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Abstract Let E be a real Banach space and let A be an m-accretive operator with a zero.
Define a sequence {z,} as follows: xni1 = anf(zn) + (1 — an)Jr, Tn, where {an}, {rn} are
sequences satisfying certain conditions, and J,. denotes the resolvent (I+7A)~* for r > 1. Strong
convergence of the algorithm {z,} is obtained provided that E either has a weakly continuous
duality map or is uniformly smooth.

Keywords fixed point; nonexpansive mapping; m-accretive operator; viscosity approximation;

weakly continuous duality map; uniformly smooth Banach space.

Document code A
MR(2000) Subject Classification 47H06; 47H10
Chinese Library Classification 0177

1. Introduction

In the sequel, we assume that F is a real Banach space with norm || - ||, denote the fixed point
set by F(T) = {x € E;Tx = z}, the weak convergence by —, the strong convergence by —.

A mapping T with its domain D(7T) and range R(T") in E is called nonexpansive (respectively
contractive) if for all z,y € D(T') such that | Tz — Ty|| < |z — y|| (vespectively ||Tx — Ty|| <
allz — y|| for some 0 < aw < 1). Let Il denote the set of all contractions on C.

A classical way to study the nonexpansive mappings is to use the following™?: for te (0,1),
define a mapping th: Tix = tu+ (1 — t)Tz,x € C, where u € C is a fixed point. Banach’s
contraction mapping Principle guarantees that T; has a fixed point z; in C. In the case that
T has a fixed point, Browder!!) proved that if E is a Hilbert space, then z; does converge
strongly to a fixed point of T that is nearest to u. Reich[? extended Browder’s result to a
uniformly Banach space and the limit defines the unique sunny nonexpansive retraction from C'
onto F(T). Very recently Xul?l extended Reich’s result to a Banach space which has a weakly

Bl proved strong convergence theorems by the following iterative

continuous duality map. And Xu
method assuming that either F is uniformly smooth or E has a weakly continuous duality map:
Tpt1 = apu+ (1 — ap)Jp, Xn, n > 0, where {a,} is a sequence in (0,1), {r,} is a sequence of

positive numbers, and the initial guess z¢ € C is arbitrarily.
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Viscosity approximation methods for nonexpansive mappings or nonexpansive nonself-mapping
have been studied by several authors. It is our purpose in this paper to use the method to ap-

proximate the fixed point of accretive operators which improves the recent results.

2. Preliminaries

Let ¢ : [0,00) =: Rt — RT be a continuous strictly increasing function such that p(0) = 0
and p(t) — 0o as t — oo. Such a ¢ is called a gauge. Associated with a gauge ¢ is the duality
map J, : £ — E* defined by

Jo(@) ={f € E": (&, ) = ||zl - o (llz[D); 171 = (=D}, = € E,

where (-, -) denotes the generalized duality pairing between E and E*. In the case that ¢(t) = ¢,

we write J for J, and call J the normalized duality map.

Definition 1.1 A Banach space E is said to have a weakly continuous duality mapping if
there exists a gauge function ¢ such that J, is single-valued and weak to weak star sequentially
continuous.

It is known that [P (1 < p < oo) has a weakly continuous duality mapping with a gauge
function ¢(t) = tP~1. Setting

then one sees that ® is a convex function and
Jo(z) = 00(|[z]), =€ E,
where 0 denotes the subdifferential in the sense of convex analysis. The subdifferential inequality
([lyll) = (ll=])) + (v — 2, Jz), 2,y € B, ju € Jp(2),
implies that the inequality
O(lz+yl) < @(lzl) + (¥ Jaty), Y € E, Joyy € Jo(z +y).
If E is smooth, then J, is single-valued and hence the inequality above is reduced to
O(lz +yll) < @(llzl) + (v, Jo(z + ), ,y€E.

It is well known that if £ is a uniformly smooth, then J is single-valued and is uniformly

continuous on bounded subsets of E. we shall denote the single-valued duality map by j.

Definition 1.2 Let S(E) = {x € E : ||z|| = 1}, E is said to be uniformly smooth provided that

the limit
t —
ety = |
t—0 t

exists uniformly for each x,y € S(E).

