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1. Introduction

In this paper we consider the following initial value problems (IVP) for nonlinear second
order impulsive integro-differential equations of mixed type in a Banach space E:
u” = f(t,u,u’,Tu, Su), te€ Jt#tg,
A fe—p,= T (u(te), v’ (tk)),
A =y, = Hi(u(tr), v/ (), k=1,2,...,m,
u(0) = zg, u'(0) = a1,
where J = [0,a](a > 0), fe C[JXx EXEXE X E,E|, I;,H, € CIEX E,E] (k=1,2,...,m),
O<t1 <to<- - <ty <a,zg,r1 € F, and

(Tu)(t) = /0 k(t, s)u(s)ds, (Su)(t) = /Oa h(t, s)u(s)ds. (2)

In (2), k € C[D,RT],h € C[J x J,RT], where RT = [0,+0), D = {(t,s) € J x J : t > s},
A 4=, denotes the jump of u(t) at ¢t = ty, i.e.,
Au e = u(td) — ulty),

where u(t;) and u(t;) represent the right-hand limit and left-hand limit of u(t) at t = #,

respectively. Au' |i—¢, has a similar meaning for u’(t).
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Initial value problems for nonlinear integro-differential equations arise from many nonlinear
problems in science. Over the last couple of decades, many attempts have been made to study
the existence of solutions for first-order or second-order initial value problems with or without
impulses in Banach spaces. In particular, for the special case where f does not include u', Tu
and Su, Lakshmikantham and Leelal' discussed the unique solution of IVP(1) by means of the
strongly minimal and maximal solutions conditions, Lipschitz condition and Kuratowski measure

[2l obtained the existence

of noncompactness. Removing the Lipschitz condition, Hao and Liu
of solutions of IVP(1) for the case in which f does not include «’. And in another special case
where f does not contain «/, in [3], Liu, Wu and Hao studied the global solutions of IVP(1).
Recently, Su, Liu and et al. investigated the global solutions of IVP(1) where f does not contain
impulses.

In this paper, by using Mdnch fixed point theorem and a new comparison, we establish the

theorem of existence of solutions of IVP(1). The result presented in this paper is new.

2. Preliminaries

In this paper, we always suppose that (F, ||-]|) is a real Banach space and P is a normal cone
in E. Let PC[J,E] = {x :  is a map from J into E such that z(t) is continuous at ¢ # ty, left
continuous at t = t;, and z(t) exists, k = 1,2,...,m}, and PC'[J, E]={x : x is a map from
J into F such that z(t) is continuously differentiable at ¢ # tj, left continuous at ¢ = ¢, and
z(th), ' (t,), 2’ (t]) exist, k = 1,2,...,m}. Evidently, PC[J, E] is a Banach space with norm

2]l P = sup [lz(£)]].
teJ
For z € PC'[J, E], by virtue of mean value theorem
x(ty) — x(ty — h) € heo{z'(t) : tp — h <t < tx}(h > 0),
it is easy to see that the left derivative a’ (t;) exists and
x(tg) = hlim+ h [z (ty) — x(ty — h)] = 2/ (t;,).
—0

In IVP (1) and in the following, 2’(t;) is understood as 2’ (t3). Evidently, PC*[J, E] is also a
Banach space with norm

Izl per = max{||z||pc, I’ pc
where ||z||pc is defined above and ||z'||pc = sup,c;||2’(t)]]. Let J = J\ {ti,ta,...,tm},
Jo = [0,t1], 1 = (t1rta], ., Im = (Em—1,tm]s Jm = (tm,a], and a denotes the Kuratowski
measure of noncompactness in E. u € PC'[J, E](\C?[J', E] is called a solution of IVP(1) if it
satisfies (1).

