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Abstract In this paper, a generalized Toeplitz operator is defined and some of results about the

classical Toeplitz operator are generalized. In particular, we obtain the necessary and sufficient

condition for the product of two such Toeplitz operators to still be Toeplitz operator and the

necessary and sufficient condition for such Toeplitz operator to be normal operator. Finally, a

necessary condition for two such Toeplitz operators to be commutative is established.
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1. Introduction and preliminaries

Let T denote the unit circle and dθ denote the normalized Lebesgue measure on the unit circle.

Using the regular sense of product and sum of two functions, we can define the following function

spaces on T , the square integrable function space L2(T ) = {f(eiθ) :
∫ 2π

0
|f(eiθ)|2dθ < ∞} ,

and the essential bounded function space L∞(T ), i.e., the function space which consists of all

functions f such that {x ∈ T : |f(x)| > M} has measure zero for sufficiently large M . If we

define the norms as follows, ∀f ∈ L2(T ), ‖f‖ = (
∫ 2π

0
|f(eiθ)|2dθ)

1

2 , ∀g ∈ L∞(T ), ‖g‖ = essup(g),

i.e., the smallest M which satisfies {x ∈ T : |g(x)| > M} has measure zero, then it is well

known that they are Banach spaces, and if ∀f, g ∈ L2(T ), 〈f, g〉 =
∫ 2π

0
fgdθ, then it is also well

known that L2(T ) is a Hilbert space under this inner product. For any n ∈ Z, let xn denote

the following function on T , xn(eiθ) = einθ. Then the classical Hardy space H2(T ) is defined

to be H2(T ) = {f ∈ L2(T ) :
∫ 2π

0 f(eiθ)xn(eiθ)dθ = 0, ∀ n > 0}, which is a closed subspace

of L2(T ). Let P denote the orthogonal projection from L2(T ) to H2(T ). Then the classical

Toeplitz operator and Hankle operator are defined as follows, ∀ϕ ∈ L∞(T ), ∀f ∈ H2(T ), Tϕ:

H2(T ) → H2(T ), Tϕ(f) = P (ϕf), Hϕ : H2(T ) → H2(T )⊥, Hϕ(f) = (I−P )(ϕf), and ϕ is called

the symbol of the operators. There are lots of references concerning the property of the classical

Toeplitz operators, such as references [1]–[7]. Since it is very useful in pure and applied science,
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the research on the property of Toeplitz operators and the algebra generated by them keep

attracting the interest of mathematicians. Recently, the classical Toeplitz operator is generalized

from different points of view by mathematicians. For example, Murphy studied the Toeplitz

operators on the discrete commutative partial ordered groups by substituting the ordered group

(Z,Z+) with partial groups in [3]. Marco studied the property of the Toeplitz operators on the

discrete groups by replacing the integer group Z with general discrete groups in [4]. In [5], Xu

Qingxiang and Chen Xiaoman studied the property of Toeplitz operator on generalized Hardy

space by introducing the concepts of finite lifting subset and total finite lifting subset. In this

paper, we study the algebraic property of Toeplitz operators on discrete commutative groups by

substituting the integer group Z with general discrete commutative group and substituting Z+

with almost stable subset. What follows are the preliminaries for this paper. Suppose G is a

discrete commutative group, S ⊂ G, if ∀g ∈ G, S \ gS is a finite set, then S is called an almost

stable subset of G. Under the regular operation on group G, the square integrable function space

is denoted as l2(G). The function δg is defined as follows, ∀h ∈ G,

δg(h) =

{

1 g = h

0 g 6= h
.

It is easy to see that {δg : g ∈ G} is orthonormal basis of l2(G). The square integrable function

space on S is denoted as l2(S), which is obviously a closed subspace of l2(G). Let Ps denote the

orthogonal projection from l2(G) to l2(S). ∀g ∈ G, ∀h ∈ G, Lg(δh) = δgh, Rg(δh) = δhg−1 , then

Lg and Rg are unitary operators on l2(G). The Von-Neumann algebra generated by {Lg : g ∈ G}

is denoted as W ∗(G), and the C∗-algebra generated by {Lg : g ∈ G} is denoted as C∗
r (G). The

Toeplitz operator on the discrete commutative group G is defined as follows, ∀T ∈ W ∗(G),

T s : l2(S) → l2(S), T s(f) = Ps(Tf)∀f ∈ l2(S), here T is called the symbol of Toeplitz operator

T s. If T ∈ W ∗(G) and T (l2(S)) ⊆ l2(S), then T is called an analytical operator on G, and H∞

represents the set of all analytical operator on G. If T ∈ H∞, then T s is called an analytical

Toeplitz operator on G. In this paper, G+ represents the set {g ∈ G : gS ⊆ S}, and B(l2(G))

represents the Banach space of bounded operators on l2(G).