Definition 1.3 An operator A with domain D(A) and range R(A) in X is said to be accretive if,
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for each x; € D(A) and y; € Ax;(i = 1,2), there exists a j € J(x2 —x1) such that (y2 —y1,j) > 0,
where J is the duality map from F to the dual space E*.

An accretive operator A is m-accretive if R(I + AA) = E for all A > 0.

Denote by F' the zero set of A; i.e.,

F:=A"Y0)={r € D(A): 0 € Ax}.

Denote by J, the resolvent of A for r > 0: J, = (I +rA)~ L.
It is known that J,. is a nonexpansive mapping from E to C := D(A).

For the proof of our main results, we shall need the following lemmas.

Lemma 2.1 Let E be a uniformly smooth Banach space and let T : C'— C' be a nonexpansive
mapping with a fixed point. For each fixed u € C and every t € (0,1), the unique fixed point
2y € C of the contraction x — tu + (1 — t)Tx converges strongly as t — 0 to fixed point of T.
Define Q : C — F(T) by Qu = s —limy_,g 2. Then Q is the unique sunny nonexpansive retract

from C onto F(T); that is, Q satisfies the property:
(u—Qu,J(z—Qu)) <0, ueC, z€ F(T).
Lemma 2.2 Let {an} be a nonnegative real sequence that satisfies the condition: ay41 <

(1= Bn) s + Bnyn for alln > ng, where the sequence 3, € [0, 1], and {v, } satisfies the conditions:

(i) limy, o0 Bn, = 0; (ii) X 4B = 00; (iii) limy, 00 ¥ = 0, then limy,_,o0 oy = 0.
Lemma 2.3 (The Sub-differential Inequality) Let E be a Banach space, J the normalized duality
mapping from E into 257, Va,y € E, [lz +y[|* < [|l2[|* +2(y, j(x + y)), Vi(z +y) € J(z +y).

Lemma 2.4 (The Resolvent Identity) For A, u > 0, there holds the identity: Jyz = J,(4x +
(1-58)x), z€E.

Lemma 2.5[% Assume that c; > ¢; > 0. Then ||J.,x — z|| < ||Jox — | for allz € E.

Lemma 2.6!") Assume that FE has a weakly continuous duality map J, with gauge .
(i) For all x,y € E, there holds the inequality

([l +yl)) < @([l])) + (y, Jo(x +y))-

(ii)) Assume a sequence {z,} in E is weakly convergent to a point x. Then there holds the
identity
limsup (|| — ) = limsup (|| — all) + @ (|ly - ).
n—oo

n—oo

3. Main results

Let E be a real Banach space, C' a nonempty closed convex subset of £ and T be a nonex-
pansive mapping from C' into itself with F(T') # (. For ¢t € (0,1) and f € I, let 2 € C be the
unique fixed point of the contraction z — tf(x) + (1 — t)Tz on C; that is
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Theorem 3.1 Let E be a reflexive Banach space and has a weakly continuous duality map J,
with a gauge . Let C' be a closed convex subset of E and T be a nonexpansive mapping from C
into itself with F(T) # 0, f € Il¢. Fort € (0,1), 2, € C is the unique solution in C' to Eq.(3.1).
Then T has a fixed point if and only if {x;} remains bounded as t — 0%, and in this case, {z;}

converges strongly to a fixed point of T. If we define Q : llc — F(T') by

QU = lim i, f € Tl 2
then Q(f) solves the variational inequality
(I =HR),JQ(f) —p) <0, fello,pe F(T). (3)

In particular, if f =wu € C is a constant, then (2) reduces to the sunny nonexpansive retraction
from C onto F(T),
(Qu) —u, J(Q(u) —p)) <0, ueC,peFT).

Proof Necessity. Assume that F(T) # (). Take p € F(T), for t € (0,1).

e = pll = [[t(f (z2) = p) + (1 = ) (T'z; — p)||
< | f () = pll + (1 =Tz — pll
<t f () = f) + 1S () = pll + (1 = O[Tz — pll
< (I —t+at)llze —pll + | f(p) - pll-
We obtain ||z, — p|| < 2= (p) — pll. Therefore {z;} is bounded.

