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Abstract In this paper, we obtain the following normal criterion: Let F be a family of mero-

morphic functions in domain D ⊂ C, all of whose zeros have multiplicity k + 1 at least. If there

exist holomorphic functions a(z) not vanishing on D, such that for every function f(z) ∈ F ,

f(z) shares a(z) IM with L(f) on D, then F is normal on D, where L(f) is linear differential

polynomials of f(z) with holomorphic coefficients, and k is some positive numbers. We also

proved coressponding results on normal functions.
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1. Introduction and main results

Suppose that f(z) is meromorphic functions in plane domain D ⊂ C, and a is a complex

value, a ∈ C. Let

Ef (a) = {f−1(a)} ∩ D = {z ∈ D|f(z) = a}.

We say that f shares a IM with g in D if Ef (a) = Eg(a).

Fang[1] obtained the following result.

Theorem A Suppose that F is a family of meromorphic functions in plane domain D ⊂ C and

a is a nonzero complex value. For every function f ∈ F , if f(z) 6= 0, and Ef (a) = Ef(k)(a), then

F is normal in D, where k is a positive integer.

Fang and Zalcman[2] extended Theorem A into the case that f(z) has mulitple zeros and

obtained the following result.

Theorem B Let F be a family of meromorphic functions in domain D ⊂ C, all of whose zeros

have multiplicity k + 1 at least. If for every function f ∈ F , Ef (a) = Ef(k)(b), a 6= 0 and b 6= 0,

then F is normal in D.

Suppose that ai(z)(i = 1, 2, . . . , k) are analytic functions in D. Let

L(f) = ak(z)f (k)(z) + ak−1(z)f (k−1)(z) + · · · + a1(z)f ′(z).
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Then we call L(f) a linear differential polynomial about f with holomorphic coefficients.

In this paper, with the method similar to the one used by Fang and Zalcman in [2], allowing

functions f ∈ F in Theorem A to have multiple zeros, we shall consider whether Theorem A still

holds when “f (k)” is replaced by L(f) and the complex value a is also replaced by holomorphic

function a(z) which does not vanish in D, and obtain our first result as follows.

Theorem 1.1 Suppose that F is a family of functions meromorphic in plane domain D ⊂ C,

all of whose zeros have multiplicity k + 1 at least. If there exists a holomorphic function a(z) in

D, which does not vanish in D, such that Ef (a(z)) = EL(f)(a(z)), then F is normal in D, where

k is a positive integer and L(f) is a linear differential polynomial about f defined above.

Theorem 1.1 gives some abundant conditions on which F is normal when the linear differential

polynomial L(f) about f with holomorphic coefficients shares the holomorphic function a(z) IM

with f(z). For these conditions, we have the following notes:

Remark 1 The restrictions of multiple zeros of f(z) in Theorem 1.1 is essential. For example,

taking a family of functions[3]

F = {fn(z)|fn(z) =
e(n+1)z − a

n + 1
+ a},

we can see that zeros of fn(z) are simple and Efn
(a(z)) = Ef ′

n
(a(z)), but F is not normal in the

unit disc ∆, here a is a nonzero finite complex number.

Remark 2 For a positive integer k, k ≥ 2, and a family of F , F = {fn(z)|fn(z) = nk−1zk−1ez, n,

k ∈ N}, it is clear that zeros of fn(z) have multiplicity k − 1. Writing L(fn(z)) as a linear

differential polynomial,

L(fn(z)) =

k
∑

i=1

(−1)k−iCi
kf (i)

n (z),

we have L(fn(z)) ≡ fn(z), so fn(z) shares any a(z) IM with L(fn(z)), but F is not normal in ∆.

This also implies that the restrictions of zeros of f(z) in Theorem 1.1 is necessary for the case

k ≥ 2.

Remark 3 The requirement of which holomorphic functions a(z) does not assume zero is

also necessary. For example, for a family F , F = {fn(z)|fn(z) = nk+1zk+1, n, k ∈ N}, and

holomorphic function a(z) = z, it is clear that all zeros of fn(z) have multiplicity k + 1, and

Efn
(a(z)) = E

f
(k)
n

(a(z)), but F is not normal in ∆.

In fact, by the same method as used in the proof of Theorem 1.1, we may obtain a corre-

sponding result as follows.

