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1. Introduction

In this paper we consider the following initial value problems (IVP) for nonlinear second

order impulsive integro-differential equations of mixed type in a Banach space E:






















u′′ = f(t, u, u′, Tu, Su), t ∈ J, t 6= tk,

△u |t=tk
= Ik(u(tk), u′(tk)),

△u′ |t=tk
= Hk(u(tk), u′(tk)), k = 1, 2, . . . , m,

u(0) = x0, u
′(0) = x1,

(1)

where J = [0, a](a > 0), f ∈ C[J × E × E × E × E, E], Ik, Hk ∈ C[E × E, E] (k = 1, 2, . . . , m),

0 < t1 < t2 < · · · < tm < a, x0, x1 ∈ E, and

(Tu)(t) =

∫ t

0

k(t, s)u(s)ds, (Su)(t) =

∫ a

0

h(t, s)u(s)ds. (2)

In (2), k ∈ C[D, R+], h ∈ C[J × J, R+], where R+ = [0, +∞), D = {(t, s) ∈ J × J : t ≥ s},

△u |t=tk
denotes the jump of u(t) at t = tk, i.e.,

△u |t=tk
= u(t+k ) − u(t−k ),

where u(t+k ) and u(t−k ) represent the right-hand limit and left-hand limit of u(t) at t = tk,

respectively. △u′ |t=tk
has a similar meaning for u′(t).
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Initial value problems for nonlinear integro-differential equations arise from many nonlinear

problems in science. Over the last couple of decades, many attempts have been made to study

the existence of solutions for first-order or second-order initial value problems with or without

impulses in Banach spaces. In particular, for the special case where f does not include u′, Tu

and Su, Lakshmikantham and Leela[1] discussed the unique solution of IVP(1) by means of the

strongly minimal and maximal solutions conditions, Lipschitz condition and Kuratowski measure

of noncompactness. Removing the Lipschitz condition, Hao and Liu[2] obtained the existence

of solutions of IVP(1) for the case in which f does not include u′. And in another special case

where f does not contain u′, in [3], Liu, Wu and Hao studied the global solutions of IVP(1).

Recently, Su, Liu and et al. investigated the global solutions of IVP(1) where f does not contain

impulses.

In this paper, by using Mönch fixed point theorem and a new comparison, we establish the

theorem of existence of solutions of IVP(1). The result presented in this paper is new.

2. Preliminaries

In this paper, we always suppose that (E, ‖ ·‖) is a real Banach space and P is a normal cone

in E. Let PC[J, E] = {x : x is a map from J into E such that x(t) is continuous at t 6= tk, left

continuous at t = tk, and x(t+k ) exists, k = 1, 2, . . . , m}, and PC1[J, E]={x : x is a map from

J into E such that x(t) is continuously differentiable at t 6= tk, left continuous at t = tk, and

x(t+k ), x′(t−k ), x′(t+k ) exist, k = 1, 2, . . . , m}. Evidently, PC[J, E] is a Banach space with norm

‖x‖PC = sup
t∈J

‖x(t)‖.

For x ∈ PC1[J, E], by virtue of mean value theorem

x(tk) − x(tk − h) ∈ hco{x′(t) : tk − h < t < tk}(h > 0),

it is easy to see that the left derivative x′

−
(tk) exists and

x′

−
(tk) = lim

h→0+
h−1[x(tk) − x(tk − h)] = x′(t−k ).

In IVP (1) and in the following, x′(tk) is understood as x′

−
(tk). Evidently, PC1[J, E] is also a

Banach space with norm

‖x‖PC1 = max{‖x‖PC , ‖x′‖PC},

where ‖x‖PC is defined above and ‖x′‖PC = supt∈J ‖x′(t)‖. Let J ′ = J \ {t1, t2, . . . , tm},

J0 = [0, t1], J1 = (t1,t2], . . . , Jm = (tm−1, tm], Jm = (tm, a], and α denotes the Kuratowski

measure of noncompactness in E. u ∈ PC1[J, E]
⋂

C2[J ′, E] is called a solution of IVP(1) if it

satisfies (1).

