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Abstract In this paper, we obtain the following normal criterion: Let F be a family of mero-
morphic functions in domain D C C, all of whose zeros have multiplicity k + 1 at least. If there
exist holomorphic functions a(z) not vanishing on D, such that for every function f(z) € F,
f(z) shares a(z) IM with L(f) on D, then F is normal on D, where L(f) is linear differential
polynomials of f(z) with holomorphic coefficients, and k is some positive numbers. We also
proved coressponding results on normal functions.
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1. Introduction and main results

Suppose that f(z) is meromorphic functions in plane domain D C C, and a is a complex
value, a € C. Let

Ef(a) ={f""(a)} N D = {z € D|f(z) = a}.
We say that f shares a IM with g in D if E¢(a) = E4(a).
Fang[! obtained the following result.

Theorem A Suppose that F is a family of meromorphic functions in plane domain D C C and
a is a nonzero complex value. For every function f € F, if f(z) # 0, and E¢(a) = E ) (a), then
F is normal in D, where k is a positive integer.

Fang and Zaleman!? extended Theorem A into the case that f(z) has mulitple zeros and

obtained the following result.

Theorem B Let F be a family of meromorphic functions in domain D C C, all of whose zeros
have multiplicity k + 1 at least. If for every function f € F, E¢(a) = E;u (b), a # 0 and b # 0,
then F is normal in D.

Suppose that a;(z)(i = 1,2,...,k) are analytic functions in D. Let

L(f) = ax(2) [P (2) + ar—1(2) fED () + - 4+ ar(2)f'(2).
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Then we call L(f) a linear differential polynomial about f with holomorphic coefficients.

In this paper, with the method similar to the one used by Fang and Zalecman in [2], allowing
functions f € F in Theorem A to have multiple zeros, we shall consider whether Theorem A still
holds when “f*)” is replaced by L(f) and the complex value a is also replaced by holomorphic

function a(z) which does not vanish in D, and obtain our first result as follows.

Theorem 1.1 Suppose that F is a family of functions meromorphic in plane domain D C C,
all of whose zeros have multiplicity k + 1 at least. If there exists a holomorphic function a(z) in
D, which does not vanish in D, such that E¢(a(z)) = Er(s)(a(z)), then F is normal in D, where
k is a positive integer and L(f) is a linear differential polynomial about f defined above.
Theorem 1.1 gives some abundant conditions on which F is normal when the linear differential
polynomial L(f) about f with holomorphic coefficients shares the holomorphic function a(z) IM

with f(z). For these conditions, we have the following notes:

Remark 1 The restrictions of multiple zeros of f(z) in Theorem 1.1 is essential. For example,
taking a family of functions!®!
e(n+)z _
n+1

a

F={fn(2)lfnlz) =

we can see that zeros of f(z) are simple and Ey, (a(z)) = Ey; (a(z)), but F is not normal in the

+aj,

unit disc A, here a is a nonzero finite complex number.

Remark 2 For a positive integer k, k > 2, and a family of F, F = {f,(2)|fn(z) = nF~12F"1e* n,
k € N}, it is clear that zeros of f,(z) have multiplicity k¥ — 1. Writing L(f,(2)) as a linear

differential polynomial,
k

L(fa(2)) =Y (=D CLf (2),

i=1

we have L(f,(2)) = fu(2), so fn(2) shares any a(z) IM with L(f,(z)), but F is not normal in A.
This also implies that the restrictions of zeros of f(z) in Theorem 1.1 is necessary for the case
k> 2.

Remark 3 The requirement of which holomorphic functions a(z) does not assume zero is
also necessary. For example, for a family F, F = {f.(2)|fn(z) = nkT12**1 n k € N}, and
holomorphic function a(z) = z, it is clear that all zeros of f,,(z) have multiplicity k& + 1, and
Ey, (a(2)) = ng’“) (a(2)), but F is not normal in A.

In fact, by the same method as used in the proof of Theorem 1.1, we may obtain a corre-

sponding result as follows.

Theorem 1.2 Let F be a family of functions meromorphic in plane domain D C C, all of whose
zeros have multiplicity k+1 at least, and let a(z) # 0 and b(z) # 0 be two holomorphic functions
which do not take zero value in D. If for every function f € F, E¢(a(z)) = Er5)(b(2)), then F
is normal in A, where k is a positive integer and L(f) is a linear differential polynomial about
f(2) defined above.
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For meromorphic functions f(z) in A, we call it a normal functions if there exists positive
numbers M > 0, such that (1—|z|)f#(z) < M for any z € C, where f#(2) = |f'(2)|/(1+|f(2)|?)
is a spherical derivative of f(z).

