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Abstract Let E be a real Banach space and let A be an m-accretive operator with a zero.

Define a sequence {xn} as follows: xn+1 = αnf(xn) + (1 − αn)Jrn
xn, where {αn}, {rn} are

sequences satisfying certain conditions, and Jr denotes the resolvent (I+rA)−1 for r > 1. Strong

convergence of the algorithm {xn} is obtained provided that E either has a weakly continuous

duality map or is uniformly smooth.
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1. Introduction

In the sequel, we assume that E is a real Banach space with norm ‖ ·‖, denote the fixed point

set by F (T ) = {x ∈ E; Tx = x}, the weak convergence by ⇀, the strong convergence by →.

A mapping T with its domain D(T ) and range R(T ) in E is called nonexpansive (respectively

contractive) if for all x, y ∈ D(T ) such that ‖Tx − Ty‖ ≤ ‖x − y‖ (respectively ‖Tx − Ty‖ ≤

α‖x − y‖ for some 0 < α < 1). Let ΠC denote the set of all contractions on C.

A classical way to study the nonexpansive mappings is to use the following[1,2]: for t∈ (0, 1),

define a mapping T f
t : Ttx = tu + (1 − t)Tx, x ∈ C, where u ∈ C is a fixed point. Banach’s

contraction mapping Principle guarantees that Tt has a fixed point xt in C. In the case that

T has a fixed point, Browder[1] proved that if E is a Hilbert space, then xt does converge

strongly to a fixed point of T that is nearest to u. Reich[2] extended Browder’s result to a

uniformly Banach space and the limit defines the unique sunny nonexpansive retraction from C

onto F (T ). Very recently Xu[3] extended Reich’s result to a Banach space which has a weakly

continuous duality map. And Xu[3] proved strong convergence theorems by the following iterative

method assuming that either E is uniformly smooth or E has a weakly continuous duality map:

xn+1 = αnu + (1 − αn)Jrn
xn, n ≥ 0, where {αn} is a sequence in (0, 1), {rn} is a sequence of

positive numbers, and the initial guess x0 ∈ C is arbitrarily.
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Viscosity approximation methods for nonexpansive mappings or nonexpansive nonself-mapping

have been studied by several authors. It is our purpose in this paper to use the method to ap-

proximate the fixed point of accretive operators which improves the recent results.

2. Preliminaries

Let ϕ : [0,∞) =: R+ → R+ be a continuous strictly increasing function such that ϕ(0) = 0

and ϕ(t) → ∞ as t → ∞. Such a ϕ is called a gauge. Associated with a gauge ϕ is the duality

map Jϕ : E → E∗ defined by

Jϕ(x) = {f ∈ E∗ : 〈x, f〉 = ‖x‖ · ϕ(‖x‖), ‖f‖ = ϕ(‖x‖)}, x ∈ E,

where 〈·, ·〉 denotes the generalized duality pairing between E and E∗. In the case that ϕ(t) = t,

we write J for Jϕ and call J the normalized duality map.

Definition 1.1 A Banach space E is said to have a weakly continuous duality mapping if

there exists a gauge function ϕ such that Jϕ is single-valued and weak to weak star sequentially

continuous.

It is known that lp (1 < p < ∞) has a weakly continuous duality mapping with a gauge

function ϕ(t) = tp−1. Setting

Φ(t) =

∫ t

0

ϕ(τ)dτ, t ≥ 0,

then one sees that Φ is a convex function and

Jϕ(x) = ∂Φ(‖x‖), x ∈ E,

where ∂ denotes the subdifferential in the sense of convex analysis. The subdifferential inequality

Φ(‖y‖) ≥ Φ(‖x‖) + 〈y − x, jx〉, x, y ∈ E, jx ∈ Jϕ(x),

implies that the inequality

Φ(‖x + y‖) ≤ Φ(‖x‖) + 〈y, jx+y〉, x, y ∈ E, jx+y ∈ Jϕ(x + y).

If E is smooth, then Jϕ is single-valued and hence the inequality above is reduced to

Φ(‖x + y‖) ≤ Φ(‖x‖) + 〈y, Jϕ(x + y)〉, x, y ∈ E.