Let k0 = max{k(t, s) : (t, s) ∈ D}, h0 = max{h(t, s) : (t, s) ∈ J × J}. For v0, ω0 ∈

PC1[J, E], v0 ≤ ω0, we write [v0, ω0] = {u ∈ PC1[J, E] : v0(t) ≤ u(t) ≤ ω0(t), v
′

0(t) ≤ u′(t) ≤

ω′

0(t), t ∈ J}. For B ⊂ PC1[J, E], we write B′ = {x′ : x ∈ B} ⊂ PC[J, E], Bk = {x |Jk
:

x ∈ B}, B(t) = {x(t) : x ∈ B} ⊂ E(t ∈ J), and (TB)(t) = {(Tx)(t) : x ∈ B} ⊂ E.

B′

k, B′(t), (SB)(t), (TB)′(t), (SB)′(t) have the similar meanings.
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At the end of this section, we state some lemmas which will be used in Section 3.

Lemma 1 Assume that E is a real Banach space, and p ∈ PC1[J, E]
⋂

C2[J ′, E] satisfies






















p′′(t) ≤ −a(t)p(t) − b(t)p′(t) − c(t)(Tp)(t), ∀t ∈ J, t 6= tk,

△p |t=tk
= Lkp′(tk),

△p′ |t=tk
≤ −L′

kp′(tk), k = 1, 2, . . . , m,

p′(0) ≤ p(0) ≤ θ,

(3)

where a, b, c are bounded integrable nonnegative functions on J and Lk, L′

k(k = 1, 2, · · · , m) are

nonnegative constants, and provided the following conditions hold

∫ a

0

(1 + t +

m
∑

k=1

Lk)a(t)dt +

∫ a

0

b(t)dt +

∫ a

0

c(t)dt ·

∫ t

0

(1 + s +

m
∑

k=1

Lk)k(t, s)ds +

m
∑

k=1

L′

k ≤ 1. (4)

Then p(t) ≤ θ, p′(t) ≤ θ, ∀t ∈ J .

Proof Let p1(t) = p′(t)(t ∈ J). Then p1 ∈ PC[J, E]
⋂

C1[J ′, E]. By (3) and Lemma 1 in [2],

we have

p(t) = p(0) +

∫ t

0

p1(s)ds +
∑

0<tk<t

[p(t+k ) − p(tk)]

= p(0) +

∫ t

0

p1(s)ds +
∑

0<tk<t

Lkp1(tk), ∀t ∈ J. (5)

Therefore,

(Tp)(t) =

∫ t

0

k(t, s)[p(0) +
∑

0<tk<s

Lkp1(tk)]ds +

∫ t

0

p1(r)dr

∫ t

r

k(t, s)ds, ∀t ∈ J. (6)

Substituting (5) and (6) into (3), we get







































p′1(t) ≤ −b(t)p1(t) − a1(t)p(0) −

∫ t

0

k1(t, s)p1(s)ds − a(t)
∑

0<tk<t

Lkp1(tk)−

c(t)

∫ t

0

k(t, s)[
∑

0<tk<s

Lkp1(tk)]ds, ∀t ∈ J, t 6= tk,

△p1 |t=tk
≤ −L′

kp1(tk), k = 1, 2, . . . , m,

p1(0) ≤ p(0) ≤ θ,

(7)

where

a1(t) = a(t) + c(t)

∫ t

0

k(t, s)ds, ∀t ∈ J, (8)

k1(t, s) = a(t) + c(t)

∫ t

s

k(t, r)dr, ∀(t, s) ∈ D. (9)

For any given g ∈ P ∗(P ∗ denotes the dual cone of P ), let v(t) = g(p1(t)). Then v ∈
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PC[J, R1]
⋂

C1[J ′, R1] and v′(t) = g(p′1(t)), ∀t ∈ J, t 6= tk, k = 1, 2, . . . , m. From (7), we know







































v′(t) ≤ −b(t)v(t) − a1(t)g(p(0)) −

∫ t

0

k1(t, s)v(s)ds − a(t)
∑

0<tk<t

Lkv(tk)−

c(t)

∫ t

0

k(t, s)[
∑

0<tk<s

Lkv(tk)]ds, ∀t ∈ J, t 6= tk,

△v |t=tk
≤ −L′

kv(tk), k = 1, 2, . . . , m,

v(0) ≤ g(p(0)) ≤ 0.