Suppose that there exists a property P of function families F in the plane domain D, with
which a family F is normal in D. Then for every function f € F, Pang and Bergweiler bring
forward whether f is normal function. In this paper, for the case that a(z) and coeflicients
of a linear differential polynomial L(f) about f(z) are constants, attaching a condition that
Er(0) C Ef(0), we obtain that function f(z) which satisfies the conditions in Theorem 1.1
or Theorem 1.2 must be a normal function. But it is valuable to consider whether the extra

condition E()(0) C Ef(0) is essential.

Theorem 1.3 Let f(z) be meromorphic function in A, all of whose zeros have mulitiplicity
k+1 at least, and Ep()(0) C Ef(0). Suppose that for nonzero complex numbers a # 0 and
b#0, Ef(a) = Epr(s)(b). Then f(2) is normal function in A. Where

L(f) = arf®(2) + ap_1 fE V() + - +ar f(2),

here a1, a9, .. .,a, are complex constants, a; # 0 and k is a positive integer with k > 2.

2. Some lemmas
To complete the proof of Theorem 1.1, we need some lemmas as follows.

Lemma 2.1% Let F be a family of meromorphic functions on the unit disc A, all of whose
zeroes have multiplicity at least k, and suppose there exists A > 1 such that |f*)(z)] < A
whenever f(z) =0, f € F. Then if F is not normal, there exist, for each 0 < a < k:

(a) A numberr,0<r <1;

(b) Points zp, |zn| <71;

(c) Functions f, € F, and

(d) Positive numbers p,, — 0 such that

fn(2n + pnf)
P

locally uniform with respect to the spherical metric, where g(§) is a nonconstant meromorphic

= gn(§) = 9(&)

function on C such that

g#(€) < g#(0) =kA+ 1.

Lemma 2.2 Suppose that R(z) is a nonconstant rational function, all of whose zeros have

multiplicity k + 1 at least. If for any nonzero complex constant b,b # 0, R%*)(z) # b, then
k) k+1
az+ 3
Where a, 3,0, are some complex constants, Y*T1k! = ab, ay # 0, |a| +|6| # 0, and k is a

positive integer.
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Lemma 2.3 Suppose that f(z) is a meromorphic function with finite orders, all of whose
zeros have multiplicity k + 1 at least. Then f*) (z) assumes any nonzero finite value b finite

times, where k is a positive integer.

Lemma 2.4[%7 Suppose that f(z) is a meromorphic function in the plane, and k is a positive
integer. If f(2)f®)(2) # 0, then f(z) = e®**# or f(2) = (az 4+ B)~™, where a # 0, 8 are two

complex numbers, and n is a positive integer.

3. Proofs of Theorems
3.1 Proof of Theorem 1.1

Suppose F is not normal at zg € A. Without loss of generality, we write zg = 0, then from
Lemma 2.1, there exist f,, € F, point sequences z,, — 0, and positive numbers p,, — 0%, such that
P frn(zn + pn(§)) locally uniformly converges on functions g(§) with respect to the spherical
metric, where g(£) is a nonconstant meromorphic function on C, whose spherical derivative
satisfies g7 (&) < g7 (0) = kA+1, that is, g(€) is of finite order. We may assert that the following
conclusion is true.

(i) All zeros of g(&) have multiplicity k + 1 at least;

i) g™(€) # 1

(iii) All poles of g(&) are multiple.

In fact, suppose that point & € C is a zero of g(§), g(&) = 0. Since g(§) is not identical
constant, there exists &, such that g,(£,) = p,, % fu(2n + pn€) for n sufficiently large, that is,
frn(zn + pn&) = 0. Because all zeros of f have multiplicity & + 1 at least, fr(Lm) (zn + pn&) = 0,
m=1,2,..., k. Thus,

gim(€&) = p R FIM (2, + pn€) =0, m=1,2,... k.

Then g™ (&) = 0,m =1,2,...,k, that is, all zeros of g(¢) have multiplicity k + 1 at least. The
assertion (i) holds.

