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Abstract The robust stability of uncertain linear neutral systems with discrete and distributed

delays is investigated. The uncertainties under consideration are norm bounded, and possibly

time varying. By means of the equivalent equation of zero in the derivative of the Lyapunov-

Krasovskii function, the proposed stability criteria are formulated in the form of a linear matrix

inequality and it is easy to check the robust stability of the considered systems. Numerical

examples demonstrate that the proposed criteria are effective.
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1. Introduction

The problem of stability of time-delay systems of neutral type has received considerable at-

tention in the last two decades[1]. Current efforts on this topic can be divided into two categories,

namely delay-independent stability criteria and delay-dependent stability criteria.

For linear time-delay systems of neutral type, some delay-independent stability conditions

were obtained. They were formulated in terms of matrix measure and matrix norm[1] or the

existence of a positive definite solution to an auxiliary algebraic Riccati matrix equation[3,4].

Although these conditions are easy to check, they required matrix measure to be negative or the

parameters to be tuned.

A model transformation technique is often used to transform the neutral system with dis-

crete delay to a neutral system with a distributed delay, and delay-dependent stability criteria are

obtained by employing Lyapunov-Krasovskii functionals[5−8]. These results are usually less con-

servative than the delay-independent stability ones. Some of these results are still conservative

since some model transformations will introduce additional dynamics as discussed in [9].

Recently, a new descriptor model transformation and a corresponding Lyapunov-Krasovskii

functional have been introduced for stability analysis of systems with delays as outlined in [10].

Received date: 2006-07-28; Accepted date: 2007-01-19



522 XIONG L L, ZHONG S M and TIAN J K

The advantage of this transformation is to transform the original system to an equivalent de-

scriptor form representation and will not introduce additional dynamics in the sense defined

in [9]. Although the results in [10] are less conservative than some existing ones, they can be

improved by employing the decomposition technique to get a larger bound for discrete delays.

However, inequality used in the proving process caused more conservative and the stability bound

of distributed delay was not given in [10].

In this paper, on the basis of the equivalent equation of the zero which is similiar to [11] in the

derivative of a Lyapunov-Krasovskii functional, we investigate the robust stability of uncertain

neutral systems with discrete and distributed delays. The robust stability problem of a considered

system is transformed into the existence of some symmetric positive-definite matrices and the free

weighting matrices. The stability criteria are formulated in the form of linear matrix inequalities

(LMIs). Some numerical examples demonstrate that the results obtained in this paper are

effective and are significant improvement over the existing criteria.

2. Problem statement

Consider the following linear neutral system with discrete and distributed delays:

ẋ(t) − Cẋ(t − h) = A(t)x(t) + B(t)x(t − r) + D(t)

∫ t

t−τ

x(s)ds, (1)

x(t0 + θ) = ϕ(θ), ∀θ ∈ [−max {h, r, τ} , 0], (2)

where x(t) ∈ Rn is the state, h > 0 is a constant neutral delay, r > 0 is a constant discrete delay,

τ > 0 is a constant distributed delay, ϕ(.) is a continuous vector valued initial function, C ∈ Rn×n

is a known constant matrix, and A(t) ∈ Rn×n, B(t) ∈ Rn×n, D(t) ∈ Rn×n are uncertain matrices,

not known completely, except for that they are within a compact set Ω which we will refer to as

the uncertainty set

(A(t), B(t), D(t)) ∈ Ω ⊂ Rn×3n for all t ∈ [0,∞). (3)

3. Main result

Define the operator D(xt) = x(t) − Cx(t − h). Throughout this paper, we assume that

A1. All the eigenvalues of matrix C are inside the unit circle.

A1 implies that the operator D(xt) is stable. For the stability of systems (1)–(2), we have

the following result.