It is well known that if E is a uniformly smooth, then J is single-valued and is uniformly

continuous on bounded subsets of E. we shall denote the single-valued duality map by j.

Definition 1.2 Let S(E) = {x ∈ E : ‖x‖ = 1}, E is said to be uniformly smooth provided that

the limit

lim
t→0

‖x + ty‖ − ‖x‖

t

exists uniformly for each x, y ∈ S(E).

Definition 1.3 An operator A with domain D(A) and range R(A) in X is said to be accretive if,
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for each xi ∈ D(A) and yi ∈ Axi(i = 1, 2), there exists a j ∈ J(x2−x1) such that 〈y2−y1, j〉 ≥ 0,

where J is the duality map from E to the dual space E∗.

An accretive operator A is m-accretive if R(I + λA) = E for all λ > 0.

Denote by F the zero set of A; i.e.,

F := A−1(0) = {x ∈ D(A) : 0 ∈ Ax}.

Denote by Jr the resolvent of A for r > 0: Jr = (I + rA)−1.

It is known that Jr is a nonexpansive mapping from E to C := D(A).

For the proof of our main results, we shall need the following lemmas.

Lemma 2.1
[2] Let E be a uniformly smooth Banach space and let T : C → C be a nonexpansive

mapping with a fixed point. For each fixed u ∈ C and every t ∈ (0, 1), the unique fixed point

xt ∈ C of the contraction x 7→ tu + (1 − t)Tx converges strongly as t → 0 to fixed point of T .

Define Q : C → F (T ) by Qu = s − limt→0 xt. Then Q is the unique sunny nonexpansive retract

from C onto F (T ); that is, Q satisfies the property:

〈u − Qu, J(z − Qu)〉 ≤ 0, u ∈ C, z ∈ F (T ).

Lemma 2.2
[4] Let {αn} be a nonnegative real sequence that satisfies the condition: αn+1 ≤

(1−βn)αn+βnγn for all n ≥ n0, where the sequence βn ∈ [0, 1], and {γn} satisfies the conditions:

(i) limn→∞ βn = 0; (ii) Σ∞
n=0βn = ∞; (iii) limn→∞ γn = 0, then limn→∞ αn = 0.

Lemma 2.3 (The Sub-differential Inequality) Let E be a Banach space, J the normalized duality

mapping from E into 2E∗

, ∀x, y ∈ E, ‖x + y‖2 ≤ ‖x‖2 + 2〈y, j(x + y)〉, ∀j(x + y) ∈ J(x + y).

Lemma 2.4
[5] (The Resolvent Identity) For λ, µ > 0, there holds the identity: Jλx = Jµ(µ

λ
x +

(1 − µ
λ
)Jλx), x ∈ E.

Lemma 2.5
[6] Assume that c2 ≥ c1 > 0. Then ‖Jc1

x − x‖ ≤ ‖Jc2
x − x‖ for all x ∈ E.

Lemma 2.6
[7] Assume that E has a weakly continuous duality map Jϕ with gauge ϕ.

(i) For all x, y ∈ E, there holds the inequality

Φ(‖x + y‖) ≤ Φ(‖x‖) + 〈y, Jϕ(x + y)〉.

(ii) Assume a sequence {xn} in E is weakly convergent to a point x. Then there holds the

identity

lim sup
n→∞

Φ(‖xn − y‖) = lim sup
n→∞

Φ(‖xn − x‖) + Φ(‖y − x‖).

3. Main results

Let E be a real Banach space, C a nonempty closed convex subset of E and T be a nonex-

pansive mapping from C into itself with F (T ) 6= ∅. For t ∈ (0, 1) and f ∈ ΠC , let xt ∈ C be the

unique fixed point of the contraction x 7→ tf(x) + (1 − t)Tx on C; that is

xt = tf(xt) + (1 − t)Txt. (1)
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Theorem 3.1 Let E be a reflexive Banach space and has a weakly continuous duality map Jϕ

with a gauge ϕ. Let C be a closed convex subset of E and T be a nonexpansive mapping from C

into itself with F (T ) 6= ∅, f ∈ ΠC . For t ∈ (0, 1), xt ∈ C is the unique solution in C to Eq.(3.1).