Sufficiency. Assume that {x;} is bounded as ¢ — 0%. Assume that ¢, — 07 and {z, }
is bounded. Since E is reflexive, we may assume that z;, — z for some z € C. Since J, is
weakly continuous, by Lemma 2.6, we have limsup,, . ®(||lz, — z||) = limsup,,_,., ®(||z¢, —
z|) + ®(||]z — z||), Yz € E. Put g(z) = limsup,,_, . ®(||zt, — z|]),x € E. It follows that g(x) =
g9(z) + @(J|]x — z||),Vx € E. {z,} is bounded, so are {f(x,)} and {T'z,,}, we get

tn
||$tn - Txtn” = 1 _ t ||f(‘rtn) - xtn” - O'
g9(Tz) =limsup ®(||zy, — Tz||) = limsup (|| Txs, — Tz||)
< limsup ([|z, — z[]) = g(2)- (4)
On the other hand,
9(Tz) = g(2) + @(|| Tz — z[)). (5)

Combining (4) and (5) yields that ®(||Tz — z||) < 0. Hence Tz = z, and z € F(T).

Next we claim that {z;} converges strongly to a fixed point of T' provided that it remains
bounded as ¢t — 0". Let {t,} be a sequence in (0, 1) such that ¢, — 0 and z;, — 2, as n — occ.
Then z € F(T) by the above arguments. We show that z;, — z. In fact, by Lemma 2.6,

O(fJwr, — 2[) <@ = tn)lI s, — 2I) + tnlf (21,) = 2, Jp (@1, — 2))
<(1 = 1), — 2]) + talF(20,) = () + £(2) = 2, Tl — 2))
S =ta)@([[ze, = 2[) + tall f(2,) = F) |2, = 2])+
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tn<f(z) - % Jap(ztn — Z)>
< = ta)®([lze, — 2l) + atnllze, — 2o, — 2D+
tn(f(2) — 2, o1, — 2)).

This implies that
O(llze, — 2ll) < allze, = zlle(lze, —2I) + (f(2) = 2, Jp(zr, —2)).

Since ;,, — z, as n — 0o, we have J,(z;, —z) — 0, and by the continuous strictly increasing
property of the gauge function, we have ¢(||z:, — z||) — 0. Then ®(||a, — z|]) — 0. Hence
x4, — z. Finally, we prove that the entire net {x;} converges strongly. To this end, we assume

that two null sequences {t,,} and {s,} in (0,1) are such that z;, — z and z,, — 2’. We claim
that z = 2’. In fact, for p € F(T),

(w1 = Ty, Jp(e — p)) = ®(llze = pll) + (p = Twr, Jp (w1 — p))
2 ([lze —pll) = llp = Tl[[| Jo (2 — p)|
Z ®(||z: — pll) — @z —pll) = 0.

On the other hand, 2;—Tx¢ = 74 (f(2¢)—a¢). Fort € (0,1)and p € F(T), (we—f(x1), Jp(wi—
p)) < 0. In particular, (¢, — f(z+,.), Jo(x, —p)) < 0and (z,, — f(zs, ), Jo(s, —p)) < 0. Letting
n — oo, we have (z — f(z), Jo(z — p)) <0 and (2’ — f(#'), Jo(z' —p)) < 0. Adding up, we get
(2 = (F(2) = FED Tplz = 20) 0, e (2= ), ol — 2)) < (F(2) = F(), oz — 21) <
alz =2, (2= 2)), ®(]|]z = 2'||) < a@(”z —Z'||]), we have z = 2’ and {z;} converges strongly.

Define Q : IIg — F(T) by Q(f) = limy_oz, f € IIc. Since we have proved that for
all t € (0,1) and p € F(T), (x¢ — f(z), Jpo(x — p)) < 0. Letting ¢ — 0, we have ((I —

HQ(f), Jo(Q(f) —p)) < 0. This implies that

(I =Hef),JQ(f)—p)) <0,

since J,(x) = S"?‘”CEHH)J( ) for x # 0.
If f = uis a constant, then (z; — u, J,(z¢ — p)) < 0, letting t — 0, we have (Q(u) —

u, Jo(Q(u) — p)) < 0, which implies
(Qu) = u, J(Q(u) = p)) <0, ueC,peF(T),

since J,(z) = “’?‘”ﬁ‘l‘)J( ) for z # 0.
Hence @ reduces to the sunny nonexpansive retraction from C to F(T). This completes the
proof. O
Next we consider the following iteration process
o € C,
{ (6)

Tn+1 = anf(xn) + (1 - an)Jrn:Ena n >0,

where ay, € (0,1),7, € (0,00). In the case f = u is a constant, the Eq.(6) reduces to the
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{ o € O, (7)

Tnt1 = apu+ (1 —ap)dr, xn, n>0,

following:

which has been investigated in [3] and [8]. Let {z,} be defined by (7). In [8] the authors
established strong convergence theorems under the conditions F is uniformly smooth and has a
weakly continuous duality map J, with some gauge ¢; in [3] the authors obtained the strong
convergence theorems under the assumptions that E is uniformly smooth or E is reflexive and
has a weakly continuous duality map.