(10)

We shall show that

v(t) ≤ 0, ∀t ∈ J. (11)

On the contrary, if we suppose (11) is not true, i.e., there exists a 0 < t∗ ≤ a such that v(t∗) > 0.

Let t∗ ∈ Ji and inf{v(t) : 0 ≤ t ≤ t∗} = −λ. Then λ ≥ 0 and for some t∗ ∈ Jj(j ≤ i), v(t∗) = −λ

or v(t+j ) = −λ. We may assume v(t∗) = −λ (the proof is similar when v(t+j ) = −λ). We have

by (10), g(p(0)) ≥ −λ, and


















v′(t) ≤ λb(t) + λa1(t) + λ
∫ t

0
k1(t, s)ds + λa(t)(

∑

0<tk<t

Lk)+

λc(t)
∫ t

0
k(t, s)(

∑

0<tk<s

Lk)ds, ∀0 ≤ t ≤ t∗, t 6= tk,

△v |t=tk
≤ λL′

k, ∀tk ≤ t∗.

(12)

So, applying formula[12,Lemma 1]

v(t∗) = v(t∗) +

∫ t∗

t∗

v′(s)ds +

i
∑

k=j+1

[v(t+k ) − v(tk)] (13)

to (12), we find

0 <v(t∗) ≤ −λ + λ

∫ a

0

[b(t) + a1(t) + (

m
∑

k=1

Lk)a(t)]dt+

λ

∫ a

0

dt

∫ t

0

k1(t, s)ds + λ(

m
∑

k=1

Lk)

∫ a

0

c(t)dt

∫ t

0

k(t, s)ds+

λ

m
∑

k=1

L′

k,

which implies that λ > 0 and

∫ a

0

[b(t) + a1(t) + (

m
∑

k=1

Lk)a(t)]dt +

∫ a

0

dt

∫ t

0

k1(t, s)ds+

(
m

∑

k=1

Lk)

∫ a

0

c(t)dt

∫ t

0

k(t, s)ds +
m

∑

k=1

L′

k > 1. (14)

It is easy to see by simple calculation of (8), (9) and (14) that

∫ a

0

[b(t) + a1(t) + (

m
∑

k=1

Lk)a(t)]dt +

∫ a

0

dt

∫ t

0

k1(t, s)ds+
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(

m
∑

k=1

Lk)

∫ a

0

c(t)dt

∫ t

0

k(t, s)ds +

m
∑

k=1

L′

k

=

∫ a

0

(1 + t +

m
∑

k=1

Lk)a(t)dt +

∫ a

0

b(t)dt +

∫ a

0

c(t)dt×

∫ t

0

(1 + s +

m
∑

k=1

Lk)k(t, s)ds +

m
∑

k=1

L′

k > 1,

which contradicts (4). Consequently (11) holds.

Since g ∈ P ∗ is arbitrary, we get from (11) that p1(t) ≤ θ for t ∈ J , namely, p′(t) ≤ θ for

t ∈ J . Thus, the function p(t) is nondecreasing on Jk(k = 0, 1, 2, . . . , m). And from (3),

△p |t=tk
= Lkp′(tk) ≤ θ, k = 1, 2, . . . , m.

We know p(t) is nondecreasing on J . Therefore, p(t) ≤ p(0) ≤ θ for t ∈ J . The lemma is proved.

2

Lemma 2
[5] Let B ⊂ PC1[J, E] be bounded and equicontinuous on each Jk(k = 0, 1, 2, . . . , m).

Then α({x(t) : x ∈ Bk}) is continuous on t ∈ Jk and

α({

∫

J

x(t)dt : x ∈ B}) ≤

∫

J

α({x(t) : x ∈ B})dt.