Then T has a fixed point if and only if {xt} remains bounded as t → 0+, and in this case, {xt}

converges strongly to a fixed point of T . If we define Q : ΠC → F (T ) by

Q(f) := lim
t→0

xt, f ∈ ΠC , (2)

then Q(f) solves the variational inequality

〈(I − f)Q(f), J(Q(f) − p)〉 ≤ 0, f ∈ ΠC , p ∈ F (T ). (3)

In particular, if f = u ∈ C is a constant, then (2) reduces to the sunny nonexpansive retraction

from C onto F (T ),

〈Q(u) − u, J(Q(u) − p)〉 ≤ 0, u ∈ C, p ∈ F (T ).

Proof Necessity. Assume that F (T ) 6= ∅. Take p ∈ F (T ), for t ∈ (0, 1).

‖xt − p‖ = ‖t(f(xt) − p) + (1 − t)(Txt − p)‖

≤ t‖f(xt) − p‖ + (1 − t)‖Txt − p‖

≤ t‖f(xt) − f(p)‖ + t‖f(p) − p‖ + (1 − t)‖Txt − p‖

≤ (1 − t + αt)‖xt − p‖ + t‖f(p) − p‖.

We obtain ‖xt − p‖ ≤ 1
1−α

‖f(p) − p‖. Therefore {xt} is bounded.

Sufficiency. Assume that {xt} is bounded as t → 0+. Assume that tn → 0+ and {xtn
}

is bounded. Since E is reflexive, we may assume that xtn
⇀ z for some z ∈ C. Since Jϕ is

weakly continuous, by Lemma 2.6, we have lim supn→∞ Φ(‖xtn
− x‖) = lim supn→∞ Φ(‖xtn

−

z‖) + Φ(‖x − z‖), ∀x ∈ E. Put g(x) = lim supn→∞ Φ(‖xtn
− x‖), x ∈ E. It follows that g(x) =

g(z) + Φ(‖x − z‖), ∀x ∈ E. {xn} is bounded, so are {f(xtn
)} and {Txtn

}, we get

‖xtn
− Txtn

‖ =
tn

1 − tn
‖f(xtn

) − xtn
‖ → 0.

g(Tz) = lim sup
n→∞

Φ(‖xtn
− Tz‖) = lim sup

n→∞
Φ(‖Txtn

− Tz‖)

≤ lim sup
n→∞

Φ(‖xtn
− z‖) = g(z). (4)

On the other hand,

g(Tz) = g(z) + Φ(‖Tz − z‖). (5)

Combining (4) and (5) yields that Φ(‖Tz − z‖) ≤ 0. Hence Tz = z, and z ∈ F (T ).

Next we claim that {xt} converges strongly to a fixed point of T provided that it remains

bounded as t → 0+. Let {tn} be a sequence in (0, 1) such that tn → 0 and xtn
⇀ z, as n → ∞.

Then z ∈ F (T ) by the above arguments. We show that xtn
→ z. In fact, by Lemma 2.6,

Φ(‖xtn
− z‖) ≤Φ((1 − tn)‖Txtn

− z‖) + tn〈f(xtn
) − z, Jϕ(xtn

− z)〉

≤(1 − tn)Φ(‖xtn
− z‖) + tn〈f(xtn

) − f(z) + f(z)− z, Jϕ(xtn
− z)〉

≤(1 − tn)Φ(‖xtn
− z‖) + tn‖f(xtn

) − f(z)‖ϕ(‖xtn
− z‖)+
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tn〈f(z) − z, Jϕ(xtn
− z)〉

≤(1 − tn)Φ(‖xtn
− z‖) + αtn‖xtn

− z‖ϕ(‖xtn
− z‖)+

tn〈f(z) − z, Jϕ(xtn
− z)〉.

This implies that

Φ(‖xtn
− z‖) ≤ α‖xtn

− z‖ϕ(‖xtn
− z‖) + 〈f(z) − z, Jϕ(xtn

− z)〉.