One question arises naturally: Can the iterative algorithms used in [3] and [8] be extended

to iterative algorithm (6)? We give a positive answer to this problem.

Theorem 3.2 Suppose E is a reflexive Banach space and has a weakly continuous duality map
J, with some gauge ¢, A is an m-accretive operator in E such that C' = (—A) Assume that
(i) on —0;
(i) T2 oan = o0;
(iii) r, — oo.

Let {x,} be defined by (6). Then {x,} converges strongly to a point in F.
Proof First notice that {z,} is bounded. In fact, take a fixed p € F

Zn+1 = pll < anllf(wn) = pll + (1 — )| Jr, 20 — |
< anallz, —pll + anl f(p) — pll + (1 — o) |lzn — pll
= (1 = an + aay) ||z — pll + anl| f(p) — Pl

by induction, we obtain ||z, — p|| < max{L=| f(p) — p|. |lzo—pl|} = M, for all n > 0. Therefore
{zy} is bounded, so are {J, zn}, {f(xn)}, hence ||xnr1 — Jr 20| = anllf(2n) — Jr,z0] — 0.
Next we prove that
limsup(f(p) — p, Jo(zn —p)) <0, where p=Q(f). (8)
Take a subsequence {x,, } of {z,} such that
limsup(f(p) - p, Jp(¥n —p)) = lim (f(p) = p, Jp(zn, = P))- 9)
Since E is reflexive, we may assume that z,, — Z. Moreover, ||2,+1 — Jr, Zn| — 0, we obtain
Jrnk71$nk_1 — 7.
Taking the limit as k — oo in the relation [/, _,&n,—1,Ar, _ Tn,—1] € A, We get [7,0] € A.
That is € F. Hence by (9) and Lemma 2.1, we have
limsup(f(p) = p, Jp (20 = p)) = (f(p) = P, Jo(T = p)) < 0.

Finally, to prove that x,, — p. Using Lemma 2.6,

P([|zntr —pll) = (| (1 = an)(Jr, 20 = p) + an(f(zn) = p)I)
< (1= an)®(||lzn —pll) + an{f(zn) = F(p) + [ (p) = P; Jo(Tnt1 = p))
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< (1= an +aan)®(|lzn = pl) + an(f(p) = p, Jo(nt1 = p))
= (1~ (1~ @)an)@(rn — pl) + (1 = @)an—=—(F(p) = . Jplanss — P):
An application of Lemma 2.2 yields that ®(||zp4+1 — p||) — 0; i.e., ||z, — p|] — 0.

Theorem 3.3 Suppose E is a reflexive Banach space and has a weakly continuous duality map
J, with some gauge o, A is an m-accretive operator in E such that C' = D(A). Assume that
(i) o — 0,522 g, = 00 and B2 [oq1 — an| < 00 (e.g. oy = 1)
(ii) ry > ¢ for all n and X5 |rpq1 — 1| < 00 (e.g. 1y =14 1)

Let {x,} be defined by (6). Then {x,} converges strongly to a point in F.
Proof From (6) we have
Tna1 = anfxn) + (1 — an)dp, n,
T = ap—1f(Tn-1)+ (1 —an—1)Jr, Tn-1,
and

Tn+1 — Tn :(an - an—l)(f(xn) - Jrn,lxn—l)"'
(1 - O‘n)(Jrnxn - Jrn,lxn—l) + an—l(f(mn) - f(xn—l)) (10)

Tn—1

If r,—1 < 7y, using the resolvent identity J,., xn, = Jp.,_, (%=, + (1 — T:—”)Jrnazn), we obtain
that