Let ko = max{k(t,s) : (t,s) € D}, ho = max{h(t,s) : (t,s) € J x J}. For vg,wy €
PCYJ, E],v0 < wo, we write [vg,wo] = {u € PCJ, E] : vo(t) < u(t) < wo(t),vh(t) < u'(t) <
wh(t),t € J}. For B C PCl[J, E], we write B' = {2/ : x € B} C PC[J,E],By = {z |J:
x € B},B(t) = {z(t) : * € B} ¢ E(t € J), and (TB)(t) = {(Tx)(t) : « € B} C E.
B;., B'(t),(SB)(t), (TB)'(t), (SB)'(t) have the similar meanings.
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At the end of this section, we state some lemmas which will be used in Section 3.

Lemma 1 Assume that F is a real Banach space, and p € PC*[J, E|(C?[J', E] satisfies

p'(t) < —a(t)p(t) —b()p'(t) — c(t)(Tp)(t), VL€ J, t#t,
Ap =1, = Lip' (tr),

3)
Ap |t:tk§_Lk (k), k=1,2,...,m,
P'(0) <p(0) <9,
where a,b, c are bounded integrable nonnegative functions on J and Ly, Lj.(k =1,2,--- ,m) are

nonnegative constants, and provided the following conditions hold

/O 1+t+ZLk dt+/0 b(t)dt+/0 c(t)dt-/(1+s+ZLk)k(t,s)ds+ZL;g1. )

0 k=1 k=1

Then p(t) <6, p'(t) <0, Vte J.

Proof Let pi(t) = p/(t)(t € J). Then p; € PC[J,E](C'[J’, E]. By (3) and Lemma 1 in [2],

we have

p(t) = p(0) + / mds+ Y (1)

0<tp<t
t
:p(O) +/ p1( dS+ Z Lgp1 tk) vVt e J. (5)
0<tp<t

Therefore,

Z Lkpl(tk)]ds—i—/o pl(r)dr/ k(t,s)ds, VteJ (6)

0<tp<s

@) = [ ke )p0) +
Substituting (5) and (6) into (3), we get

P < =00 () = (090~ [ Bt (s —alt) 3 Lun(t)-

0<tk<t

et / Z Lipi(te)lds, Vte J, t#ty, (7)

0<tk<s
Apy 1=, < —Lipi(te), k=1,2,...,m

p1(0) < p(0) <0,

where

ai(t) = a(t) + c(t) /Ot k(t,s)ds, Vte J, (8)

ki(t,s) = a(t) + c(t) /t E(t,r)dr, ¥(t,s) € D. 9)

For any given g € P*(P* denotes the dual cone of P), let v(¢t) = g(pi(t)). Then v €
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PC[J, RN CHJ', RY and v/ (t) = g(p(t)), YVt € J, t # i,k =1,2,...,m. From (7), we know

v'(t) < =b(t)v(t) — a1(t)g(p(0)) —/ ki(t, s)v(s)ds — a(t Z Lyv(ty)—
0 0<tp<t
c(t)/ E(t,s) Y Liv(te)lds, VEeJ, t#t, (10)
0 0<tp<s
Av e, < —Lio(te), k=1,2,...,m
v(0) < g(p(0)) < 0.
We shall show that
v(t) <0, Vted (11)

On the contrary, if we suppose (11) is not true, i.e., there exists a 0 < t* < a such that v(¢ *) > 0.
Let t* € J; and inf{v(t) : 0 <t < ¢*} = —A. Then A > 0 and for some ¢, € J;(j < 1), v(t )
or v(tj) = —A. We may assume v(t.) = —A (the proof is similar when v(t;r) = —)\). We have
by (10), g(p(0)) = =, and

V'(£) < Ab(E) + Aar (t) + A [ ki (t,s)ds + Aa(t)( S Li)+

0<tp<t
c(t) [y k(t,s)( S Lyp)ds, YO<t<t*, t#t, (12)
0<trp<s
Av |t:tk§ AL;W vtk S t*.