Suppose that there exists & € C such that g (&) = 1. Then ¢*¥) (&) # co. We can see
that ¢g*)(¢) is not identical constant 1. Otherwise, g(¥)(¢) = 1 for any ¢ € C. Therefore, g(€)
is a polynoimal about £ with degree k, all of whose zeros have multiplicity k& at most. This

contradicts the assertion (i). Again because of

L(fa) (20 + pn€) =ar(zn + pu€) f (20 + pn€) + -+ + a1(zn + pué) (20 + pu)

=ak(zn + Pa€)9n (zn + pu€) + -+ + a1 (za + pu8)py g1 (n + pu), (3.1)
we have that L(f)(z, + pn) — a(zn + pn€) — g*) (&) — 1 locally uniformly with respect to the
spherical metric. From Hurwitz Theorem, there exists &, — &y such that L(f)(z, + pnén) =
a(2n + pnén). Again from Ef(a(z)) = Erp)(a(z)), we deduce that f(2n + pnén) = a(zn + pnén),
that is,

9n(&n) = p;kfn(zn + pnén) = p;ka(zn + pnn)-

Thereby, g(£y) = oo, this contradicts that g(¥) (&) # oo, so the assertion (ii) holds.
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In the sequel, we shall prove that all poles of g(¢£) are multiple.
If there exists & (£ € C), such that g(£) = oo, then we shall deduce that (g(£)™1) |¢=¢,= 0.
Since g(§) is not identical oo, there exists a set K = {£ : | — &| < d} in which % and q%(g)

are holomorphic for n sufficiently large, and 7 1(5) uniformly converges to ﬁ. Therefore,

1 pk 1
_ — — —
gn(§)  alzn + pn§) 9(8)
with convergence being uniform in K. From $é 00, there exists &, in K, &, — &p, such that
In (gn) - pn (Zn +pn§n) =0forn SUfﬁmenﬂy large thus f(zn +pn§n) - a('zn +pn§n) Then

Writing

l(gn(g)) = ak(zn + Pnf)gslk) (5) + ak(zn + Pnf)ﬂngfzk) (5) +--+a (Zn + pnf) kg (6)7 (33)
1 1

0 = O o®

For the case k = 1, Theorem 1.1 is just Theorem A, so we omit the details. For the case
k=2, by (3.4), we have

= F,(€). (3.4)

g =~Fg (3.5)
g'(&) = —F"g> +2(F')’g°, F"=—g"g7* +2(F')%, (3.6)
thus I[(F) = a2 F" + a1pn F' = —1(9)g~2 + 2a2(F’)?g. Then we have

Hm 1(Fo(&) = lim [=1(gn)gy 2 + 2as(F.)2gn(£n)]

n—-+oo n—-+oo

= lim_ [a(zn + putn)gs” (€) + 202(F, ) gn(n)]

n—-+

= lim [2a2(F)%gn(8n)]-

From lim,,—, 1 o0 gn (&) = 00, we deduce that ¢'(£9)g2(&0) = limy— 4 00(9h,9,,2)% = 0, that is, &
is of multiple pole of ¢g(&) with order 2 at least.

For the case k > 3, from Equs. (3.5) and (3.6), and by mathematical inductive method, it
follows that

9" = —FWg® + Apsg® + Apag" + -+ + Arg® + (1) RI(F)FgH,

where Ay;(j = 1,2,..., k) are some polynomials about F’, F ... F*) Thus,

F® = —g®) =2 4 (1) FRNE g* 1 Apsg? + Apag® + - + Areg” 2. (3.7)
Setting By = —aiph ' F', By = (=1)"1(t + Dlagaph " (F) Y + g aiph i A pya, t =
1,2,...,k—2, by Equs. (3.3)—(3.7) and the above signs, we have
k—2
I(Fo) =1(g,") = —l(gn)g,” + (—1)*Klar(F)*gh™ + Y Bigh,. (3.8)

t=0
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Again by Equs. (3.1) and (3.2), Equ. (3.8) implies

U(Fn(&n)) = —a(zn + Pngn)ggz + (= ) Klay(F k k 14 Z Btgn

From lim,, 4 o0 gn(€,) = 00 and lim,,—, 4o Bo(&n) = Bo(&o) = 0, we have

k—2
. k k—2 —1
i I = T (D M)l 3 Bl o)

Therefore, we have

Jim (-1 ) klax(F') gk~ 2+ZBt9
Similarly, from lim,— .o B1(&:) = B1(&0), we have

L B )] = i (1) Max(F) g, 3+ZBtg lgn} = =Bi&).
Again by lim,,—, 4 o0 gn(€,) = 00, we also have
k—2

Jim (1) Klag(F) gl + Z Bigh?] =0

Going on with the similar duduction step by step, we have lim, . .o[(—1)*klay(F')¥] = 0.

Thereby, (971) |ezgy, = limp— 100 FlL(&,) = 0, that is, & is of multiple poles of g(¢£), thus the
assertion (iii) also holds.