Th— Tr—
| T — Jppy 3 Tn—1]] < ne zn — 21| + (1 - = 1)||Jrn33n — Zn—1]|
n n

T — Ty

< lzn — 21| + (ninl)njrnzn — Zn—1|

n

1

<z — x| + EHTH = To—1[||Jr,Tn — Tn—1]. (11)

It follows from (10) that

[#ns1 = zn| <M (llan — an-all]) + [rnsr = rall) + (1 = an)llzn — za-all+
an,104||$n —33n71||

<= = a)an)||zn = znall + Mi(llan — anal)) + Irne = ml)),  (12)

where M; > 0 is some approximate constant. Similarly we can prove (12) if r,_1 > r,. By the
Conditions (i), (ii), (iii) and Lemma 2.2, we can conclude that ||zn4+1 — ©,|| — 0. This implies
that

n = Jr,anll < Znt1 = @all + (|01 = o, 20l (13)

It follows that || A, x| = T%Ha:n — Jrp @l < Llan — Jr, @l

Now if {x,, } is a subsequence of {z,} converging weakly to a point Z, then taking the limit
as k — oo in the relation [/, @n,, Ay, @] € A, we get [7,0] € A. That is € F. Then all
weak limit points of {z,,} are zeros of A. The rest of the proof follows from the corresponding

parts of Theorem 3.2.
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Now consider the framework of uniformly smooth Banach space. Since F' is the fixed point
set of nonexpansive mapping J,. for all » > 0, there exists a unique sunny nonexpansive retraction

Q@ from C onto F'. In particular, for each n > 1, we have

Q(f) - }L%Zt,nv f S HC) (14)

where z;,, € C is the unique point in C such that
Zt,n = tf(Ztn) —|— (1 — t)J,,«nZt_’n, (15)

{2t,n} is uniformly bounded; in fact, ||z, — p|| < 2| f(p) — p|| for all t € (0,1),n > 1 and
peF.

Lemma 3.4 The limit in (14) is uniform for n > 1.

Proof It is sufficient to show that for any positive integer n; (may depend on t € (0,1)), if
2t n, € C is the unique point in C such that

2, = tf (2tn,) + (1 = t)*]rntzt,nt- (16)

Then {z,,} converges as t — 0 to a point in F. For short, put w, = 2 p,, vy = Jrnt, it follows
that
we = tf(wt) + (1 — t)vtwt. (17)

Note that F(v;) = F for all ¢, {w;} is bounded since ||w; — p|| < 2=/ f(p) — p| for all t € (0, 1)
and p € F, so are {f(wy)}, {viwe}. Then ||w, — vpwy|| = ¢]| f(wy) — viw|| — 0 (as ¢ — 0). Since

rn > €, for all n, by Lemma 2.5, we have

||wy = Jewe|] < 2||wy — Ty, we]| = 2[|we — vpwy|| — 0. (18)

nt

Let {tx} be a sequence in (0,1) such that ¢, — 0 as k& — oo. Define a function g on C' by
g(w) = LIMy3|lwy, — w||>,w € C, where LIM denotes a Banach limit on [*. Let K := {w €
C : g(w) = min{g(y) : y € C}}, then K is a nonempty closed convex bounded subset of
C. K is also invariant under the nonexpansive mapping J.. Indeed, noting (18), for w € K,
g(Jow) = LIMy 2 lwy, — Jew||? < LIMy 2 |lwy, — w]|* = g(w). Since a uniformly smooth Banach
space has the fixed point property for nonexpansive mappings and J. is a nonexpansive mapping
of C, J. has a fixed point in K, say w’. Now since w’ is also a minimizer of g over C, for w € C,
o) 4 Mo =) = g(0) _ Y2y =4 = )P 12 =

E is uniformly smooth, the duality map J is uniformly continuous on bounded sets, letting

0<

A — 07 in the last equation:
0 < LIMg(w" — w, J(wy, —w')), weC. (19)
Since wy, — w' =t (f(we,) —w') + (1 — t) (ve, we, — W),

lwe, —w'[I* =t (f (we,) — ', I (wy, —w')) + (1 = ti) vy, we, — ', J(wy, —w'))

<aty|lwy, —w'|* = ti{f(w') — ), J(wy, —w'))+
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(1 = ti)[or,wr, = w'[[[| T (wr, = w)]
<(aty + 1 —ty)|wy, — w)[I* + tx(f (W) — ', T(wy, —w')).

