Normality Family and Shared Functions by Meromorphic Functions and Its Differential Polynomials

LU Qian¹, LI Jin Dong²

- (1. College of Science, Southwest University of Science and Technology, Sichuan 621010, China;
- 2. College of Information Management, Chengdu University of Technology, Sichuan 610059, China) (E-mail: luqiankuo1965@hotmail.com)

Abstract In this paper, we obtain the following normal criterion: Let \mathcal{F} be a family of meromorphic functions in domain $D \subset \mathbf{C}$, all of whose zeros have multiplicity k+1 at least. If there exist holomorphic functions a(z) not vanishing on D, such that for every function $f(z) \in \mathcal{F}$, f(z) shares a(z) IM with L(f) on D, then \mathcal{F} is normal on D, where L(f) is linear differential polynomials of f(z) with holomorphic coefficients, and k is some positive numbers. We also proved coressponding results on normal functions.

Keywords meromorphic functions; differential polynomials; normal criterion; shared functions.

Document code A MR(2000) Subject Classification 30D35; 30D45 Chinese Library Classification O174.52

1. Introduction and main results

Suppose that f(z) is meromorphic functions in plane domain $D \subset \mathbb{C}$, and a is a complex value, $a \in \mathbb{C}$. Let

$$\overline{E}_f(a) = \{f^{-1}(a)\} \cap D = \{z \in D | f(z) = a\}.$$

We say that f shares a IM with g in D if $\overline{E}_f(a) = \overline{E}_g(a)$.

Fang^[1] obtained the following result.

Theorem A Suppose that \mathcal{F} is a family of meromorphic functions in plane domain $D \subset \mathbf{C}$ and a is a nonzero complex value. For every function $f \in \mathcal{F}$, if $f(z) \neq 0$, and $\overline{E}_f(a) = \overline{E}_{f^{(k)}}(a)$, then \mathcal{F} is normal in D, where k is a positive integer.

Fang and Zalcman^[2] extended Theorem A into the case that f(z) has mulitple zeros and obtained the following result.

Theorem B Let \mathcal{F} be a family of meromorphic functions in domain $D \subset \mathbb{C}$, all of whose zeros have multiplicity k+1 at least. If for every function $f \in \mathcal{F}$, $\overline{E}_f(a) = \overline{E}_{f^{(k)}}(b)$, $a \neq 0$ and $b \neq 0$, then \mathcal{F} is normal in D.

Suppose that $a_i(z)(i=1,2,\ldots,k)$ are analytic functions in D. Let

$$L(f) = a_k(z)f^{(k)}(z) + a_{k-1}(z)f^{(k-1)}(z) + \dots + a_1(z)f'(z).$$

Received date: 2006-05-16; Accepted date: 2007-03-23

Foundation item: the "11.5" Research & Study Programe of SWUST (No. 06zx2116).

Then we call L(f) a linear differential polynomial about f with holomorphic coefficients.

In this paper, with the method similar to the one used by Fang and Zalcman in [2], allowing functions $f \in \mathcal{F}$ in Theorem A to have multiple zeros, we shall consider whether Theorem A still holds when " $f^{(k)}$ " is replaced by L(f) and the complex value a is also replaced by holomorphic function a(z) which does not vanish in D, and obtain our first result as follows.

Theorem 1.1 Suppose that \mathcal{F} is a family of functions meromorphic in plane domain $D \subset \mathbf{C}$, all of whose zeros have multiplicity k+1 at least. If there exists a holomorphic function a(z) in D, which does not vanish in D, such that $\overline{E}_f(a(z)) = \overline{E}_{L(f)}(a(z))$, then \mathcal{F} is normal in D, where k is a positive integer and L(f) is a linear differential polynomial about f defined above.

Theorem 1.1 gives some abundant conditions on which \mathcal{F} is normal when the linear differential polynomial L(f) about f with holomorphic coefficients shares the holomorphic function a(z) IM with f(z). For these conditions, we have the following notes:

Remark 1 The restrictions of multiple zeros of f(z) in Theorem 1.1 is essential. For example, taking a family of functions^[3]

$$\mathcal{F} = \{ f_n(z) | f_n(z) = \frac{e^{(n+1)z} - a}{n+1} + a \},$$

we can see that zeros of $f_n(z)$ are simple and $\overline{E}_{f_n}(a(z)) = \overline{E}_{f'_n}(a(z))$, but \mathcal{F} is not normal in the unit disc Δ , here a is a nonzero finite complex number.