So, applying formula/12 Lemma1]

o(t*) = v(ty) +/ s)ds + Z ) — o(ty)] (13)
28 k=j+1
o (12), we find
0 <v(t*) < —A+ A /a[b(t) +ai(t) + (i Li)a(t)]dt+
0 k=1

a t m a t
/\/ dt/ ki (t, s)ds + A Lk)/ c(t)dt/ k(t, s)ds+
0 0 1 0 0
AL,
k=1
which implies that A > 0 and

/Oa[b(t)—l-al() ( S Lia dt+/ dt/ Fa (£, 5)ds+

,_.

(ZLk)/Oa c(t)dt tsds—l—ZL (14)

k=1
It is easy to see by simple calculation of (8 ( ), (9) and (14) that

/Oa[b(t)—i-al() ( dt+/ dt/ (£, 5)ds+
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(;Lk) /O c(t)dt /0 k(t,s)ds+;L;€

:/O (1+t+ZLk)a(t)dt+/0 b(t)dt+/0 o(t)dEx

k=1
t m m
/ (1+s+ ZLk)k(t,s)dS + ZLZ > 1,
0 k=1 k=1

which contradicts (4). Consequently (11) holds.
Since g € P* is arbitrary, we get from (11) that pi(¢) < 0 for ¢t € J, namely, p/(t) < 6 for
t € J. Thus, the function p(t) is nondecreasing on Ji(k =0,1,2,...,m). And from (3),

Ap =ty = Liep' (te) <0, k=1,2,...,m.

We know p(t) is nondecreasing on J. Therefore, p(t) < p(0) < 6 for ¢t € J. The lemma is proved.
O

Lemma 2° Let B ¢ PC'[J, E] be bounded and equicontinuous on each Ji(k =0,1,2,...,m).
Then a({z(t) : © € By}) is continuous on t € Jj, and

a({/J:c(t)dt weB)) < /Ja({ac(t) ¢ € BY)dt.

Lemma 30 Assume that m € C[J;, RT] (i = 0,1,2,...,m) satisfies

t a
m(t) < M/ m(s)ds + N/ m(s)ds + Z Mpm(ty), teJ,
0 0 0<t)<t

where M > 0,N > 0, M > 0 (k = 1,2,...,m) are constants. Then m(t) = 0 for any t € J,
provided one of the following conditions holds

(i) N[(eMr —1)+ (1 + My)(eMtz — M) 4. 4+ TT0 (1 + My)(eM* — eMim)] < M;

(i) (M + N)[t1+ (t2 —t1)(L+ M)+ -+ (@ —tm) [[1e (1 4+ My)] < 1.
Lemma 4" Assume that B ¢ PC'[J, E] is bounded, and B’ is equicontinuous on each J;, (k =
0,1,2,...,m). Then

a(B) = max{sup a(B(t)),sup a(B’'(t))}.
teJ ted

Lemma 56 Let B = {x,,} C L[J, E], and suppose that there exists a g € L[.J, R*] such that
|z, (t)|| < g(¢) for any t € J and z,, € B. Then a(B(t)) € L[J, R"] and

a({/o zn(s)ds:n e N}) < 2/0 a(B(s))ds, VteJ.

Lemma 6! Let E be a Banach space, K C E closed and convex and F : K — K continuous
with the further property that for x € K, we have B C K countable, B = @o({z} U F(B)) = B
is relatively compact. Then F' has a fixed point in K.

3. Main result
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We are now in a position to prove our existence results. Let us list the following assumptions
for convenience.