Since xtn
⇀ z, as n → ∞, we have Jϕ(xtn

−z) ⇀ 0, and by the continuous strictly increasing

property of the gauge function, we have ϕ(‖xtn
− z‖) → 0. Then Φ(‖xtn

− z‖) → 0. Hence

xtn
→ z. Finally, we prove that the entire net {xt} converges strongly. To this end, we assume

that two null sequences {tn} and {sn} in (0, 1) are such that xtn
→ z and xsn

→ z′. We claim

that z = z′. In fact, for p ∈ F (T ),

〈xt − Txt, Jϕ(xt − p)〉 = Φ(‖xt − p‖) + 〈p − Txt, Jϕ(xt − p)〉

≥ Φ(‖xt − p‖) − ‖p − Txt‖‖Jϕ(xt − p)‖

≥ Φ(‖xt − p‖) − Φ(‖xt − p‖) = 0.

On the other hand, xt−Txt = t
1−t

(f(xt)−xt). For t ∈ (0, 1) and p ∈ F (T ), 〈xt−f(xt), Jϕ(xt−

p)〉 ≤ 0. In particular, 〈xtn
−f(xtn

), Jϕ(xtn
−p)〉 ≤ 0 and 〈xsn

−f(xsn
), Jϕ(xsn

−p)〉 ≤ 0. Letting

n → ∞, we have 〈z − f(z), Jϕ(z − p)〉 ≤ 0 and 〈z′ − f(z′), Jϕ(z′ − p)〉 ≤ 0. Adding up, we get

〈−z′ − (f(z) − f(z′)), Jϕ(z − z′)〉 ≤ 0, i.e., 〈z − z′), Jϕ(z − z′)〉 ≤ 〈f(z) − f(z′), Jϕ(z − z′)〉 ≤

α〈z − z′, Jϕ(z − z′)〉, Φ(‖z − z′‖) ≤ αΦ(‖z − z′‖), we have z = z′ and {xt} converges strongly.

Define Q : ΠC → F (T ) by Q(f) = limt→0 xt, f ∈ ΠC . Since we have proved that for

all t ∈ (0, 1) and p ∈ F (T ), 〈xt − f(xt), Jϕ(xt − p)〉 ≤ 0. Letting t → 0, we have 〈(I −

f)Q(f), Jϕ(Q(f) − p)〉 ≤ 0. This implies that

〈(I − f)Q(f), J(Q(f) − p)〉 ≤ 0,

since Jϕ(x) = ϕ(‖x‖)
‖x‖ J(x) for x 6= 0.

If f = u is a constant, then 〈xt − u, Jϕ(xt − p)〉 ≤ 0, letting t → 0, we have 〈Q(u) −

u, Jϕ(Q(u) − p)〉 ≤ 0, which implies

〈Q(u) − u, J(Q(u) − p)〉 ≤ 0, u ∈ C, p ∈ F (T ),

since Jϕ(x) = ϕ(‖x‖)
‖x‖ J(x) for x 6= 0.

Hence Q reduces to the sunny nonexpansive retraction from C to F (T ). This completes the

proof. 2

Next we consider the following iteration process
{

x0 ∈ C,

xn+1 = αnf(xn) + (1 − αn)Jrn
xn, n ≥ 0,

(6)

where αn ∈ (0, 1), rn ∈ (0,∞). In the case f = u is a constant, the Eq.(6) reduces to the
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following: {
x0 ∈ C,

xn+1 = αnu + (1 − αn)Jrn
xn, n ≥ 0,

(7)

which has been investigated in [3] and [8]. Let {xn} be defined by (7). In [8] the authors

established strong convergence theorems under the conditions E is uniformly smooth and has a

weakly continuous duality map Jϕ with some gauge ϕ; in [3] the authors obtained the strong

convergence theorems under the assumptions that E is uniformly smooth or E is reflexive and

has a weakly continuous duality map.

One question arises naturally: Can the iterative algorithms used in [3] and [8] be extended

to iterative algorithm (6)? We give a positive answer to this problem.