2. Lemmas and main results

Lemma 2.1[5] Suppose G is a discrete commutative group, S ⊂ G is an almost stable subset

and T ∈ B(l2(G)). Then T is a Toeplitz operator ⇔ ∀g ∈ G+, (Ls
g)

∗TLs
g = T .

Lemma 2.2 Suppose G is a discrete commutative group, S ⊂ G is a countable almost stable

subset, g ∈ G+, S \ gS = {x1, x2, . . . , xm}, and Pm =
∑m

i=1 δxi
⊗ δxi

. Then the identity operator

I = Pm + Ls
g(L

s
g)

∗.

Proof Let f ∈ l2(S). Then f =
∑m

i=1 αiδxi
+

∑∞
i=m+1 αiδgs(i), where s(i) ∈ S such that

gs(i) ∈ S. Then we have

Pm(f) =

m
∑

i=1

m
∑

k=1

〈αiδxi
, δxk

〉δxk
+

∞
∑

i=m+1

m
∑

k=1

〈αiδgs(i), δxk
〉δxk
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=

m
∑

i=1

αiδxi
.

Ls
g(L

s
g)

∗(f) = Ls
g

m
∑

i=1

Ps(αiδg−1xi
) + Ls

g

∞
∑

i=m+1

Ps(αiδs(i))

= 0 +

∞
∑

i=m+1

Ps(αiδs(i)) =

∞
∑

i=m+1

αiδs(i).

Hence

Pm(f) + Ls
g(L

s
g)

∗(f) =

m
∑

i=1

αiδxi
+

∞
∑

i=m+1

αiδs(i) = f

i.e., Pm + Ls
g(L

s
g)

∗ = I. 2

Lemma 2.3 Suppose G is a discrete commutative group, S ⊂ G is a countable almost stable

subset, g ∈ G+, S \ gS = {x1, x2, . . . , xm}, T1, T2∈ W ∗(G), T s
1 , T s

2 are Toeplitz operators with

symbol T1 and T2 respectively. If T s
1 T s

2 is still a Toeplitz operator, then

m
∑

i=1

(Ls
g)

∗T s
1 δxi

⊗ (Ls
g)

∗(T s
2 )∗δxi

= 0.

Proof Since T s
1 T s

2 is Toeplitz operator, by Lemma 2.1, we have (Ls
g)

∗T s
1 T s

2 Ls
g = T s

1 T s
2 . And

from Lemma 2.2, we know I = Pm + Ls
g(L

s
g)

∗. Hence

(Ls
g)

∗T s
1 (Pm + Ls

g(L
s
g)

∗)T s
2 Ls

g = T s
1 T s

2 ,

i.e.,

(Ls
g)

∗T s
1 PmT s

2 Ls
g + (Ls

g)
∗T s

1 Ls
g(L

s
g)

∗T s
2 Ls

g = T s
1 T s

2 .

Since (Ls
g)

∗T s
1 Ls

g = T s
1 and (Ls

g)
∗T s

2 Ls
g = T s

2 ,

(Ls
g)

∗T s
1 PmT s

2 Ls
g + T s

1 T s
2 = T s

1 T s
2 .

Thus (Ls
g)

∗T s
1 PmT s

2 Ls
g = 0, i.e., (Ls

g)
∗T s

1 (
∑m

i=1 δxi
⊗ δxi

)T s
2 Ls

g = 0. So

m
∑

i=1

(Ls
g)

∗T s
1 δxi

⊗ (Ls
g)

∗(T s
2 )∗δxi

= 0.

Theorem 2.4 Suppose G is a discrete commutative group and S ⊂ G is a countable almost

stable subset. If there exist g ∈ G+ and x0 ∈ S such that S \ gS = {x0} and G \ S = {g−nx0 :

n = 1, 2, . . .}, then T s
1 T s

2 is Toeplitz operator ⇔ T ∗
1 ∈ H∞ or T2 ∈ H∞.

Proof ⇒. Because T s
1 T s

2 is Toeplitz operator, by Lemma 2.3, we have

(Ls
g)

∗T s
1 δx0

⊗ (Ls
g)

∗(T s
2 )∗δx0

= 0.