(H1) There exist vo,wo € PC[J, E]( C?[J', E] such that vo(t) < wo(t), vj(t) < wh(t),Vt € J
and bounded integrable nonnegative functions a(t), b(t), ¢(t) and nonnegative constants Ly, L} (k =

1,2,...,m) which satisfy (4), for any h € [vg,wp],

vy < f(t,hyh' ,ThySh) —a(t)(vo — h) —b(t) (v — ') — c(t)(Tvo — Th),
Ve, t4t,

Ao Je=t,= L (h(tk), I’ (tx)) + Li(vh(tx) — 7' (tk)),

Dl ooty < H(h(0), 1 (t8) — Ly(wh(ts) — W(t), b =1,2,...,m,

v0(0) < xg, v4(0) —vo(0) < &1 — xp,

wy > f(t,hyh', Th,Sh) — a(t)(wo — h) — b(t)(w — h') — c(t)(Two — Th),
Vte J, t#ty,

Awo [e=t, = L (h(tk), W' (tr)) + Li(wp (te) — B (tk)),

AW Je=t, > Hi(h(tg), ' (tr)) — L} (w(tr) — B (tk)), k=1,2,...,m,

wo(0) > zo, w§(0) —wo(0) > x1 — xo.

(H2) For any countable bounded equicontinuous set B = {u,} C [vg,wo] and t € J,

a(f(t, B(t), B'(t), (TB)(t), (SB)(t))) <kie(B(t)) + kao(B'(t))+
ksa((TB)(t)) + kaa((SB)(1)),

where k; (i = 1,2,3,4) are constants satisfying one of the following two conditions

(i) aksho(eM® —1) < ky + ko + 2a* + 2b* + akoks + 2ac*ky,

(i1) 2(k1 + ko + 2a™ + 2b* 4 akoks + 2ac* ko + aksho) max{a, 1}a < 1,
where M = max{2a(ky+ka+2a*+2b* +akoks +2akoc*), 2(k1 +ka+2a* +2b* + akoks +2akoc*) },
a* =supf{a(t) : t € J}, b* =sup{b(t) : t € J}, ¢* =sup{c(t) : t € J}.

Theorem 1 Let E be a real Banach space and P be a normal cone in E. Assume that conditions

(H1) and (H2) hold. Then IVP(1) has a solution u* in [vg, wp)-

Proof First, for any h € [vg,wp|, we consider the following initial value problems for linear

second order integro-differential equation (LIVP) in E

u’(t) = g(t) — a(t)u(t) — bW (t) — c(t)(Tu)(t), VteJ, t#ty,
At fi=p, = Ti(h(te), B (tr)) + Li(u'(tr) — B (te)),

A == Hi(h(tk), B (tr)) — Ly, (W/(tx) — B (tk)), k=1,2,....m,
u(0) = zg, «'(0) = a1,

where
g(t) = f(t,h(t),n'(t), (Th)(t), (Sh)(t)) + a(t)h(t) + b(t)A'(t) + c(t)(Th)(t), Vte J.
It is easy to check that u € PCY[J, E](\C?J’, E] is a solution of LIVP(15) if and only if
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u € PC[J, E](NC*[J', E] is a unique solution of the following integrable equation

u(t) =xo + tzy + /0 (t — 8)[g(s) — a(s)u(s) — b(s)u'(s) — c(s)(Tu)(s)]ds+
> {Te(hlte), B (t)) + Lie(u' (t) — B (t))]+

0<trp<t

(t — ti)[Hy (h(tr), b (te)) — Li (' (tk) — B/ (t6))]}, V€ J, t # ti. (16)

We can define an operator
Ah = u,

where u, h satisfy (16). Then
(ARY (6) = (1
=1+ [ 10(6) -~ als)als) = b (5) - (o) Tu) s+
Z [Hi(h(tr), b (tx)) — Ly (W' (tx) — B (tr))], Vt € J, t # ty. (17)

0<trp <t

We can easily find u € PC[J, E](C?|J', E] is a solution of IVP(1) if and only if u € PC[J, E](C*[J,

is a fixed point of A.

In the following, we will show that A has a fixed point in PC[J, E] N C?[J', E]. We will
divide the proof into three steps.

(i) We will show that the operator A: [vg,wo] — [vo, wo].