Lemma 3
[5] Assume that m ∈ C[Ji, R

+] (i = 0, 1, 2, . . . , m) satisfies

m(t) ≤ M

∫ t

0

m(s)ds + N

∫ a

0

m(s)ds +
∑

0<tk<t

Mkm(tk), t ∈ J,

where M > 0, N ≥ 0, Mk ≥ 0 (k = 1, 2, . . . , m) are constants. Then m(t) ≡ 0 for any t ∈ J ,

provided one of the following conditions holds

(i) N [(eMt1 − 1) + (1 + M1)(e
Mt2 − eMt1) + · · · +

∏m

k=1(1 + Mk)(eMa − eMtm)] < M ;

(ii) (M + N)[t1 + (t2 − t1)(1 + M1) + · · · + (a − tm)
∏m

k=1(1 + Mk)] < 1.

Lemma 4
[7] Assume that B ⊂ PC1[J, E] is bounded, and B′ is equicontinuous on each Jk (k =

0, 1, 2, . . . , m). Then

α(B) = max{sup
t∈J

α(B(t)), sup
t∈J

α(B′(t))}.

Lemma 5
[8] Let B = {xn} ⊂ L[J, E], and suppose that there exists a g ∈ L[J, R+] such that

‖xn(t)‖ ≤ g(t) for any t ∈ J and xn ∈ B. Then α(B(t)) ∈ L[J, R+] and

α({

∫ t

0

xn(s)ds : n ∈ N}) ≤ 2

∫ t

0

α(B(s))ds, ∀t ∈ J.

Lemma 6
[9] Let E be a Banach space, K ⊂ E closed and convex and F : K → K continuous

with the further property that for x ∈ K, we have B ⊂ K countable, B = co({x} ∪ F (B)) ⇒ B

is relatively compact. Then F has a fixed point in K.

3. Main result
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We are now in a position to prove our existence results. Let us list the following assumptions

for convenience.

(H1) There exist v0, ω0 ∈ PC1[J, E]
⋂

C2[J ′, E] such that v0(t) ≤ ω0(t), v′0(t) ≤ ω′

0(t), ∀t ∈ J

and bounded integrable nonnegative functions a(t), b(t), c(t) and nonnegative constants Lk, L′

k(k =

1, 2, . . . , m) which satisfy (4), for any h ∈ [v0, ω0],































v′′0 ≤ f(t, h, h′, Th, Sh)− a(t)(v0 − h) − b(t)(v′0 − h′) − c(t)(Tv0 − Th),

∀t ∈ J, t 6= tk,

△v0 |t=tk
= Ik(h(tk), h′(tk)) + Lk(v′0(tk) − h′(tk)),

△v′0 |t=tk
≤ Hk(h(tk), h′(tk)) − L′

k(v′0(tk) − h′(tk)), k = 1, 2, . . . , m,

v0(0) ≤ x0, v′0(0) − v0(0) ≤ x1 − x0,































ω′′

0 ≥ f(t, h, h′, Th, Sh)− a(t)(ω0 − h) − b(t)(ω′

0 − h′) − c(t)(Tω0 − Th),

∀t ∈ J, t 6= tk,

△ω0 |t=tk
= Ik(h(tk), h′(tk)) + Lk(ω′

0(tk) − h′(tk)),

△ω′

0 |t=tk
≥ Hk(h(tk), h′(tk)) − L′

k(ω′

0(tk) − h′(tk)), k = 1, 2, . . . , m,

ω0(0) ≥ x0, ω′

0(0) − ω0(0) ≥ x1 − x0.

(H2) For any countable bounded equicontinuous set B = {un} ⊂ [v0, ω0] and t ∈ J ,

α(f(t, B(t), B′(t), (TB)(t), (SB)(t))) ≤k1α(B(t)) + k2α(B′(t))+

k3α((TB)(t)) + k4α((SB)(t)),

where ki (i = 1, 2, 3, 4) are constants satisfying one of the following two conditions

(i) ak4h0(e
Ma − 1) < k1 + k2 + 2a∗ + 2b∗ + ak0k3 + 2ac∗k0,

(ii) 2(k1 + k2 + 2a∗ + 2b∗ + ak0k3 + 2ac∗k0 + ak4h0)max{a, 1}a < 1,

where M = max{2a(k1+k2+2a∗+2b∗+ak0k3+2ak0c
∗), 2(k1+k2+2a∗+2b∗+ak0k3+2ak0c

∗)},

a∗ = sup{a(t) : t ∈ J}, b∗ = sup{b(t) : t ∈ J}, c∗ = sup{c(t) : t ∈ J}.