So for any x, y ∈ S, we have

〈(Ls
g)

∗T s
1 δx0

, δy〉〈δx, (Ls
g)

∗(T s
2 )∗δx0

〉 = 0.
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If there exists x ∈ S such that 〈δx, (Ls
g)

∗(T s
2 )∗δx0

〉 6= 0, then for any y ∈ S, 〈(Ls
g)

∗T s
1 δx0

, δy〉 = 0,

i.e.,

〈T s
1 δx0

, Ls
gδy〉 = 〈T s

1 δx0
, PsLgδy〉 = 〈T s

1 δx0
, Psδgy〉

= 〈T s
1 δx0

, δgy〉 = 〈PsT1δx0
, δgy〉

= 〈T1δx0
, δgy〉 = 〈L∗

gT1δx0
, δy〉

= 〈T1L
∗
gδx0

, δy〉 = 〈T1δg−1x0
, δy〉 = 0.

Since y is arbitrary, and g ∈ G+, we have

〈T1δg−1x0
, δgy〉 = 〈T1δg−1x0

, δg2y〉 = · · · = 0.

Therefore, we have

〈T1δg−1x0
, δy〉 = 〈T1δg−2x0

, δy〉 = 〈T1δg−3x0
, δy〉 = · · · = 0.

Since G \ S = {g−nx0 : n = 1, 2, . . .}, we have T1(l
2(s)⊥) ⊆ l2(s)⊥, thus T ∗

1 (l2(s)) ⊆ l2(s), so

T ∗
1 ∈ H∞.

If there exists y ∈ S such that 〈(Ls
g)

∗T s
1 δx0

, δy〉 6= 0, then for any x ∈ S, we have

〈δx, (Ls
g)

∗(T s
2 )∗δx0

〉 = 0. Similarly we can prove that T2 ∈ H∞.

⇐. For any h ∈ G+, x, y ∈ S, since

〈(Ls
h)∗T s

1 T s
2 Ls

hδx, δy〉 = 〈T s
1 T s

2 Psδhx, Psδhy〉 = 〈T s
1 T s

2 δhx, δhy〉

= 〈T s
2 δhx, (T s

1 )∗δhy〉 = 〈PsT2δhx, PsT
∗
1 δhy〉,

if T2 ∈ H∞, then

〈PsT2δhx, PsT
∗
1 δhy〉 = 〈T2δhx, PsT

∗
1 δhy〉 = 〈T2δhx, T ∗

1 δhy〉

= 〈T2Lhδx, T ∗
1 Lhδy〉 = 〈LhT2δx, LhT ∗

1 δy〉

= 〈L∗
hLhT2δx, T ∗

1 δy〉 = 〈T2δx, T ∗
1 δy〉

= 〈PsT2δx, T ∗
1 δy〉 = 〈PsT2δx, PsT

∗
1 δy〉

= 〈T s
2 δx, (T s

1 )∗δy〉 = 〈T s
1 T s

2 δx, δy〉,

so (Ls
h)∗T s

1 T s
2 Ls

h = T s
1 T s

2 . By Lemma 3.1 we know T s
1 T s

2 is Toeplitz operator.

If T ∗
1 ∈ H∞, similarly we can prove that T s

1 T s
2 is Toeplitz operator. 2

Remark 2.5 The classical Toeplitz operator is the special case with G = Z, S = {0, 1, 2, . . .},

G+ = {0, 1, 2, . . .}, g = 1 ∈ G+, x0 = 0 ∈ S.

The following lemma reveals the close relationship between Toeplitz operators and Hankle

operators which is parallel to the same result in classical case, we omit the proof.

Lemma 2.6 Suppose T1, T2 ∈ W ∗(G). Then (T1T2)
s = T s

1 T s
2 + (Hs

T1
)∗Hs

T2
.

Theorem 2.7 Suppose G is a discrete commutative group, S ⊂ G is a countable almost stable

subset, and T ∈ W ∗(G). If there exist g ∈ G+ and x0 ∈ S such that S \ gS = {x0}, G \ S =

{g−nx0 : n = 1, 2, . . .}, then Toeplitz operator T s is normal operator ⇔ for any λ, with |λ| = 1,
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we have Pl2(G\S)(Tf) = λPl2(G\S)(T
∗f), ∀f ∈ l2(s).

Proof ⇒. Because T s is normal operator, we have (T s)∗T s = T s(T s)∗, so

(Ls
g)

∗(T s)∗T sLs
g = (Ls

g)
∗T s(T s)∗Ls

g.