Remark 2 For a positive integer $k, k \geq 2$, and a family of \mathcal{F} , $\mathcal{F} = \{f_n(z)|f_n(z) = n^{k-1}z^{k-1}e^z, n, k \in \mathbb{N}\}$, it is clear that zeros of $f_n(z)$ have multiplicity k-1. Writing $L(f_n(z))$ as a linear differential polynomial,

$$L(f_n(z)) = \sum_{i=1}^k (-1)^{k-i} C_k^i f_n^{(i)}(z),$$

we have $L(f_n(z)) \equiv f_n(z)$, so $f_n(z)$ shares any a(z) IM with $L(f_n(z))$, but \mathcal{F} is not normal in Δ . This also implies that the restrictions of zeros of f(z) in Theorem 1.1 is necessary for the case $k \geq 2$.

Remark 3 The requirement of which holomorphic functions a(z) does not assume zero is also necessary. For example, for a family \mathcal{F} , $\mathcal{F} = \{f_n(z)|f_n(z) = n^{k+1}z^{k+1}, n, k \in \mathbb{N}\}$, and holomorphic function a(z) = z, it is clear that all zeros of $f_n(z)$ have multiplicity k+1, and $\overline{E}_{f_n}(a(z)) = \overline{E}_{f_n^{(k)}}(a(z))$, but \mathcal{F} is not normal in Δ .

In fact, by the same method as used in the proof of Theorem 1.1, we may obtain a corresponding result as follows.

Theorem 1.2 Let \mathcal{F} be a family of functions meromorphic in plane domain $D \subset \mathbb{C}$, all of whose zeros have multiplicity k+1 at least, and let $a(z) \neq 0$ and $b(z) \neq 0$ be two holomorphic functions which do not take zero value in D. If for every function $f \in \mathcal{F}$, $\overline{E}_f(a(z)) = \overline{E}_{L(f)}(b(z))$, then \mathcal{F} is normal in Δ , where k is a positive integer and L(f) is a linear differential polynomial about f(z) defined above.

For meromorphic functions f(z) in Δ , we call it a normal functions if there exists positive numbers M > 0, such that $(1-|z|)f^{\#}(z) \leq M$ for any $z \in \mathbb{C}$, where $f^{\#}(z) = |f'(z)|/(1+|f(z)|^2)$ is a spherical derivative of f(z).

Suppose that there exists a property P of function families \mathcal{F} in the plane domain D, with which a family \mathcal{F} is normal in D. Then for every function $f \in \mathcal{F}$, Pang and Bergweiler bring forward whether f is normal function. In this paper, for the case that a(z) and coefficients of a linear differential polynomial L(f) about f(z) are constants, attaching a condition that $\overline{E}_{L(f)}(0) \subset \overline{E}_f(0)$, we obtain that function f(z) which satisfies the conditions in Theorem 1.1 or Theorem 1.2 must be a normal function. But it is valuable to consider whether the extra condition $\overline{E}_{L(f)}(0) \subset \overline{E}_f(0)$ is essential.

Theorem 1.3 Let f(z) be meromorphic function in Δ , all of whose zeros have mulitiplicity k+1 at least, and $\overline{E}_{L(f)}(0) \subset \overline{E}_f(0)$. Suppose that for nonzero complex numbers $a \neq 0$ and $b \neq 0$, $\overline{E}_f(a) = \overline{E}_{L(f)}(b)$. Then f(z) is normal function in Δ . Where

$$L(f) = a_k f^{(k)}(z) + a_{k-1} f^{(k-1)}(z) + \dots + a_1 f'(z),$$

here a_1, a_2, \ldots, a_k are complex constants, $a_k \neq 0$ and k is a positive integer with $k \geq 2$.

2. Some lemmas

To complete the proof of Theorem 1.1, we need some lemmas as follows.