Theorem 1.2 Let F be a family of functions meromorphic in plane domain D ⊂ C, all of whose

zeros have multiplicity k+1 at least, and let a(z) 6= 0 and b(z) 6= 0 be two holomorphic functions

which do not take zero value in D. If for every function f ∈ F , Ef (a(z)) = EL(f)(b(z)), then F

is normal in ∆, where k is a positive integer and L(f) is a linear differential polynomial about

f(z) defined above.
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For meromorphic functions f(z) in ∆, we call it a normal functions if there exists positive

numbers M > 0, such that (1−|z|)f#(z) ≤ M for any z ∈ C, where f#(z) = |f ′(z)|/(1+ |f(z)|2)

is a spherical derivative of f(z).

Suppose that there exists a property P of function families F in the plane domain D, with

which a family F is normal in D. Then for every function f ∈ F , Pang and Bergweiler bring

forward whether f is normal function. In this paper, for the case that a(z) and coefficients

of a linear differential polynomial L(f) about f(z) are constants, attaching a condition that

EL(f)(0) ⊂ Ef (0), we obtain that function f(z) which satisfies the conditions in Theorem 1.1

or Theorem 1.2 must be a normal function. But it is valuable to consider whether the extra

condition EL(f)(0) ⊂ Ef (0) is essential.

Theorem 1.3 Let f(z) be meromorphic function in ∆, all of whose zeros have mulitiplicity

k + 1 at least, and EL(f)(0) ⊂ Ef (0). Suppose that for nonzero complex numbers a 6= 0 and

b 6= 0, Ef (a) = EL(f)(b). Then f(z) is normal function in ∆. Where

L(f) = akf (k)(z) + ak−1f
(k−1)(z) + · · · + a1f

′(z),

here a1, a2, . . . , ak are complex constants, ak 6= 0 and k is a positive integer with k ≥ 2.

2. Some lemmas

To complete the proof of Theorem 1.1, we need some lemmas as follows.

Lemma 2.1[4] Let F be a family of meromorphic functions on the unit disc ∆, all of whose

zeroes have multiplicity at least k, and suppose there exists A ≥ 1 such that |f (k)(z)| ≤ A

whenever f(z) = 0, f ∈ F . Then if F is not normal, there exist, for each 0 ≤ α ≤ k:

(a) A number r, 0 < r < 1;

(b) Points zn, |zn| < r;

(c) Functions fn ∈ F , and

(d) Positive numbers ρn → 0 such that

fn(zn + ρnξ)

ρα
n

= gn(ξ) → g(ξ)

locally uniform with respect to the spherical metric, where g(ξ) is a nonconstant meromorphic

function on C such that

g#(ξ) ≤ g#(0) = kA + 1.

Lemma 2.2[3] Suppose that R(z) is a nonconstant rational function, all of whose zeros have

multiplicity k + 1 at least. If for any nonzero complex constant b, b 6= 0, R(k)(z) 6= b, then

R(z) =
(γz + δ)k+1

αz + β
.

Where α, β, δ, γ are some complex constants, γk+1k! = αb, αγ 6= 0, |α| + |δ| 6= 0, and k is a

positive integer.
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Lemma 2.3[5] Suppose that f(z) is a meromorphic function with finite orders, all of whose

zeros have multiplicity k + 1 at least. Then f (k)(z) assumes any nonzero finite value b finite

times, where k is a positive integer.

Lemma 2.4[6,7] Suppose that f(z) is a meromorphic function in the plane, and k is a positive

integer. If f(z)f (k)(z) 6= 0, then f(z) = eαz+β or f(z) = (αz + β)−n, where α 6= 0, β are two

complex numbers, and n is a positive integer.

3. Proofs of Theorems

3.1 Proof of Theorem 1.1

Suppose F is not normal at z0 ∈ ∆. Without loss of generality, we write z0 = 0, then from

Lemma 2.1, there exist fn ∈ F , point sequences zn → 0, and positive numbers ρn → 0+, such that

ρ−α
n fn(zn + ρn(ξ)) locally uniformly converges on functions g(ξ) with respect to the spherical

metric, where g(ξ) is a nonconstant meromorphic function on C, whose spherical derivative

satisfies g#(ξ) ≤ g#(0) = kA+1, that is, g(ξ) is of finite order. We may assert that the following

conclusion is true.

(i) All zeros of g(ξ) have multiplicity k + 1 at least;

(ii) g(k)(ξ) 6= 1;

(iii) All poles of g(ξ) are multiple.