In fact, for any h € [vg,wo], let w = Ah. All we need to do is to prove vy < u < wyg, v} <
u' < w|. Let p=u —wp. By (15) and (H1), we know

P =u" — W
< f(t,h, b, Th,Sh) + a(t)(h —u) + b(t)(h —u) + c(t)(Th — Tu)—
(b, B, Th, Sh) + a(t)(wo — h) + b(£) (wh — 1) + e(t)(Two — Th)
— —a(O)plt) — bW () — c(O(TP)(1), Ve E S, t £,
AP [e=t,= Tk (h(tr), B (tk)) + Li (W' (te) — B (tk)) — Te(h(t), W (tk))—
Li(wh(te) = W' (tr)) = Lip'(tk),
Ap' fe=t, < Hi(h(t), W' (tr)) — L%( "(te) = W' (tr)) — Hi(h(tr), b’ (tr))+
Ly (wi(te) — W (tg)) = —=L1p"(te), k=1,2,...,m
P'(0) = u'(0) — wj(0) = 21 — w(0) < g — wp(0) = u(0) — wo(0) = p(0) < 6.

From Lemma 1, we get p(t) < 0,p'(t) < 0. Therefore u < wp, v’ < w(. By similar method we
can obtain vy < u, v < u'.

(ii) We now prove that A: [vg,wp] — [vo,wp] is continuous. Let A = A; + A, where

(A1h)(t) =zo + tz1 + /O (t —s)lg(s) — a(s)u(s) — b(s)u'(s) — c(s)(Tu)(s)]ds,
= > {Ik(h(te), B (tr)) + Li(u/ (k) — b (t))]+

0<tp<t

(t — ti)[Hi(h(tr), ' (tr)) — Ly (v (tx) — W' (tp))]}, YVt € J, t # ty.

E]
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The proof of (ii) is similar to that of [10].
(iii) In the end we will show A has a fixed point in [vg, wp]. For & € [vg,wo], B = {un} C
[vo, wo] satisfying

— a({} U (AB)), (18)
we shall prove that B is relatively compact.
From (H1), we get
vy + a(t)vo + b(t)vy + c(t)(Tvo) <[f(t, wn, uly, Ttup, Suyn) + a(t)un+
b(t)ul, + c(t)(Tuy)
<w( + a(t)wo + b(t)wy + c(t)(Two),
Ao |i=t, —Livi(te) < Tip(un(te), ul (tr)) — Lgul, (tr) < Awo |i=t, —Lrwy(tr),
Ay =ty +L05(te) < Hy(wn (tr), u (tr)) + Ly, (tr) < Awo |i=t, +Liwg(tr)-

Therefore, {f(t,un,u),, Ttn, Suyn) + a(t)u, + b(t)u), + c(t)(Tuyn) : u, € B} are bounded in
PCYJ, E] and {Ix(un (tg), ul, (tx)) — Liul, (ty) c k= 1,2,...,m}, {Hg(un(tg), ul, (tg)) + Liul, () :
k = 1,2,...,m} are bounded in E. Together with (16) and (17) we can easily get (AB)(t),
(AB)'(t) are bounded and equicontinuous on J; (i = 0,1,2,...,m) and from (18) we know B(t),
B'(t) are bounded and equicontinuous on J; (i = 0,1,2,...,m). Hence, by Lemma 4, we have
a(B) = max{sup,c ; a(B(t)),sup;c; a(B’(t))}. Let m(t) = max{a(B(t)), a(B’(t))}. Then, from
Lemma 2, we can obtain m € C[J;, RT](i =0,1,2,...,m).

For t € Jy = [0, 4], from (18), Lemma 2, 5, the definition of A and the nature of the measure

of noncompactness, we can get

a(B(t)) =a(B(t)) = a((AB)(t))
/0 (t — 5)lg(s) — als)uls) — b(shu'(s) — e(s)(Tu)(s)]ds)
<20 [ alf(s.B(5). B (s). (TB)(s). (SB)())ds+

4aa* /0 a(B(s ))ds+4ab*/0 o(B (s))ds—|—4ac*/0 a((TB)(s))ds
<(2aky + 4aa*)/0 a(B(s))ds + (2aks + 4ab*)/0 a(B'(s))ds+