Since I = Pm + Ls
g(L

s
g)

∗, we get

(Ls
g)

∗(T s)∗(Pm + Ls
g(L

s
g)

∗)T sLs
g = (Ls

g)
∗T s(Pm + Ls

g(L
s
g)

∗)(T s)∗Ls
g,

i.e.,

(Ls
g)

∗(T s)∗PmT sLs
g + (Ls

g)
∗(T s)∗Ls

g(L
s
g)

∗T sLs
g

= (Ls
g)

∗T sPm(T s)∗Ls
g + (Ls

g)
∗T sLs

g(L
s
g)

∗(T s)∗Ls
g.

So we have

(Ls
g)

∗(T s)∗PmT sLs
g = (Ls

g)
∗T sPm(T s)∗Ls

g.

Pm = δx0
⊗ δx0

leads to

(Ls
g)

∗(T s)∗δx0
⊗ δx0

T sLs
g = (Ls

g)
∗T sδx0

⊗ δx0
(T s)∗Ls

g,

i.e.,

(Ls
g)

∗(T s)∗δx0
⊗ (Ls

g)
∗(T s)∗δx0

= (Ls
g)

∗T sδx0
⊗ (Ls

g)
∗T sδx0

.

So (Ls
g)

∗(T s)∗δx0
= λ(Ls

g)
∗T sδx0

, here |λ| = 1 is any constant. So ∀ x ∈ S, we have

〈(Ls
g)

∗(T s)∗δx0
, δx〉 = λ〈(Ls

g)
∗T sδx0

, δx〉,

〈(T s)∗δx0
, Ls

gδx〉 = λ〈T sδx0
, Ls

gδx〉,

〈PsT
∗δx0

, PsLgδx〉 = λ〈PsTδx0
, PsLgδx〉,

〈PsT
∗δx0

, Psδgx〉 = λ〈PsTδx0
, Psδgx〉.

Since g ∈ G+, gx ∈ S, then the above equality becomes 〈T ∗δx0
, δgx〉 = λ〈Tδx0

, δgx〉, i.e.,

〈L∗
gT

∗δx0
, δx〉 = λ〈L∗

gTδx0
, δx〉. The fact that G is commutative group implies that W ∗(G) is

commutative algebra. So 〈T ∗L∗
gδx0

, δx〉 = λ〈TL∗
gδx0

, δx〉, thus 〈δg−1x0
, T δx〉 = λ〈δg−1x0

, T ∗δx〉.

Since x is arbitrary and g ∈ G+, we know that for any n, 〈δg−nx0
, T δx〉 = λ〈δg−nx0

, T ∗δx〉.

G \ S = {g−nx0 : n = 1, 2, 3, . . .} means that

∀f ∈ l2(s), Pl2(G\S)(Tf) = λPl2(G\S)(T
∗f).

⇐. Because Pl2(G\S) = I − Ps, and ∀ λ, |λ| = 1, Pl2(G\S)(Tf) = λPl2(G\S)(T
∗f), we get

that ∀ λ, |λ| = 1, Hs
T (f) = λHs

T∗(f). Especially, let λ = 1. We get Hs
T (f) = Hs

T∗(f), i.e.,

Hs
T = Hs

T∗ . By Lemma 2.4, we have

(TT ∗)s = T s(T s)∗ + (Hs
T )∗Hs

T = T s(T s)∗ + (Hs
T )2,

(T ∗T )s = (T s)∗T s + Hs
T Hs

T = (T s)∗T s + (Hs
T )2.

Since TT ∗ = T ∗T , (T s)∗T s = T s(T s)∗. So T s is normal operator.

From the above proof we get the following corollary.
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Corollary 2.8 Suppose G is a discrete commutative group and S ⊂ G is a countable almost

stable subset. If there exist g ∈ G+ and x0 ∈ S such that S \ gS = {x0}, G \ S = {g−nx0 : n =

1, 2, . . .} T ∈ W ∗(G), then Toeplitz operator T s is normal operator ⇔ ∀ λ, |λ| = 1, Hs
T = λHs

T∗ .

Theorem 2.9 Suppose G is a discrete commutative group, S ⊂ G is a countable almost stable

subset and there exist g ∈ G+ and x0 ∈ S such that S \ gS = {x0}, G \ S = {g−nx0 : n =

1, 2, . . .}, and T1, T2 ∈ W ∗(G) with T1, T2 not both analytical or co-analytical. If T s
1 and T s

2

are commutative, then there exist constants C1, C2 such that

((T s
2 )∗ − C1(T

s
1 )∗)δx0

and (T s
2 − C2T

s
1 )δx0

∈ Ker(Ls
g)

∗.