Lemma 2.1^[4] Let \mathcal{F} be a family of meromorphic functions on the unit disc Δ , all of whose zeroes have multiplicity at least k, and suppose there exists $A \geq 1$ such that $|f^{(k)}(z)| \leq A$ whenever f(z) = 0, $f \in \mathcal{F}$. Then if \mathcal{F} is not normal, there exist, for each $0 \leq \alpha \leq k$:

- (a) A number r, 0 < r < 1;
- (b) Points z_n , $|z_n| < r$;
- (c) Functions $f_n \in \mathcal{F}$, and
- (d) Positive numbers $\rho_n \to 0$ such that

$$\frac{f_n(z_n + \rho_n \xi)}{\rho_n^{\alpha}} = g_n(\xi) \to g(\xi)$$

locally uniform with respect to the spherical metric, where $g(\xi)$ is a nonconstant meromorphic function on \mathbf{C} such that

$$q^{\#}(\xi) < q^{\#}(0) = kA + 1.$$

Lemma 2.2^[3] Suppose that R(z) is a nonconstant rational function, all of whose zeros have multiplicity k+1 at least. If for any nonzero complex constant $b, b \neq 0$, $R^{(k)}(z) \neq b$, then

$$R(z) = \frac{(\gamma z + \delta)^{k+1}}{\alpha z + \beta}.$$

Where $\alpha, \beta, \delta, \gamma$ are some complex constants, $\gamma^{k+1}k! = \alpha b$, $\alpha \gamma \neq 0$, $|\alpha| + |\delta| \neq 0$, and k is a positive integer.

Lemma 2.3^[5] Suppose that f(z) is a meromorphic function with finite orders, all of whose zeros have multiplicity k + 1 at least. Then $f^{(k)}(z)$ assumes any nonzero finite value b finite times, where k is a positive integer.

Lemma 2.4^[6,7] Suppose that f(z) is a meromorphic function in the plane, and k is a positive integer. If $f(z)f^{(k)}(z) \neq 0$, then $f(z) = e^{\alpha z + \beta}$ or $f(z) = (\alpha z + \beta)^{-n}$, where $\alpha \neq 0$, β are two complex numbers, and n is a positive integer.

3. Proofs of Theorems

3.1 Proof of Theorem 1.1

Suppose \mathcal{F} is not normal at $z_0 \in \Delta$. Without loss of generality, we write $z_0 = 0$, then from Lemma 2.1, there exist $f_n \in \mathcal{F}$, point sequences $z_n \to 0$, and positive numbers $\rho_n \to 0^+$, such that $\rho_n^{-\alpha} f_n(z_n + \rho_n(\xi))$ locally uniformly converges on functions $g(\xi)$ with respect to the spherical metric, where $g(\xi)$ is a nonconstant meromorphic function on \mathbb{C} , whose spherical derivative satisfies $g^{\#}(\xi) \leq g^{\#}(0) = kA + 1$, that is, $g(\xi)$ is of finite order. We may assert that the following conclusion is true.

- (i) All zeros of $g(\xi)$ have multiplicity k+1 at least;
- (ii) $g^{(k)}(\xi) \neq 1$;
- (iii) All poles of $g(\xi)$ are multiple.

In fact, suppose that point $\xi_0 \in \mathbf{C}$ is a zero of $g(\xi)$, $g(\xi_0) = 0$. Since $g(\xi)$ is not identical constant, there exists ξ_n such that $g_n(\xi_n) = \rho_n^{-k} f_n(z_n + \rho_n \xi)$ for n sufficiently large, that is, $f_n(z_n + \rho_n \xi) = 0$. Because all zeros of f have multiplicity k + 1 at least, $f_n^{(m)}(z_n + \rho_n \xi) = 0$, m = 1, 2, ..., k. Thus,

$$g_n^{(m)}(\xi) = \rho_n^{m-k} f_n^{(m)}(z_n + \rho_n \xi) = 0, \quad m = 1, 2, \dots, k.$$

Then $g^{(m)}(\xi_0) = 0, m = 1, 2, ..., k$, that is, all zeros of $g(\xi)$ have multiplicity k + 1 at least. The assertion (i) holds.