Since g(&) is of finite order, by assertions (i) and (ii), and Lemma 2.3, we have that g(£) must
be nonconstant rational function. Again from Lemma 2.2, we deduce that g(£) only has simple
poles, which contradicts that all poles of g(¢) are multiple. This completes proof of Theorem
1.1, thus F is normal in D.

3.2 Proof of Theorem 1.3

If f(z) is not normal function in A, then there exists z,, |z,| < 1, such that lim, 4 (1 —
|20]) f# (21) = 00. Let f,,(2) = f(zn + (1 — |2a])2) and F = {f,}. By Marty’s criterion, it is not
difficult to see that F is not normal at z = 0. From Lemma 2.1, there exists point sequences

&n — 0, pp, — 0T, and one subsequence of F, still denoted {f,} for this subsequence, such that

9n(§) = fn(&n + pn&) = f(2n + (1 = [20])n + (1 = |2u]) pn€) — 9(§)

locally uniformly with respect to the spherical metric, where g(*) (€) is not identical zeros. Then
all zeros of g(£) have multiplicity k + 1 at least. We may assert that Fy(a) = E,u) (0) C E,(0).
(i) Eq4(a) = Ega (0).
Suppose that there exists & € C such that g(®) (&) = 0. Since
kg (€) + ar(1 = 2)pngd™0(€) + -+ a1 [(1 = |zul)pn] ™" 91,(€) = [(1 = |20])pn]" b
= [(1 = [2a)pn]" L(f) (20 + (1 = [2a])&n + (1 = [2a])pn€) — [(1 = [20])pn]" b — g*)(€)
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locally uniformly with respect to the spherical metric, and ¢g®*)(€) is not identically zero, by

Rouché Theorem, there exists point sequence ¢, — o, such that

[(1 = [znD)pn) L) (zn + (1= 20 + (1= [2a])pn&s) = [(1 = |20l b =0,
for n sufficiently large, that is, L(f)(zn + (1 — |2n|)&n + (1 = |20])pn&)) = b. Again from Ef(a) =
E1(5)(b), we have
gn(&3) = f(zn + (1 = [20])6n + (1 = [2a])pns) = a
Thus, g(&) = a, that is, B, (0) C Eg(a).
Similarly, suppose there exists £y € C such that g(§p) = a. Since

9n(§) —a= f(zn + (L = |2u))én + (1 = |2n])pné) —a — g(§) —a

locally uniformly with respect to the spherical metric, and g*)(¢) # 0, g(€) —a # 0. Then, from

Rouché Theorem we have that there exists point sequence &) — &, such that

9n(&n) —a= f(zn + (1 = [20))6n + (1 = |2a])pné;) —a =0

for n sufficiently large. Again from Ey(a) = Eps)(b), we have

L(f)(zn + (1= |zn))&n + (1 = |20])png;) =,

that is,

[(1 = [2n])on]" L) (zn + (1= [20))en + (1= |2a])pn&s) = [(1 = |2al)pn]" b.

Then g*) (&) = 0. This shows that Eg(a) C E ) (0), so the assertion (i) holds.

(ii) E,m (0) C E4(0).

By the same argument as the first part in proof of the assertion (i), suppose that there exists
¢o € C such that g (&) = 0. Since

arg (&) + ar(l = [2a))pngt(€) + - + a1 (L= zal)pal ™ 91,(6)

= [(1 = [2a)pal" L) (20 + (1 = |2a))&n + (1 = |2a])pn) — gM(€)

locally uniformly with respect to the spherical metric, where g*) (¢) # 0, and by Rouché Theorem,

we have that there exists point sequence & — &, such that

[(1 = [2n])n] L) (20 + (1= [20)n + (1= |2a])pn&s) = 0

for n sufficiently large. That is, L(f)(zn + (1 — |2n])&n + (1 — |2n])pn&;;) = 0.
From E(5)(0) C Ef(0), we may deduce that

gn(&n) = f(zn + (1 = |za))&n + (1 = [2n])pn€;) = 0.

Then g(&) = 0. Thereby, E,u (0) C E4(0), which shows that the assertion (ii) also holds.
From the above assertions that E4(a) = E,w (0) C E4(0) and all zeros of g(§) have multi-
plicity k 4 1 at least, we obtain g(®)(¢) # 0 and g(&) # 0.
Again from Ey(a) = E,u (0), we have g(§) # a. On the other hand, from Lemma 2.4, we
immediately obtain that the expression of g(¢) is either g(¢) = e®**# or g(¢) = (az + B3)7".
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Clearly, this contradicts (&) # a. Therefore, f(z) must be a normal function in A. So far, we

give the complete proof of Theorem 1.3.
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