In fact, suppose that point ξ0 ∈ C is a zero of g(ξ), g(ξ0) = 0. Since g(ξ) is not identical

constant, there exists ξn such that gn(ξn) = ρ−k
n fn(zn + ρnξ) for n sufficiently large, that is,

fn(zn + ρnξ) = 0. Because all zeros of f have multiplicity k + 1 at least, f
(m)
n (zn + ρnξ) = 0,

m = 1, 2, . . . , k. Thus,

g(m)
n (ξ) = ρm−k

n f (m)
n (zn + ρnξ) = 0, m = 1, 2, . . . , k.

Then g(m)(ξ0) = 0, m = 1, 2, . . . , k, that is, all zeros of g(ξ) have multiplicity k + 1 at least. The

assertion (i) holds.

Suppose that there exists ξ0 ∈ C such that g(k)(ξ0) = 1. Then g(k)(ξ0) 6= ∞. We can see

that g(k)(ξ) is not identical constant 1. Otherwise, g(k)(ξ) ≡ 1 for any ξ ∈ C. Therefore, g(ξ)

is a polynoimal about ξ with degree k, all of whose zeros have multiplicity k at most. This

contradicts the assertion (i). Again because of

L(fn)(zn + ρnξ) =ak(zn + ρnξ)f (k)
n (zn + ρnξ) + · · · + a1(zn + ρnξ)f ′

n(zn + ρnξ)

=ak(zn + ρnξ)g(k)
n (zn + ρnξ) + · · · + a1(zn + ρnξ)ρk−1

n g′n(zn + ρnξ), (3.1)

we have that L(f)(zn + ρnξ) − a(zn + ρnξ) → g(k)(ξ) − 1 locally uniformly with respect to the

spherical metric. From Hurwitz Theorem, there exists ξn → ξ0 such that L(f)(zn + ρnξn) =

a(zn +ρnξn). Again from Ef (a(z)) = EL(f)(a(z)), we deduce that fn(zn +ρnξn) = a(zn +ρnξn),

that is,

gn(ξn) = ρ−k
n fn(zn + ρnξn) = ρ−k

n a(zn + ρnξn).

Thereby, g(ξ0) = ∞, this contradicts that g(k)(ξ0) 6= ∞, so the assertion (ii) holds.
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In the sequel, we shall prove that all poles of g(ξ) are multiple.

If there exists ξ0 (ξ0 ∈ C), such that g(ξ0) = ∞, then we shall deduce that (g(ξ)−1)′ |ξ=ξ0= 0.

Since g(ξ) is not identical ∞, there exists a set K = {ξ : |ξ − ξ0| < δ} in which 1
g(ξ) and 1

gn(ξ)

are holomorphic for n sufficiently large, and 1
gn(ξ) uniformly converges to 1

g(ξ) . Therefore,

1

gn(ξ)
−

ρk
n

a(zn + ρnξ)−1
−→

1

g(ξ)

with convergence being uniform in K. From 1
g(ξ) 6≡ ∞, there exists ξn in K, ξn → ξ0, such that

gn(ξn)−1−ρk
na(zn +ρnξn)−1 = 0 for n sufficiently large, thus f(zn +ρnξn) = a(zn +ρnξn). Then

L(fn)(zn + ρnξn) = a(zn + ρnξn). (3.2)

Writing

l(gn(ξ)) = ak(zn + ρnξ)g(k)
n (ξ) + ak(zn + ρnξ)ρng(k)

n (ξ) + · · · + a1(zn + ρnξ)ρk−1
n g′n(ξ), (3.3)

1

g(ξ)
≡ F (ξ),

1

gn(ξ)
≡ Fn(ξ). (3.4)

For the case k = 1, Theorem 1.1 is just Theorem A, so we omit the details. For the case

k = 2, by (3.4), we have

g′(ξ) = −F ′g2, (3.5)

g′′(ξ) = −F ′′g2 + 2(F ′)2g3, F ′′ = −g′′g−2 + 2(F ′)2g, (3.6)

thus l(F ) = a2F
′′ + a1ρnF ′ = −l(g)g−2 + 2a2(F

′)2g. Then we have

lim
n→+∞

l(Fn(ξn)) = lim
n→+∞

[−l(gn)g−2
n + 2a2(F

′

n)2gn(ξn)]

= lim
n→+∞

[a(zn + ρnξn)g−2
n (ξn) + 2a2(F

′

n)2gn(ξn)]

= lim
n→+∞

[2a2(F
′

n)2gn(ξn)].