Suppose that there exists $\xi_0 \in \mathbf{C}$ such that $g^{(k)}(\xi_0) = 1$. Then $g^{(k)}(\xi_0) \neq \infty$. We can see that $g^{(k)}(\xi)$ is not identical constant 1. Otherwise, $g^{(k)}(\xi) \equiv 1$ for any $\xi \in \mathbf{C}$. Therefore, $g(\xi)$ is a polynoimal about ξ with degree k, all of whose zeros have multiplicity k at most. This contradicts the assertion (i). Again because of

$$L(f_n)(z_n + \rho_n \xi) = a_k(z_n + \rho_n \xi) f_n^{(k)}(z_n + \rho_n \xi) + \dots + a_1(z_n + \rho_n \xi) f_n'(z_n + \rho_n \xi)$$
$$= a_k(z_n + \rho_n \xi) g_n^{(k)}(z_n + \rho_n \xi) + \dots + a_1(z_n + \rho_n \xi) \rho_n^{k-1} g_n'(z_n + \rho_n \xi), \quad (3.1)$$

we have that $L(f)(z_n + \rho_n \xi) - a(z_n + \rho_n \xi) \to g^{(k)}(\xi) - 1$ locally uniformly with respect to the spherical metric. From Hurwitz Theorem, there exists $\xi_n \to \xi_0$ such that $L(f)(z_n + \rho_n \xi_n) = a(z_n + \rho_n \xi_n)$. Again from $\overline{E}_f(a(z)) = \overline{E}_{L(f)}(a(z))$, we deduce that $f_n(z_n + \rho_n \xi_n) = a(z_n + \rho_n \xi_n)$, that is,

$$g_n(\xi_n) = \rho_n^{-k} f_n(z_n + \rho_n \xi_n) = \rho_n^{-k} a(z_n + \rho_n \xi_n).$$

Thereby, $g(\xi_0) = \infty$, this contradicts that $g^{(k)}(\xi_0) \neq \infty$, so the assertion (ii) holds.

In the sequel, we shall prove that all poles of $g(\xi)$ are multiple.

If there exists ξ_0 ($\xi_0 \in \mathbf{C}$), such that $g(\xi_0) = \infty$, then we shall deduce that $(g(\xi)^{-1})'|_{\xi=\xi_0} = 0$. Since $g(\xi)$ is not identical ∞ , there exists a set $K = \{\xi : |\xi - \xi_0| < \delta\}$ in which $\frac{1}{g(\xi)}$ and $\frac{1}{g_n(\xi)}$ are holomorphic for n sufficiently large, and $\frac{1}{g_n(\xi)}$ uniformly converges to $\frac{1}{g(\xi)}$. Therefore,

$$\frac{1}{g_n(\xi)} - \frac{\rho_n^k}{a(z_n + \rho_n \xi)^{-1}} \longrightarrow \frac{1}{g(\xi)}$$

with convergence being uniform in K. From $\frac{1}{g(\xi)} \not\equiv \infty$, there exists ξ_n in K, $\xi_n \to \xi_0$, such that $g_n(\xi_n)^{-1} - \rho_n^k a(z_n + \rho_n \xi_n)^{-1} = 0$ for n sufficiently large, thus $f(z_n + \rho_n \xi_n) = a(z_n + \rho_n \xi_n)$. Then

$$L(f_n)(z_n + \rho_n \xi_n) = a(z_n + \rho_n \xi_n). \tag{3.2}$$

Writing

$$l(g_n(\xi)) = a_k(z_n + \rho_n \xi) g_n^{(k)}(\xi) + a_k(z_n + \rho_n \xi) \rho_n g_n^{(k)}(\xi) + \dots + a_1(z_n + \rho_n \xi) \rho_n^{k-1} g_n'(\xi), \quad (3.3)$$

$$\frac{1}{g(\xi)} \equiv F(\xi), \quad \frac{1}{g_n(\xi)} \equiv F_n(\xi). \tag{3.4}$$

For the case k = 1, Theorem 1.1 is just Theorem A, so we omit the details. For the case k = 2, by (3.4), we have

$$g'(\xi) = -F'g^2, (3.5)$$

$$g''(\xi) = -F''g^2 + 2(F')^2g^3, \quad F'' = -g''g^{-2} + 2(F')^2g,$$
 (3.6)

thus $l(F) = a_2 F'' + a_1 \rho_n F' = -l(g)g^{-2} + 2a_2(F')^2 g$. Then we have

$$\lim_{n \to +\infty} l(F_n(\xi_n)) = \lim_{n \to +\infty} [-l(g_n)g_n^{-2} + 2a_2(F_n')^2 g_n(\xi_n)]$$

$$= \lim_{n \to +\infty} [a(z_n + \rho_n \xi_n)g_n^{-2}(\xi_n) + 2a_2(F_n')^2 g_n(\xi_n)]$$

$$= \lim_{n \to +\infty} [2a_2(F_n')^2 g_n(\xi_n)].$$

From $\lim_{n\to+\infty} g_n(\xi_n) = \infty$, we deduce that $g'(\xi_0)g^{-2}(\xi_0) = \lim_{n\to+\infty} (g'_ng_n^{-2})^2 = 0$, that is, ξ_0 is of multiple pole of $g(\xi)$ with order 2 at least.