Theorem 1 Under A1, the systems described by (1) and (2) are asymptotically stable if

there exist symmetric positive definite matrices P, R, Q1, Q2, Q3 and any appropriate dimensional
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matrices Nj(j = 1, . . . , 5) such that the following LMI holds:

φ =























φ11 φ12 φ13 φ14 φ15 φ16

φT
12 φ22 φ23 φ24 φ25 φ26

φT
13 φT

23 φ33 φ34 φ35 φ36

φT
14 φT

24 φT
34 φ44 φ45 φ46

φT
15 φT

25 φT
35 φT

45 φ55 φ56

φT
16 φT

26 φT
36 φT

46 φT
56 φ66























< 0, (4)

where

φ11 = AT(t)P + PA(t) + N1A(t) + AT(t)NT
1 + τQ1 + Q2 + Q3,

φ12 = PB(t) + AT(t)NT
2 + N1B(t), φ13 = −AT(t)PC + AT(t)NT

3 ,

φ14 = AT(t)NT
4 − N1, φ15 = AT(t)NT

5 + N1C, φ16 = τPD(t) + τN1D(t),

φ22 = −Q2 + N2B(t) + BT(t)NT
2 , φ23 = BT(t)NT

3 − BT(t)PC, φ24 = BT(t)NT
4 − N2,

φ25 = N2C + BT(t)NT
5 , φ26 = τN2D(t), φ33 = −Q3, φ34 = −N3, φ35 = N3C,

φ36 = τN3D(t) − τCTPD(t), φ44 = R − N4 − NT
4 , φ45 = N4C − NT

5 , φ46 = τN4D(t),

φ55 = −R + N5C + CTNT
5 , φ56 = τN5D(t), φ66 = −τQ1.

Proof Choose a Lyapunov-Krasovskii functional candidate for systems (1) as

V (t) = V1(t) + V2(t) + V3(t) + V4(t) + V5(t),

where

V1(t) = DT(xt)PD(xt), V2(t) =

∫ t

t−h

ẋT(s)Rẋ(s)ds,

V3(t) =

∫ 0

−τ

∫ t

t+θ

xT(s)Q1x(s)dsdθ, V4(t) =

∫ t

t−r

xT(s)Q2x(s)ds,

V5(t) =

∫ t

t−h

xT(s)Q3x(s)ds,

where P, R, Q1, Q2, Q3 are symmetric positive definite matrices. According to (1), for any ap-

propriate dimensional matrices Nj(j = 1, . . . , 5) one has

2{xT(t)N1 + xT(t − r)N2 + xT(t − h)N3 + ẋT(t)N4 + ẋT(t − h)N5}×

{A(t)x(t) + B(t)x(t − r) + D(t)

∫ t

t−τ

x(s)ds − ẋ(t) + Cẋ(t − h)} = 0. (5)

Using (5) and calculating the derivative along the solutions of systems of (1) yields

V̇ (t) =2
1

τ

∫ t

t−τ

{

xT(t)AT(t)Px(t) + xT(t − r)BT(t)Px(t) − xT(t)AT(t)PCx(t − h)−

xT(t − r)BT(t)PCx(t − h)
}

ds +
2

τ

∫ t

t−τ

xT(s)τDT(t)Px(t)ds+

2

τ

∫ t

t−τ

xT(s)τDT(t)PCx(t − h)ds +
1

τ

∫ t

t−τ

ẋT(t)Rẋ(t)ds−



524 XIONG L L, ZHONG S M and TIAN J K

1

τ

∫ t

t−τ

ẋT(t − h)Rẋ(t − h)ds +
1

τ

∫ t

t−τ

xT(t)τQ1x(t)ds −
1

τ

∫ t

t−τ

xT(s)τQ1x(s)ds+

1

τ

∫ t

t−τ

xT(t)Q2x(t)ds −
1

τ

∫ t

t−τ

xT(t − r)Q2x(t − r)ds +
1

τ

∫ t

t−τ

xT(t)Q3x(t)ds−

1

τ

∫ t

t−τ

xT(t − h)Q3x(t − h)ds + 2
{

xT(t) N1 + xT(t − r)N2 + xT(t − h)N3+

ẋT(t)N4 + ẋT(t − h)N5

}

× {A(t)x(t) + B(t)x(t − r) + D(t)

∫ t

t−τ

x(s)ds−

ẋ(t) + Cẋ(t − h)} =:
1

τ

∫ t

t−τ

ξTφξds,

where ξ = {xT(t) xT(t − r) xT(t − h) ẋT(t) ẋT(t − h) xT(s)}T and φ are defined in (4). If φ < 0

for any ξ 6= 0. This implies that both the systems (1) and (2) with stable operator D(xt) are

asymptotically stable by Theorem 9.8.1 in [1]. This completes the proof. 2

By Proposition 1, it is easy to obtain the following corollary for the nominal system of systems

(1)–(2), that is the system

ẋ(t) − Cẋ(t − h) = Ax(t) + Bx(t − r) + D

∫ t

t−τ

x(s)ds (6)

with the initial condition (2).