Proof Since T s
1 T s

2 = T s
2 T s

1 , we have (Ls
g)

∗T s
1 T s

2 Ls
g = (Ls

g)
∗T s

2 T s
1 Ls

g. By Lemma 2.2 we know

that I = Pm + Ls
g(L

s
g)

∗ = δx0
⊗ δx0

+ Ls
g(L

s
g)

∗, so

(Ls
g)

∗T s
1 (δx0

⊗ δx0
+ Ls

g(L
s
g)

∗)T s
2 Ls

g = (Ls
g)

∗T s
2 (δx0

⊗ δx0
+ Ls

g(L
s
g)

∗)T s
1 Ls

g,

(Ls
g)

∗T s
1 (δx0

⊗ δx0
)T s

2 Ls
g + (Ls

g)
∗T s

1 Ls
g(L

s
g)

∗T s
2 Ls

g = (Ls
g)

∗T s
2 (δx0

⊗ δx0
)T s

1 Ls
g+

(Ls
g)

∗T s
2 Ls

g(L
s
g)

∗T s
1 Ls

g.

Because (Ls
g)

∗T s
1 Ls

g = T s
1 and (Ls

g)
∗T s

2 Ls
g = T s

2 ,

(Ls
g)

∗T s
1 δx0

⊗ (Ls
g)

∗(T s
2 )∗δx0

+ T s
1 T s

2 = (Ls
g)

∗T s
2 δx0

⊗ (Ls
g)

∗(T s
1 )∗δx0

+ T s
2 T s

1 ,

i.e.,

(Ls
g)

∗T s
1 δx0

⊗ (Ls
g)

∗(T s
2 )∗δx0

= (Ls
g)

∗T s
2 δx0

⊗ (Ls
g)

∗(T s
1 )∗δx0

. (2.1)

Now that T1, T2 are not both analytical or co-analytical, without loss of generality, suppose T s
1

is not analytical and T s
2 is not co-analytical. Then

(Ls
g)

∗(T s
2 )∗δx0

6= 0, (Ls
g)

∗(T s
1 )∗δx0

6= 0.

In fact, if (Ls
g)

∗(T s
2 )∗δx0

= 0, then for any x ∈ S we have 〈(Ls
g)

∗(T s
2 )∗δx0

, δx〉 = 0, i.e.,

〈T s
2 δx0

, Ls
gδx〉 = 0, thus 〈T2δx0

, Lgδx〉 = 0, so 〈T2δg−1x0
, δx〉 = 0. Since x is arbitrary and

g ∈ G+, we get

〈T2δg−nx0
, δx〉 = 0, ∀ n ∈ Z+.

So T2(l
2(s)⊥) ⊆ l2(s)⊥, thus T ∗

2 (l2(s)) ⊆ l2(s), i.e., T2 is co-analytical, resulting in a contradic-

tion. Similarly we can prove that (Ls
g)

∗(T s
1 )∗δx0

6= 0. From Equation 2.1, we have

〈(Ls
g)

∗(T s
1 )∗δx0

, (Ls
g)

∗(T s
1 )∗δx0

〉(Ls
g)

∗T s
2 δx0

= 〈(Ls
g)

∗(T s
1 )∗δx0

, (Ls
g)

∗(T s
2 )∗δx0

〉(Ls
g)

∗T s
1 δx0

,

i.e., ‖(Ls
g)

∗(T s
1 )∗δx0

‖2(Ls
g)

∗T s
2 δx0

− 〈(Ls
g)

∗(T s
1 )∗δx0

, (Ls
g)

∗(T s
2 )∗δx0

〉(Ls
g)

∗T s
1 δx0

= 0. So

(Ls
g)

∗
(

‖(Ls
g)

∗(T s
1 )∗δx0

‖2T s
2 δx0

− 〈(Ls
g)

∗(T s
1 )∗δx0

, (Ls
g)

∗(T s
2 )∗δx0

〉T s
1 δx0

)

= 0.

Let C1 =
〈(Ls

g)∗(T s
1
)∗δx0

, (Ls
g)∗(T s

2
)∗δx0

〉

‖(Ls
g)∗(T s

1
)∗δx0

‖2 . Then we have (T s
2 − C1T

s
1 )δx0

∈ Ker(Ls
g)

∗. Similarly, we

can prove that there exists C2 such that ((T s
2 )∗ − C2(T

s
1 )∗)δx0

∈ Ker(Ls
g)

∗. 2
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