For the case $k \geq 3$, from Equs. (3.5) and (3.6), and by mathematical inductive method, it follows that

$$g^{(k)} = -F^{(k)}g^2 + A_{k3}g^3 + A_{k4}g^4 + \dots + A_{kk}g^k + (-1)^k k! (F')^k g^{k+1},$$

where $A_{kj}(j=1,2,\ldots,k)$ are some polynomials about $F',F'',\ldots,F^{(k)}$. Thus,

$$F^{(k)} = -g^{(k)}g^{-2} + (-1)^k k! (F')^k g^{k-1} A_{k3}g^1 + A_{k4}g^2 + \dots + A_{kk}g^{k-2}.$$
(3.7)

Setting $B_0 = -a_1 \rho_n^{k-1} F'$, $B_t = (-1)^{t+1} (t+1)! a_{t+1} \rho_n^{k-t-1} (F')^{t+1} + \sum_{i=3}^k a_i \rho_n^{k-i} A_{i,t+2}$, t = 1, 2, ..., k-2, by Equs. (3.3)–(3.7) and the above signs, we have

$$l(F_n) = l(g_n^{-1}) = -l(g_n)g_n^{-2} + (-1)^k k! a_k (F')^k g_n^{k-1} + \sum_{t=0}^{k-2} B_t g_n^t.$$
(3.8)

Again by Equs. (3.1) and (3.2), Equ. (3.8) implies

$$l(F_n(\xi_n)) = -a(z_n + \rho_n \xi_n) g_n^{-2} + (-1)^k k! a_k(F')^k g_n^{k-1} + \sum_{t=0}^{k-2} B_t g_n^t.$$

From $\lim_{n\to+\infty} g_n(\xi_n) = \infty$ and $\lim_{n\to+\infty} B_0(\xi_n) = B_0(\xi_0) = 0$, we have

$$\lim_{n \to +\infty} [l(F_n(\xi_n))] = \lim_{n \to +\infty} \left\{ [(-1)^k k! a_k(F')^k g_n^{k-2} + \sum_{t=1}^{k-2} B_t g_n^{t-1}] g_n \right\}.$$

Therefore, we have

$$\lim_{n \to +\infty} [(-1)^k k! a_k (F')^k g_n^{k-2} + \sum_{t=1}^{k-2} B_t g_n^{t-1}] = 0.$$

Similarly, from $\lim_{n\to+\infty} B_1(\xi_n) = B_1(\xi_0)$, we have

$$\lim_{n \to +\infty} [l(F_n(\xi_n))] = \lim_{n \to +\infty} \left\{ [(-1)^k k! a_k(F')^k g_n^{k-3} + \sum_{t=2}^{k-2} B_t g_n^{t-2}] g_n \right\} = -B_1(\xi_0).$$

Again by $\lim_{n\to+\infty} g_n(\xi_n) = \infty$, we also have

$$\lim_{n \to +\infty} [(-1)^k k! a_k (F')^k g_n^{k-3} + \sum_{t=2}^{k-2} B_t g_n^{t-2}] = 0.$$

Going on with the similar duduction step by step, we have $\lim_{n\to+\infty}[(-1)^kk!a_k(F')^k]=0$. Thereby, $(g^{-1})'|_{\xi=\xi_0}=\lim_{n\to+\infty}F'_n(\xi_n)=0$, that is, ξ_0 is of multiple poles of $g(\xi)$, thus the assertion (iii) also holds.

Since $g(\xi)$ is of finite order, by assertions (i) and (ii), and Lemma 2.3, we have that $g(\xi)$ must be nonconstant rational function. Again from Lemma 2.2, we deduce that $g(\xi)$ only has simple poles, which contradicts that all poles of $g(\xi)$ are multiple. This completes proof of Theorem 1.1, thus \mathcal{F} is normal in D.