Theorem 3.2 Suppose E is a reflexive Banach space and has a weakly continuous duality map

Jϕ with some gauge ϕ, A is an m-accretive operator in E such that C = D(A). Assume that

(i) αn → 0;

(ii) Σ∞
n=0αn = ∞;

(iii) rn → ∞.

Let {xn} be defined by (6). Then {xn} converges strongly to a point in F .

Proof First notice that {xn} is bounded. In fact, take a fixed p ∈ F

‖xn+1 − p‖ ≤ αn‖f(xn) − p‖ + (1 − αn)‖Jrn
xn − p‖

≤ αnα‖xn − p‖ + αn‖f(p) − p‖ + (1 − αn)‖xn − p‖

= (1 − αn + ααn)‖xn − p‖ + αn‖f(p) − p‖,

by induction, we obtain ‖xn −p‖ ≤ max{ 1
1−α

‖f(p)−p‖, ‖x0−p‖} = M , for all n ≥ 0. Therefore

{xn} is bounded, so are {Jrn
xn}, {f(xn)}, hence ‖xn+1 − Jrn

xn‖ = αn‖f(xn) − Jrn
xn‖ → 0.

Next we prove that

lim sup
n→∞

〈f(p) − p, Jϕ(xn − p)〉 ≤ 0, where p = Q(f). (8)

Take a subsequence {xnk
} of {xn} such that

lim sup
n→∞

〈f(p) − p, Jϕ(xn − p)〉 = lim
k→∞

〈f(p) − p, Jϕ(xnk
− p)〉. (9)

Since E is reflexive, we may assume that xnk
⇀ x̃. Moreover, ‖xn+1 − Jrn

xn‖ → 0, we obtain

Jrn
k
−1

xnk−1 ⇀ x̃.

Taking the limit as k → ∞ in the relation [Jrn
k
−1

xnk−1, Arn
k
−1

xnk−1] ∈ A, we get [x̃, 0] ∈ A.

That is x̃ ∈ F . Hence by (9) and Lemma 2.1, we have

lim sup
n→∞

〈f(p) − p, Jϕ(xn − p)〉 = 〈f(p) − p, Jϕ(x̃ − p)〉 ≤ 0.

Finally, to prove that xn → p. Using Lemma 2.6,

Φ(‖xn+1 − p‖) = Φ(‖(1 − αn)(Jrn
xn − p) + αn(f(xn) − p)‖)

≤ (1 − αn)Φ(‖xn − p‖) + αn〈f(xn) − f(p) + f(p) − p, Jϕ(xn+1 − p)〉
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≤ (1 − αn + ααn)Φ(‖xn − p‖) + αn〈f(p) − p, Jϕ(xn+1 − p)〉

= (1 − (1 − α)αn)Φ(‖xn − p‖) + (1 − α)αn

1

1 − α
〈f(p) − p, Jϕ(xn+1 − p)〉.

An application of Lemma 2.2 yields that Φ(‖xn+1 − p‖) → 0; i.e., ‖xn − p‖ → 0.

Theorem 3.3 Suppose E is a reflexive Banach space and has a weakly continuous duality map

Jϕ with some gauge ϕ, A is an m-accretive operator in E such that C = D(A). Assume that

(i) αn → 0, Σ∞
n=0αn = ∞ and Σ∞

n=1|αn+1 − αn| < ∞ (e.g. αn = 1
n
);

(ii) rn ≥ ε for all n and Σ∞
n=1|rn+1 − rn| < ∞ (e.g. rn = 1 + 1

n
).

Let {xn} be defined by (6). Then {xn} converges strongly to a point in F .