Theorem 1 Let E be a real Banach space and P be a normal cone in E. Assume that conditions

(H1) and (H2) hold. Then IVP(1) has a solution u∗ in [v0, ω0].

Proof First, for any h ∈ [v0, ω0], we consider the following initial value problems for linear

second order integro-differential equation (LIVP) in E






















u′′(t) = g(t) − a(t)u(t) − b(t)u′(t) − c(t)(Tu)(t), ∀t ∈ J, t 6= tk,

△u |t=tk
= Ik(h(tk), h′(tk)) + Lk(u′(tk) − h′(tk)),

△u′ |t=tk
= Hk(h(tk), h′(tk)) − L′

k(u′(tk) − h′(tk)), k = 1, 2, . . . , m,

u(0) = x0, u′(0) = x1,

(15)

where

g(t) = f(t, h(t), h′(t), (Th)(t), (Sh)(t)) + a(t)h(t) + b(t)h′(t) + c(t)(Th)(t), ∀t ∈ J.

It is easy to check that u ∈ PC1[J, E]
⋂

C2[J ′, E] is a solution of LIVP(15) if and only if
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u ∈ PC[J, E]
⋂

C1[J ′, E] is a unique solution of the following integrable equation

u(t) =x0 + tx1 +

∫ t

0

(t − s)[g(s) − a(s)u(s) − b(s)u′(s) − c(s)(Tu)(s)]ds+

∑

0<tk<t

{[Ik(h(tk), h′(tk)) + Lk(u′(tk) − h′(tk))]+

(t − tk)[Hk(h(tk), h′(tk)) − L′

k(u′(tk) − h′(tk))]}, ∀t ∈ J, t 6= tk. (16)

We can define an operator

Ah = u,

where u, h satisfy (16). Then

(Ah)′(t) =u′(t)

=x1 +

∫ t

0

[g(s) − a(s)u(s) − b(s)u′(s) − c(s)(Tu)(s)]ds+

∑

0<tk<t

[Hk(h(tk), h′(tk)) − L′

k(u′(tk) − h′(tk))], ∀t ∈ J, t 6= tk. (17)

We can easily find u ∈ PC1[J, E]
⋂

C2[J ′, E] is a solution of IVP(1) if and only if u ∈ PC[J, E]
⋂

C1[J ′, E]

is a fixed point of A.

In the following, we will show that A has a fixed point in PC1[J, E]
⋂

C2[J ′, E]. We will

divide the proof into three steps.

(i) We will show that the operator A: [v0, ω0] → [v0, ω0].

In fact, for any h ∈ [v0, ω0], let u = Ah. All we need to do is to prove v0 ≤ u ≤ ω0, v′0 ≤

u′ ≤ ω′

0. Let p = u − ω0. By (15) and (H1), we know










































































p′′ = u′′ − ω′′

0

≤ f(t, h, h′, Th, Sh) + a(t)(h − u) + b(t)(h′ − u′) + c(t)(Th − Tu)−

f(t, h, h′, Th, Sh) + a(t)(ω0 − h) + b(t)(ω′

0 − h′) + c(t)(Tω0 − Th)

= −a(t)p(t) − b(t)p′(t) − c(t)(Tp)(t), ∀t ∈ J, t 6= tk,

△p |t=tk
= Ik(h(tk), h′(tk)) + Lk(u′(tk) − h′(tk)) − Ik(h(tk), h′(tk))−

Lk(ω′

0(tk) − h′(tk)) = Lkp′(tk),

△p′ |t=tk
≤ Hk(h(tk), h′(tk)) − L′

k(u′(tk) − h′(tk)) − Hk(h(tk), h′(tk))+

L′

k(ω′

0(tk) − h′(tk)) = −L′

kp
′(tk), k = 1, 2, . . . , m,

p′(0) = u′(0) − ω′

0(0) = x1 − ω′

0(0) ≤ x0 − ω0(0) = u(0) − ω0(0) = p(0) ≤ θ.