From limn→+∞ gn(ξn) = ∞, we deduce that g′(ξ0)g
−2(ξ0) = limn→+∞(g′ng−2

n )2 = 0, that is, ξ0

is of multiple pole of g(ξ) with order 2 at least.

For the case k ≥ 3, from Equs. (3.5) and (3.6), and by mathematical inductive method, it

follows that

g(k) = −F (k)g2 + Ak3g
3 + Ak4g

4 + · · · + Akkgk + (−1)kk!(F ′)kgk+1,

where Akj(j = 1, 2, . . . , k) are some polynomials about F ′, F ′′, . . . , F (k). Thus,

F (k) = −g(k)g−2 + (−1)kk!(F ′)kgk−1Ak3g
1 + Ak4g

2 + · · · + Akkgk−2. (3.7)

Setting B0 = −a1ρ
k−1
n F ′, Bt = (−1)t+1(t + 1)!at+1ρ

k−t−1
n (F ′)t+1 +

∑k

i=3 aiρ
k−i
n Ai,t+2, t =

1, 2, . . . , k − 2, by Equs. (3.3)–(3.7) and the above signs, we have

l(Fn) = l(g−1
n ) = −l(gn)g−2

n + (−1)kk!ak(F ′)kgk−1
n +

k−2
∑

t=0

Btg
t
n. (3.8)
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Again by Equs. (3.1) and (3.2), Equ. (3.8) implies

l(Fn(ξn)) = −a(zn + ρnξn)g−2
n + (−1)kk!ak(F ′)kgk−1

n +

k−2
∑

t=0

Btg
t
n.

From limn→+∞ gn(ξn) = ∞ and limn→+∞ B0(ξn) = B0(ξ0) = 0, we have

lim
n→+∞

[l(Fn(ξn))] = lim
n→+∞

{

[(−1)kk!ak(F ′)kgk−2
n +

k−2
∑

t=1

Btg
t−1
n ]gn

}

.

Therefore, we have

lim
n→+∞

[(−1)kk!ak(F ′)kgk−2
n +

k−2
∑

t=1

Btg
t−1
n ] = 0.

Similarly, from limn→+∞ B1(ξn) = B1(ξ0), we have

lim
n→+∞

[l(Fn(ξn))] = lim
n→+∞

{

[(−1)kk!ak(F ′)kgk−3
n +

k−2
∑

t=2

Btg
t−2
n ]gn

}

= −B1(ξ0).

Again by limn→+∞ gn(ξn) = ∞, we also have

lim
n→+∞

[(−1)kk!ak(F ′)kgk−3
n +

k−2
∑

t=2

Btg
t−2
n ] = 0.

Going on with the similar duduction step by step, we have limn→+∞[(−1)kk!ak(F ′)k] = 0.

Thereby, (g−1)′ |ξ=ξ0 = limn→+∞ F ′

n(ξn) = 0, that is, ξ0 is of multiple poles of g(ξ), thus the

assertion (iii) also holds.

Since g(ξ) is of finite order, by assertions (i) and (ii), and Lemma 2.3, we have that g(ξ) must

be nonconstant rational function. Again from Lemma 2.2, we deduce that g(ξ) only has simple

poles, which contradicts that all poles of g(ξ) are multiple. This completes proof of Theorem

1.1, thus F is normal in D.

3.2 Proof of Theorem 1.3

If f(z) is not normal function in ∆, then there exists zn, |zn| < 1, such that limn→+∞(1 −

|zn|)f
#(zn) = ∞. Let fn(z) = f(zn + (1 − |zn|)z) and F = {fn}. By Marty’s criterion, it is not

difficult to see that F is not normal at z = 0. From Lemma 2.1, there exists point sequences

ξn → 0, ρn → 0+, and one subsequence of F , still denoted {fn} for this subsequence, such that

gn(ξ) = fn(ξn + ρnξ) = f(zn + (1 − |zn|)ξn + (1 − |zn|)ρnξ) → g(ξ)

locally uniformly with respect to the spherical metric, where g(k)(ξ) is not identical zeros. Then

all zeros of g(ξ) have multiplicity k + 1 at least. We may assert that Eg(a) = Eg(k)(0) ⊂ Eg(0).

(i) Eg(a) = Eg(k)(0).

