dots, d_{n-8}, -\frac{27}{7}, -\frac{15}{7}, -\frac{12}{7}, \frac{20}{7})$$

with $d_i = -1$, for i = 2, ..., n - 8, then $B \in Q(A_5)$ is nilpotent, and $J = -\frac{1}{16^2} \neq 0$. If

$$(a, b, c_1, c_2, c_3, d_1, d_2, d_3, \dots, d_{n-4}) = (1, -3, -\frac{1}{3}, -\frac{1}{3}, -\frac{1}{3}, -2, d_2, \dots, d_{n-8}, -\frac{8}{3}, -\frac{10}{3}, \frac{2}{3}, \frac{5}{3})$$

with $d_i = -1$, for i = 2, ..., n - 8, then $B \in Q(A_6)$ is nilpotent, and $J = -1 \neq 0$. By Lemma 2.1, we know that $A_1, A_2, ..., A_6$ are SAPs.

Necessity. Suppose sign pattern A of form (2.1) is spectrally arbitrary. Then there is a real matrix $B \in Q(A)$ which is nilpotent. Without loss of generality, suppose that B has the form (2.2). From $f_1 = f_2 = \cdots = f_n = 0$ as in Lemma 2.2, and by the fact that there are n equations and n+1 unknowns, we can express the other n unknowns by d_1 . So we can conclude that a=1, $d_i = -1$, for $i=2,3,\ldots,n-8$, $d_{n-4} = \frac{d_1^2-d_1-1}{(d_1+1)^2(1-d_1)}$, $c_2 = \frac{d_1+1}{1-d_1}$, $c_1 = \frac{1}{d_1-1}$, $d_{n-5} = \frac{d_1}{(d_1+1)(1-d_1)}$, $d_{n-6} = \frac{d_1(d_1^2-d_1-1)}{(d_1+1)^2(1-d_1)}$, $d_{n-7} = \frac{d_1^3}{(d_1+1)^2(1-d_1)}$, $c_3 = \frac{(d_1+1)^2}{d_1-1}$, and $b = \frac{1-d_1}{d_1+1}$. From the value of d_1 , we can conclude the signs of the other n unknowns. Thus A must be one of the sign patterns A_i $(i=1,2,\ldots,6)$.

Theorem 3.2 A_i $(1 \le i \le 6)$ are MSAPs, and every superpattern of them is a SAP.

Proof By Theorem 3.1, Lemmas 2.1 and 2.4, the result is clear.

References

- [1] DREW J H, JOHNSON C R, OLESKY D D. et al. Spectrally arbitrary patterns [J]. Linear Algebra Appl., 2000, 308(1-3): 121–137.
- [2] CAVERS M S, VANDER M, KEVIN N. Spectrally and inertially arbitrary sign patterns [J]. Linear Algebra Appl., 2005, **394**: 53–72.
- [3] BRITZ T, MCDONALD J J, OLESKY D D. et al. Minimal spectrally arbitrary sign patterns [J]. SIAM J. Matrix Anal. Appl., 2004, 26(1): 257–271.
- [4] CAVERS M S, KIM I J, SHADER B L. et al. On determining minimal spectrally arbitrary patterns [J]. Electron. J. Linear Algebra, 2005, 13: 240–248
- [5] MCDONALD J J, OLESKY D D, TSATSOMEROS M J. et al. On the spectra of striped sign patterns [J].
 Linear Multilinear Algebra, 2003, 51(1): 39–48.
- [6] LI Xi, SHAO Yanling, GAO Yubin. A class of minimally spectrally arbitrary sign patterns [J]. Ars Combinatoria. In Press.