(2aks —|—4ac*)/0 a((TB)(s))ds + 2ak4/0 a((SB)(s))ds
<2a(ky + ko + 2a™ + 2b*)/ m(s)ds + 2a(ks + 20*)k0t/ m(s)ds+

0 0
2ak4h0t/0 m(s)ds

¢
<2a(ky + ko + 2a™ + 2b* + akoks + 2ac*k0)/ m(s)ds+
0

2a2k4h0/0 m(s)ds, (19)
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a(B'(t)) =a(B'(t)) = a((AB)'(t))

—a [ Tg(6) ~ a(s)u(s) ~ bs)(5) — o) Tu)(5)d)
0
SQ/O a(f(s,B(s), B'(s), (TB)(s), (SB)(s)))ds+
4a* /0 a(B(s))ds + 4b*/0 a(B'(s))ds + 46*/0 a((TB)(s))ds
<2(ky1 + ko + 2a"™ + 2b™ + akoks + 2ac™ ko) /t m(s)ds+
0

2akyhg /Oam(s)ds. (20)

From (19) and (20), we have

t a
m(s) < M/ m(s)ds + N/ m(s)ds, Vt e Jo,
0 0

where

M =max{2a(k; + k2 + 2a" + 2b" 4 akoks + 2ac™ ko), 2(k1 + k2 + 2a™+
20* + akoks + 2(IC*I€Q)},
N =max{2a*ksho, 2aksho}. (21)

Therefore, from (H1) and Lemma 3, m(t) = 0,Vt € Jy. Especially,

a(B(t1)) = a(B'(t1)) = 0. (22)

Observing that I, Hy € C[E x E, E], we have

a(Ii(B(t1), B'(t1))) = 0, a(Hi(B(t1), B'(t1))) = 0. (23)

Using the similar method, for ¢t € (¢1, t2], we get
t
a(B(t)) <2a(k1 + kg + 2a" + 2b* + akoks + 2ac*k0)/ m(s)ds+
0

2a2k4h0 ‘/Oa m(s)ds + CY(Il (B(tl), B/(tl)))'f‘
2L10&(B/(t1)) + CLO&(Hl (B(tl), B/(tl))) + QGLQOZ(B/(tl))
By (22) and (23), we know

t
a(B(t)) <2a(ky + k2 + 2a" + 2b" + akoks + 2ac*k0)/ m(s)ds+
0

2a2k4h0/0 m(s)ds. (24)

Similarly, we can obtain

t
a(B'(t)) <2(k1 + ko + 2a™ + 2b* + akoks + 2ac*k0)/ m(s)ds+
0
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2akyhg /Oa m(s)ds. (25)
Together with (24) and (25), we get
m(s) < M/Ot m(s)ds + N/Oam(s)ds, vt € Ji,
where M, N are defined by (21). Thus, from Lemma 3, we have m(t) = 0,Vt € J;. And so,
a(B(t2)) = a(B'(t2)) = 0.
By the continuity of I, Hs, we obtain
a(lx(B(t2), B'(t2))) =0, a(Ha(B(t2), B'(t2))) = 0.

Similarly to above, we can easily verify that a(B(t)) = 0,a(B'(t)) =0,t € J; (i =2,3,...,m).
Hence, a(B) = 0,t € J, which implies B is a relatively compact set in PC'[J, E]. From Lemma
6, A has a fixed point u* in [vg,wo], i.e., IVP(1) has a solution in PC*[J, E](C?[J’, E]. The

proof is completed. O

Remark 1 In this paper, we discussed the initial value problems for nonlinear second order
impulsive integro-differential equations of mixed type which contain impulses, therefore, the

conditions for the comparison result are different from those in [4].

Remark 2 We can let k4 = 0 where the IVP(1) does not include impulses and f does not
include Su, and the assumptions of (H2) hold for any k1 > 0,ke > 0,k3 > 0.
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