3.2 Proof of Theorem 1.3

If f(z) is not normal function in Δ , then there exists z_n , $|z_n| < 1$, such that $\lim_{n \to +\infty} (1 - |z_n|) f^{\#}(z_n) = \infty$. Let $f_n(z) = f(z_n + (1 - |z_n|)z)$ and $\mathcal{F} = \{f_n\}$. By Marty's criterion, it is not difficult to see that \mathcal{F} is not normal at z = 0. From Lemma 2.1, there exists point sequences $\xi_n \to 0$, $\rho_n \to 0^+$, and one subsequence of \mathcal{F} , still denoted $\{f_n\}$ for this subsequence, such that

$$q_n(\xi) = f_n(\xi_n + \rho_n \xi) = f(z_n + (1 - |z_n|)\xi_n + (1 - |z_n|)\rho_n \xi) \rightarrow q(\xi)$$

locally uniformly with respect to the spherical metric, where $g^{(k)}(\xi)$ is not identical zeros. Then all zeros of $g(\xi)$ have multiplicity k+1 at least. We may assert that $\overline{E}_g(a) = \overline{E}_{g^{(k)}}(0) \subset \overline{E}_g(0)$.

(i)
$$\overline{E}_g(a) = \overline{E}_{g^{(k)}}(0)$$
.

Suppose that there exists $\xi_0 \in \mathbf{C}$ such that $g^{(k)}(\xi_0) = 0$. Since

$$a_k g_n^{(k)}(\xi) + a_k (1 - |z_n|) \rho_n g_n^{(k-1)}(\xi) + \dots + a_1 \left[(1 - |z_n|) \rho_n \right]^{k-1} g_n'(\xi) - \left[(1 - |z_n|) \rho_n \right]^k b$$

$$= \left[(1 - |z_n|) \rho_n \right]^k L(f) (z_n + (1 - |z_n|) \xi_n + (1 - |z_n|) \rho_n \xi) - \left[(1 - |z_n|) \rho_n \right]^k b \longrightarrow g^{(k)}(\xi)$$

547

locally uniformly with respect to the spherical metric, and $g^{(k)}(\xi)$ is not identically zero, by Rouché Theorem, there exists point sequence $\xi_n^* \to \xi_0$, such that

$$[(1-|z_n|)\rho_n]^k L(f)(z_n+(1-|z_n|)\xi_n+(1-|z_n|)\rho_n\xi_n^*)-[(1-|z_n|)\rho_n]^k b=0,$$

for n sufficiently large, that is, $L(f)(z_n + (1 - |z_n|)\xi_n + (1 - |z_n|)\rho_n\xi_n^*) = b$. Again from $\overline{E}_f(a) = \overline{E}_{L(f)}(b)$, we have

$$g_n(\xi_n^*) = f(z_n + (1 - |z_n|)\xi_n + (1 - |z_n|)\rho_n\xi_n^*) = a.$$

Thus, $g(\xi_0) = a$, that is, $\overline{E}_{g^{(k)}}(0) \subset \overline{E}_g(a)$.

Similarly, suppose there exists $\xi_0 \in \mathbf{C}$ such that $g(\xi_0) = a$. Since

$$g_n(\xi) - a = f(z_n + (1 - |z_n|)\xi_n + (1 - |z_n|)\rho_n\xi) - a \to g(\xi) - a$$

locally uniformly with respect to the spherical metric, and $g^{(k)}(\xi) \not\equiv 0$, $g(\xi) - a \not\equiv 0$. Then, from Rouché Theorem we have that there exists point sequence $\xi_n^* \to \xi_0$, such that

$$g_n(\xi_n^*) - a = f(z_n + (1 - |z_n|)\xi_n + (1 - |z_n|)\rho_n\xi_n^*) - a = 0$$

for n sufficiently large. Again from $\overline{E}_f(a) = \overline{E}_{L(f)}(b)$, we have

$$L(f)(z_n + (1 - |z_n|)\xi_n + (1 - |z_n|)\rho_n\xi_n^*) = b,$$

that is,

$$[(1-|z_n|)\rho_n]^k L(f)(z_n+(1-|z_n|)\xi_n+(1-|z_n|)\rho_n\xi_n^*) = [(1-|z_n|)\rho_n]^k b.$$

Then $g^{(k)}(\xi_0) = 0$. This shows that $\overline{E}_q(a) \subset \overline{E}_{q^{(k)}}(0)$, so the assertion (i) holds.