Suppose that there exists ξ0 ∈ C such that g(k)(ξ0) = 0. Since

akg(k)
n (ξ) + ak(1 − |zn|)ρng(k−1)

n (ξ) + · · · + a1 [(1 − |zn|)ρn]k−1 g′n(ξ) − [(1 − |zn|)ρn]k b

= [(1 − |zn|)ρn]
k
L(f)(zn + (1 − |zn|)ξn + (1 − |zn|)ρnξ) − [(1 − |zn|)ρn]

k
b −→ g(k)(ξ)
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locally uniformly with respect to the spherical metric, and g(k)(ξ) is not identically zero, by

Rouché Theorem, there exists point sequence ξ∗n → ξ0, such that

[(1 − |zn|)ρn]
k
L(f)(zn + (1 − |zn|)ξn + (1 − |zn|)ρnξ∗n) − [(1 − |zn|)ρn]

k
b = 0,

for n sufficiently large, that is, L(f)(zn + (1− |zn|)ξn + (1− |zn|)ρnξ∗n) = b. Again from Ef (a) =

EL(f)(b), we have

gn(ξ∗n) = f(zn + (1 − |zn|)ξn + (1 − |zn|)ρnξ∗n) = a.

Thus, g(ξ0) = a, that is, Eg(k)(0) ⊂ Eg(a).

Similarly, suppose there exists ξ0 ∈ C such that g(ξ0) = a. Since

gn(ξ) − a = f(zn + (1 − |zn|)ξn + (1 − |zn|)ρnξ) − a → g(ξ) − a

locally uniformly with respect to the spherical metric, and g(k)(ξ) 6≡ 0, g(ξ)− a 6≡ 0. Then, from

Rouché Theorem we have that there exists point sequence ξ∗n → ξ0, such that

gn(ξ∗n) − a = f(zn + (1 − |zn|)ξn + (1 − |zn|)ρnξ∗n) − a = 0

for n sufficiently large. Again from Ef (a) = EL(f)(b), we have

L(f)(zn + (1 − |zn|)ξn + (1 − |zn|)ρnξ∗n) = b,

that is,

[(1 − |zn|)ρn]
k
L(f)(zn + (1 − |zn|)ξn + (1 − |zn|)ρnξ∗n) = [(1 − |zn|)ρn]

k
b.

Then g(k)(ξ0) = 0. This shows that Eg(a) ⊂ Eg(k)(0), so the assertion (i) holds.

(ii) Eg(k)(0) ⊂ Eg(0).

By the same argument as the first part in proof of the assertion (i), suppose that there exists

ξ0 ∈ C such that g(k)(ξ0) = 0. Since

akg(k)
n (ξ) + ak(1 − |zn|)ρng(k−1)

n (ξ) + · · · + a1 [(1 − |zn|)ρn]k−1 g′n(ξ)

= [(1 − |zn|)ρn]
k
L(f)(zn + (1 − |zn|)ξn + (1 − |zn|)ρnξ) −→ g(k)(ξ)

locally uniformly with respect to the spherical metric, where g(k)(ξ) 6≡ 0, and by Rouché Theorem,

we have that there exists point sequence ξ∗n → ξ0, such that

[(1 − |zn|)ρn]
k
L(f)(zn + (1 − |zn|)ξn + (1 − |zn|)ρnξ∗n) = 0

for n sufficiently large. That is, L(f)(zn + (1 − |zn|)ξn + (1 − |zn|)ρnξ∗n) = 0.

From EL(f)(0) ⊂ Ef (0), we may deduce that

gn(ξ∗n) = f(zn + (1 − |zn|)ξn + (1 − |zn|)ρnξ∗n) = 0.

Then g(ξ0) = 0. Thereby, Eg(k)(0) ⊂ Eg(0), which shows that the assertion (ii) also holds.

From the above assertions that Eg(a) = Eg(k)(0) ⊂ Eg(0) and all zeros of g(ξ) have multi-

plicity k + 1 at least, we obtain g(k)(ξ) 6= 0 and g(ξ) 6= 0.

Again from Eg(a) = Eg(k)(0), we have g(ξ) 6= a. On the other hand, from Lemma 2.4, we

immediately obtain that the expression of g(ξ) is either g(ξ) = eαz+β or g(ξ) = (αz + β)−n.
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Clearly, this contradicts g(ξ) 6= a. Therefore, f(z) must be a normal function in ∆. So far, we

give the complete proof of Theorem 1.3.
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