From Lemma 1, we get p(t) ≤ 0, p′(t) ≤ 0. Therefore u ≤ ω0, u′ ≤ ω′

0. By similar method we

can obtain v0 ≤ u, v′0 ≤ u′.

(ii) We now prove that A: [v0, ω0] → [v0, ω0] is continuous. Let A = A1 + A2, where

(A1h)(t) =x0 + tx1 +

∫ t

0

(t − s)[g(s) − a(s)u(s) − b(s)u′(s) − c(s)(Tu)(s)]ds,

(A2h)(t) =
∑

0<tk<t

{[Ik(h(tk), h′(tk)) + Lk(u′(tk) − h′(tk))]+

(t − tk)[Hk(h(tk), h′(tk)) − L′

k(u′(tk) − h′(tk))]}, ∀t ∈ J, t 6= tk.
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The proof of (ii) is similar to that of [10].

(iii) In the end we will show A has a fixed point in [v0, ω0]. For x ∈ [v0, ω0], B = {un} ⊂

[v0, ω0] satisfying

B = co({x} ∪ (AB)), (18)

we shall prove that B is relatively compact.

From (H1), we get

v′′0 + a(t)v0 + b(t)v′0 + c(t)(Tv0) ≤f(t, un, u′

n, Tun, Sun) + a(t)un+

b(t)u′

n + c(t)(Tun)

≤ω′′

0 + a(t)ω0 + b(t)ω′

0 + c(t)(Tω0),

△v0 |t=tk
−Lkv′0(tk) ≤ Ik(un(tk), u′

n(tk)) − Lku′

n(tk) ≤ △ω0 |t=tk
−Lkω′

0(tk),

△v′0 |t=tk
+L′

kv′0(tk) ≤ Hk(un(tk), u′

n(tk)) + L′

ku′

n(tk) ≤ △ω0 |t=tk
+L′

kω′

0(tk).

Therefore, {f(t, un, u′

n, Tun, Sun) + a(t)un + b(t)u′

n + c(t)(Tun) : un ∈ B} are bounded in

PC1[J, E] and {Ik(un(tk), u′

n(tk))−Lku′

n(tk) : k = 1, 2, . . . , m}, {Hk(un(tk), u′

n(tk))+L′

ku
′

n(tk) :

k = 1, 2, . . . , m} are bounded in E. Together with (16) and (17) we can easily get (AB)(t),

(AB)′(t) are bounded and equicontinuous on Ji (i = 0, 1, 2, . . . , m) and from (18) we know B(t),

B′(t) are bounded and equicontinuous on Ji (i = 0, 1, 2, . . . , m). Hence, by Lemma 4, we have

α(B) = max{supt∈J α(B(t)), supt∈J α(B′(t))}. Let m(t) = max{α(B(t)), α(B′(t))}. Then, from

Lemma 2, we can obtain m ∈ C[Ji, R
+](i = 0, 1, 2, . . . , m).

For t ∈ J0 = [0, t1], from (18), Lemma 2, 5, the definition of A and the nature of the measure

of noncompactness, we can get

α(B(t)) =α(B(t)) = α((AB)(t))

=α(

∫ t

0

(t − s)[g(s) − a(s)u(s) − b(s)u′(s) − c(s)(Tu)(s)]ds)

≤2a

∫ t

0

α(f(s, B(s), B′(s), (TB)(s), (SB)(s)))ds+

4aa∗

∫ t

0

α(B(s))ds + 4ab∗
∫ t

0

α(B′(s))ds + 4ac∗
∫ t

0

α((TB)(s))ds

≤(2ak1 + 4aa∗)

∫ t

0

α(B(s))ds + (2ak2 + 4ab∗)

∫ t

0

α(B′(s))ds+

(2ak3 + 4ac∗)

∫ t

0

α((TB)(s))ds + 2ak4

∫ t

0

α((SB)(s))ds

≤2a(k1 + k2 + 2a∗ + 2b∗)