It follows that

1
g, ') < T—

(f(w') —w', J(we, —w')). (20)

Letting w = f(w') in (19), we get LIM||w;, —w’||? < 0. Therefore {w;, } contains a subsequence,

{ws, } converging strongly to w (say). By (18), w is also a fixed point of J;; i.e., a point in F.
To prove that the entire net {w;} converges strongly, assume {s} is another null subsequence

in (0,1) such that ws, — wa. Then wy € F. Repeating the argument of (20), we get

1

11—«

e — o[> < ——(f(w') —w', J(w;) —w')), Vo! € F.

In particular,

oz = < T (7 () = wn, Tz — )

oy = ws | < T (Fwz) = wa, T s — ).

Adding up the last two inequalities, ||w; — wz||? < 0, that is w; = wy.

Theorem 3.5 Suppose E is a uniformly smooth Banach space, A is an m-accretive operator in

E such that C = D(A). Assume that
(i) an — 0,52 g, = 00 and X224 |apt1 — ap| < 00 (e.g. a, = %),
(ii) rn >¢€ for all n and 352 [rpp1 — | < 00 (e.g. Tn =14 1)

Then {x,} converges strongly to a point in F.

Proof It is easy to see that {x,,} is bounded, so are {J, x,}, { f(zn)}. We show that limsup,, , . (f(z)—
z,J(xy — 2)) <0, where

z2=Q(f) = lngJ Ztmy 2t =tf(zen) + (1 =) Jr, 2t.m,

2t = 2all® = t(f(2t.0) = @n) + (1 = O)(Jr, 260 = Tn)-
Putting an(t) = ||Jr.2n — || (2]|2t,n — Zn|| + || I, @ — 2x]|) — 0(n — oc0) and by Lemma 2.3
1260 = @nll® <(1 = )21, 26,0 = @nll® + 26{f (2t,0) = T, (21,0 = @)
<(1 =) (1r, 2t = Jr,@nll + [ r, @0 = al))*+
26(f (2t,n) = 2t;m, J (2,0 — %)) + 2t]| 26,0 — 0]
<1 =) 2tn — all® + an(t)+
26(f (26,n) = Ztns J (26,0 — Tn)) + 2t]| 20, — 20|

which yields that (f(z¢n) = 2tms J (Tn — 2en)) < Lll2em — @all? + Fan(t).
It follows that imsup(f(zt.n) — 2zt m, J (Tn — 2tn) < %M, where M > 0 is a constant such

that M > ||z;n — @, ||? for alln > 1 and ¢ € (0,1). Hence

limsup(f(zt,n) — Zt,n, J(@n — 2en) < 0. (21)
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J is uniformly continuous on bounded sets and the uniform convergence of {z; ,} to Q(f), so we

can interchange the two limits and deduce that
limsup(f(z) — z, J(x, — 2)) < 0. (22)
Finally to show z, — 2. Zp41 — 2 = an(f(zn) — 2) + (1 — ) (Jr, vn — 2). Applying the Lemma
2.3, we get
Nrpzn = 201 + 200 (f (20) = 2, J (€n11 = 2))
*llzn = 21 + 200 (f (wn) = f(2) + £(2) = 2, I (@n41 = 2))
<1 = an)? [l — 2l” + 2000z, — 2lll|2ns — 2]+
200 (f (2) = 2, J (Tn41 — 2))
<1 = an)?llon = 2l° + aan(lzn — 21 + 2n41 = 2]*)+

20, (f(2) = 2, J (Tnt1 — 2))-

lZnt1 = 2l <(1 = an)
)

S(l — Oy

It then follows that

1-(2—-a)ay, +af 2au,
lanss — 2l < T BTN Oy 20 ((e) 2 (i - 2))
1-(2-a)ay, 2 20 2
< WH% —z|* + mq(z) =2, J(Tny1 — 2)) + Mag,
Put @, = 2= g, — MO2a0u)0n 4 LA (f(2) — 2, J (w41 — 2)), then we get
|zns1 = 21 < (1= @) [en — 2] + @B (23)

From the assumptions (i) and (22), a;, — 0, X, = oo, lim sup@ < 0. Using the Lemma 2.2 to

(23) we conclude x,, — z as n — oo.

Remark The results in our paper improve the results in [3]. When f = wu is a constant, the

results reduce to the ones in [3], which are special cases of ours.
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