Corollary 1 Under A1, the systems described by (6) and (2) are asymptotically stable if there

exist symmetric positive definite matrices P, R, Q1, Q2, Q3 and any appropriate dimensional ma-

trices Nj(j = 1, . . . , 5) such that the following LMI holds:

φ0 =























φ11 φ12 φ13 φ14 φ15 φ16

φT
12 φ22 φ23 φ24 φ25 φ26

φT
13 φT

23 φ33 φ34 φ35 φ36

φT
14 φT

24 φT
34 φ44 φ45 φ46

φT
15 φT

25 φT
35 φT

45 φ55 φ56

φT
16 φT

26 φT
36 φT

46 φT
56 φ66























< 0, (7)

where

φ11 = ATP + PA + N1A + ATNT
1 + τQ1 + Q2 + Q3, φ12 = PB + ATNT

2 + N1B,

φ13 = −ATPC + ATNT
3 , φ14 = ATNT

4 − N1, φ15 = ATNT
5 + N1C,

φ16 = τPD + τN1D, φ22 = −Q2 + N2B + BTNT
2 , φ23 = BTNT

3 − BTPC,

φ24 = BTNT
4 − N2, φ25 = N2C + BTNT

5 , φ26 = τN2D, φ33 = −Q3,

φ34 = −N3, φ35 = N3C, φ36 = τN3D − τCTPD, φ44 = R − N4 − NT
4 ,

φ45 = N4C − NT
5 , φ46 = τN4D, φ55 = −R + N5C + CTNT

5 ,

φ56 = τN5D, φ66 = −τQ1.
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Now we consider the norm bounded uncertainty described by

A(t) = A + ∆A(t), B(t) = B + ∆B(t), D(t) = D + ∆D(t), (8)

where
[

∆A(t) ∆B(t) ∆D(t)
]

= LF (t)
[

Ea Eb Ed

]

, (9)

where F (t) ∈ Rp×q is an unknown real and possibly time-varying matrix with Lebesgue measur-

able elements satisfying

σmax(F (t)) ≤ 1 (10)

and L, Ea, Eb and Ed are known real constant matrices which characterize how the uncertainty

enters the nominal matrices A, B, D.

Now we state the following result.

Theorem 2 Under A1, the systems described by (1) and (2), with uncertainty described by (8)-

(10), are asymptotically stable if there exist symmetric positive definite matrices P̃ , R̃, Q̃1, Q̃2, Q̃3

and any appropriate dimensional matrices Ñj(j = 1, . . . , 5) such that the following LMI holds:

φ̃ =

































φ̃11 φ̃12 φ̃13 φ̃14 φ̃15 φ̃16 φ̃17 Ea

φ̃T
12 φ̃22 φ̃23 φ̃24 φ̃25 φ̃26 Ñ2L Eb

φ̃T
13 φ̃T

23 φ̃33 φ̃34 φ̃35 φ̃36 φ̃37 0

φ̃T
14 φ̃T

24 φ̃T
34 φ̃44 φ̃45 φ̃46 Ñ4L 0

φ̃T
15 φ̃T

25 φ̃T
35 φ̃T

45 φ̃55 φ̃56 Ñ5L 0

φ̃T
16 φ̃T

26 φ̃T
36 φ̃T

46 φ̃T
56 φ̃66 0 τEd

φ̃T
17 LTÑT

2 φ̃T
37 LTÑT

4 LTÑT
5 0 −I 0

ET
a ET

b 0 0 0 τET
d 0 −I

































< 0, (11)