∫ t

0

m(s)ds + 2a(k3 + 2c∗)k0t

∫ t

0

m(s)ds+

2ak4h0t

∫ a

0

m(s)ds

≤2a(k1 + k2 + 2a∗ + 2b∗ + ak0k3 + 2ac∗k0)

∫ t

0

m(s)ds+

2a2k4h0

∫ a

0

m(s)ds, (19)
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α(B′(t)) =α(B′(t)) = α((AB)′(t))

=α(

∫ t

0

[g(s) − a(s)u(s) − b(s)u′(s) − c(s)(Tu)(s)]ds)

≤2

∫ t

0

α(f(s, B(s), B′(s), (TB)(s), (SB)(s)))ds+

4a∗

∫ t

0

α(B(s))ds + 4b∗
∫ t

0

α(B′(s))ds + 4c∗
∫ t

0

α((TB)(s))ds

≤2(k1 + k2 + 2a∗ + 2b∗ + ak0k3 + 2ac∗k0)

∫ t

0

m(s)ds+

2ak4h0

∫ a

0

m(s)ds. (20)

From (19) and (20), we have

m(s) ≤ M

∫ t

0

m(s)ds + N

∫ a

0

m(s)ds, ∀t ∈ J0,

where

M =max{2a(k1 + k2 + 2a∗ + 2b∗ + ak0k3 + 2ac∗k0), 2(k1 + k2 + 2a∗+

2b∗ + ak0k3 + 2ac∗k0)},

N =max{2a2k4h0, 2ak4h0}. (21)

Therefore, from (H1) and Lemma 3, m(t) ≡ 0, ∀t ∈ J0. Especially,

α(B(t1)) = α(B′(t1)) = 0. (22)

Observing that I1, H1 ∈ C[E × E, E], we have

α(I1(B(t1), B
′(t1))) = 0, α(H1(B(t1), B

′(t1))) = 0. (23)

Using the similar method, for t ∈ (t1, t2], we get

α(B(t)) ≤2a(k1 + k2 + 2a∗ + 2b∗ + ak0k3 + 2ac∗k0)

∫ t

0

m(s)ds+

2a2k4h0

∫ a

0

m(s)ds + α(I1(B(t1), B
′(t1)))+

2L1α(B′(t1)) + aα(H1(B(t1), B
′(t1))) + 2aL′

1α(B′(t1)).

By (22) and (23), we know

α(B(t)) ≤2a(k1 + k2 + 2a∗ + 2b∗ + ak0k3 + 2ac∗k0)

∫ t

0

m(s)ds+

2a2k4h0

∫ a

0

m(s)ds. (24)

Similarly, we can obtain

α(B′(t)) ≤2(k1 + k2 + 2a∗ + 2b∗ + ak0k3 + 2ac∗k0)

∫ t

0

m(s)ds+
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2ak4h0

∫ a

0

m(s)ds. (25)

Together with (24) and (25), we get

m(s) ≤ M

∫ t

0

m(s)ds + N

∫ a

0

m(s)ds, ∀t ∈ J1,

where M, N are defined by (21). Thus, from Lemma 3, we have m(t) ≡ 0, ∀t ∈ J1. And so,

α(B(t2)) = α(B′(t2)) = 0.

By the continuity of I2, H2, we obtain

α(I2(B(t2), B
′(t2))) = 0, α(H2(B(t2), B

′(t2))) = 0.

Similarly to above, we can easily verify that α(B(t)) = 0, α(B′(t)) = 0, t ∈ Ji (i = 2, 3, . . . , m).

Hence, α(B) = 0, t ∈ J , which implies B is a relatively compact set in PC1[J, E]. From Lemma

6, A has a fixed point u∗ in [v0, ω0], i.e., IVP(1) has a solution in PC1[J, E]
⋂

C2[J ′, E]. The

proof is completed. 2

Remark 1 In this paper, we discussed the initial value problems for nonlinear second order

impulsive integro-differential equations of mixed type which contain impulses, therefore, the

conditions for the comparison result are different from those in [4].

Remark 2 We can let k4 = 0 where the IVP(1) does not include impulses and f does not

include Su, and the assumptions of (H2) hold for any k1 ≥ 0, k2 ≥ 0, k3 ≥ 0.
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