(ii)
$$\overline{E}_{g^{(k)}}(0) \subset \overline{E}_g(0)$$
.

By the same argument as the first part in proof of the assertion (i), suppose that there exists $\xi_0 \in \mathbf{C}$ such that $g^{(k)}(\xi_0) = 0$. Since

$$a_k g_n^{(k)}(\xi) + a_k (1 - |z_n|) \rho_n g_n^{(k-1)}(\xi) + \dots + a_1 \left[(1 - |z_n|) \rho_n \right]^{k-1} g_n'(\xi)$$

= $\left[(1 - |z_n|) \rho_n \right]^k L(f) (z_n + (1 - |z_n|) \xi_n + (1 - |z_n|) \rho_n \xi) \longrightarrow g^{(k)}(\xi)$

locally uniformly with respect to the spherical metric, where $g^{(k)}(\xi) \not\equiv 0$, and by Rouché Theorem, we have that there exists point sequence $\xi_n^* \to \xi_0$, such that

$$[(1-|z_n|)\rho_n]^k L(f)(z_n+(1-|z_n|)\xi_n+(1-|z_n|)\rho_n\xi_n^*)=0$$

for n sufficiently large. That is, $L(f)(z_n + (1 - |z_n|)\xi_n + (1 - |z_n|)\rho_n\xi_n^*) = 0$.

From $\overline{E}_{L(f)}(0) \subset \overline{E}_f(0)$, we may deduce that

$$g_n(\xi_n^*) = f(z_n + (1 - |z_n|)\xi_n + (1 - |z_n|)\rho_n\xi_n^*) = 0.$$

Then $g(\xi_0) = 0$. Thereby, $\overline{E}_{g^{(k)}}(0) \subset \overline{E}_g(0)$, which shows that the assertion (ii) also holds.

From the above assertions that $\overline{E}_g(a) = \overline{E}_{g^{(k)}}(0) \subset \overline{E}_g(0)$ and all zeros of $g(\xi)$ have multiplicity k+1 at least, we obtain $g^{(k)}(\xi) \neq 0$ and $g(\xi) \neq 0$.

Again from $\overline{E}_g(a) = \overline{E}_{g^{(k)}}(0)$, we have $g(\xi) \neq a$. On the other hand, from Lemma 2.4, we immediately obtain that the expression of $g(\xi)$ is either $g(\xi) = e^{\alpha z + \beta}$ or $g(\xi) = (\alpha z + \beta)^{-n}$.

Clearly, this contradicts $g(\xi) \neq a$. Therefore, f(z) must be a normal function in Δ . So far, we give the complete proof of Theorem 1.3.

Acknowledgment The authors thank the referee for his/her thorough review and valuable suggestions towards improvement of the paper.

References

- [1] FANG Mingliang. A note on sharing values and normality [J]. J. Math. Study, 1996, 29(4): 29–32.
- [2] FANG Mingliang, ZALCMAN L. Normality of meromorphic functions with multiple zeros and shared values
 [J] J. Math. Anal. Appl., 2003, 277: 190–198.
- [3] WANG Yuefei, FANG Mingliang. Picard values and normal families of meromorphic functions with multiple zeros [J]. Acta Math. Sinica (N.S.), 1998, 14(1): 17–26.
- [4] PANG Xuecheng, ZALCMAN L. Normal families and shared values [J]. Bull. London Math. Soc., 2000, 32(3): 325–331.
- [5] BERGWEILER W, EREMENKO A. On the singularities of the inverse to a meromorphic function of finite order [J]. Rev. Mat. Iberoamericana, 1995, 11(2): 355–373.
- [6] FRANK G. Eine Vermutung von Hayman ü ber Nullstellen meromorpher Funktionen [J]. Math. Z., 1976, 149(1): 29–36. (in German)
- [7] LANGLEY J K. Proof of a conjecture of Hayman concerning f and f [J]. J. London Math. Soc. (2), 1993, 48(3): 500-514.