where

φ̃11 = ATP̃ + P̃A + Ñ1A + ATÑT
1 + τQ̃1 + Q̃2 + Q̃3, φ̃12 = P̃B + ATÑT

2 + Ñ1B,

φ̃13 = −ATP̃C + ATÑT
3 , φ̃14 = ATÑT

4 − Ñ1, φ̃15 = ATÑ5 + Ñ1C,

φ̃16 = τP̃D + τÑ1D, φ̃17 = Ñ1L + P̃L, φ̃22 = −Q̃2 + Ñ2B + BTÑT
2 ,

φ̃23 = BTÑT
3 − BTP̃C, φ̃24 = BTÑT

4 − Ñ2, φ̃25 = Ñ2C + BTÑT
5 ,

φ̃26 = τÑ2D, φ̃33 = −Q̃3, φ̃34 = −Ñ3, φ̃35 = Ñ3C,

φ̃36 = τÑ3D − τCTP̃D, φ̃37 = Ñ3L − CTP̃L, φ̃44 = R̃ − Ñ4 − ÑT
4 ,

φ̃45 = Ñ4C − ÑT
5 , φ̃46 = τÑ4D, φ̃55 = −R̃ + Ñ5C + CTÑT

5 ,

φ̃56 = τÑ5D, φ̃66 = −τQ̃1, φ̃17 = Ñ1L + P̃L, φ̃37 = Ñ3L − CTP̃L.
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Proof φ̃ < 0 can be written as

φ0 +





















PL + N1L

N2L

N3L − C
T
PL

N4L

N5L

0





















F (t)( Ea Eb 0 0 0 τEd )+





















E
T

a

E
T

b

0

0

0

τE
T

d





















FT(t)( L
T
P + L

T
N

T

1 L
T
N

T

2 L
T
N

T

3 − L
T
PC L

T
N

T

4 L
T
N

T

5 0 ) < 0.

By Lemma 2.4 in [12], a sufficient condition for the above is

λφ0 + λ2





















PL + N1L

N2L

N3L − C
T
PL

N4L

N5L

0





















( L
T
P + L

T
N

T

1 L
T
N

T

2 L
T
N

T

3 − L
T
PC L

T
N

T

4 L
T
N

T

5 0 )+





















E
T

a

E
T

b

0

0

0

τE
T

d





















( Ea Eb 0 0 0 τEd ) < 0

for some λ > 0. Introducing the following new variables P̃ = λP, R̃ = λR, Q̃i = λQi (i = 1, . . . , 3),

Ñi = λNi (i = 1, . . . , 5) and using Schur’s complement [13] yields (11). 2

4. Examples

In this section, two numerical examples are presented to illustrate our result and gain the

distributed delay.

Example 1 Consider the following system

ẋ(t) − Cẋ(t − h) = A(t)x(t) + B(t)x(t − r) + D(t)

∫ t

t−τ

x(s)ds (12)

with

A =

(

−2 0

0 −2

)

, B =

(

−1 −0.2

0 −1

)

, C =

(

0.3 0

0 0.3

)

, D =

(

0.5 0

0 0.5

)

.
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Now we use the criterion in this paper to study the problem. The maximum value for the system

to be asymptotically stable is τmax = 1.7818.

Example 2 Consider the following system

ẋ(t) − Cẋ(t − h) = (A + ∆A(t))x(t) + (B + ∆B(t))x(t − r) + (D + ∆D(t))

∫ t

t−τ

x(s)ds (13)

with

A =

(

−2 0

0 −1

)

, B =

(

0 0.5

0.5 0

)

, C =

(

0.2 0

0 0.2

)

, D =

(

a 0

0 a

)

and ∆A(t), ∆B(t), ∆D(t) are unknown matrices satisfying ‖∆A(t)‖ ≤ α, ‖∆B(t)‖ ≤ α and

‖∆D(t)‖ ≤ α, α ≥ 0, ∀t. The above system is the form of (8)–(10) with L = αI and Ea = Eb =

Ed = I. For ∆A(t) = 0, ∆B(t) = 0, ∆D(t) = 0 and a = 0 the system has been described in [14],

where the discrete delay was given, but the allowable maximum bound of τ for the asymptotical

stability of system (13) was not indicated. Now we use our criterion in this paper on the system

(13) as a = 0.30, and we can get that the maximum for the system to be asymptotically stable

is τmax = 2.5363.

α 0.00 0.05 0.10 0.15 0.20 0.25

τ 2.5363 1.9126 1.4252 1.0461 0.7434 0.4942

Table 1: The maximal allowable delays τ of example2 for different values of α.

The effect of the uncertainty bound on the maximum time delay for stability τmax is also

studied. Table 1 illustrates the numerical results for different α. We can see that as α → 0, the

asymptotical stability limit for delay approaches the uncertainty-free case. As α increases, τmax

decreases.

5. Conclusion

The robust stability problem for uncertain neutral systems with discrete and distributed

delays has been investigated. Stability criteria have been obtained. Numerical examples have

shown that the results obtained in this paper are very effective.
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