Proof From (6) we have

xn+1 = αnf(xn) + (1 − αn)Jrn
xn,

xn = αn−1f(xn−1) + (1 − αn−1)Jrn−1
xn−1,

and

xn+1 − xn =(αn − αn−1)(f(xn) − Jrn−1
xn−1)+

(1 − αn)(Jrn
xn − Jrn−1

xn−1) + αn−1(f(xn) − f(xn−1)). (10)

If rn−1 ≤ rn, using the resolvent identity Jrn
xn = Jrn−1

( rn−1

rn

xn + (1 − rn−1

rn

)Jrn
xn), we obtain

that

‖Jrn
xn − Jrn−1

xn−1‖ ≤
rn−1

rn

‖xn − xn−1‖ + (1 −
rn−1

rn

)‖Jrn
xn − xn−1‖

≤ ‖xn − xn−1‖ + (
rn − rn−1

rn

)‖Jrn
xn − xn−1‖

≤ ‖xn − xn−1‖ +
1

ε
‖rn − rn−1‖‖Jrn

xn − xn−1‖. (11)

It follows from (10) that

‖xn+1 − xn‖ ≤M(‖αn − αn−1‖) + ‖rn+1 − rn‖) + (1 − αn)‖xn − xn−1‖+

αn−1α‖xn − xn−1‖

≤(1 − (1 − α)αn)‖xn − xn−1‖ + M1(‖αn − αn−1‖) + ‖rn+1 − rn‖), (12)

where M1 > 0 is some approximate constant. Similarly we can prove (12) if rn−1 ≥ rn. By the

Conditions (i), (ii), (iii) and Lemma 2.2, we can conclude that ‖xn+1 − xn‖ → 0. This implies

that

‖xn − Jrn
xn‖ ≤ ‖xn+1 − xn‖ + ‖xn+1 − Jrn

xn‖. (13)

It follows that ‖Arn
xn‖ = 1

rn

‖xn − Jrn
xn‖ ≤ 1

ε
‖xn − Jrn

xn‖.

Now if {xnk
} is a subsequence of {xn} converging weakly to a point x̃, then taking the limit

as k → ∞ in the relation [Jrn
k
xnk

, Arn
k
xnk

] ∈ A, we get [x̃, 0] ∈ A. That is x̃ ∈ F . Then all

weak limit points of {xn} are zeros of A. The rest of the proof follows from the corresponding

parts of Theorem 3.2.
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Now consider the framework of uniformly smooth Banach space. Since F is the fixed point

set of nonexpansive mapping Jr for all r > 0, there exists a unique sunny nonexpansive retraction

Q from C onto F . In particular, for each n ≥ 1, we have

Q(f) = lim
t→0

zt,n, f ∈ ΠC , (14)

where zt,n ∈ C is the unique point in C such that

zt,n = tf(zt,n) + (1 − t)Jrn
zt,n, (15)

{zt,n} is uniformly bounded; in fact, ‖zt,n − p‖ ≤ 1
1−α

‖f(p) − p‖ for all t ∈ (0, 1), n ≥ 1 and

p ∈ F .

Lemma 3.4 The limit in (14) is uniform for n ≥ 1.

Proof It is sufficient to show that for any positive integer nt (may depend on t ∈ (0, 1)), if

zt,nt
∈ C is the unique point in C such that

zt,nt
= tf(zt,nt

) + (1 − t)Jrnt
zt,nt

. (16)

Then {zt,nt
} converges as t → 0 to a point in F . For short, put wt = zt,nt

, vt = Jrnt
, it follows

that

wt = tf(wt) + (1 − t)vtwt. (17)

Note that F (vt) = F for all t, {wt} is bounded since ‖wt − p‖ ≤ 1
1−α

‖f(p) − p‖ for all t ∈ (0, 1)

and p ∈ F , so are {f(wt)}, {vtwt}. Then ‖wt − vtwt‖ = t‖f(wt) − vtwt‖ → 0 (as t → 0). Since

rn ≥ ε, for all n, by Lemma 2.5, we have

‖wt − Jεwt‖ ≤ 2‖wt − Jrnt
wt‖ = 2‖wt − vtwt‖ → 0. (18)

Let {tk} be a sequence in (0, 1) such that tk → 0 as k → ∞. Define a function g on C by

g(w) = LIMk
1
2‖wtk

− w‖2, w ∈ C, where LIM denotes a Banach limit on l∞. Let K := {w ∈

C : g(w) = min{g(y) : y ∈ C}}, then K is a nonempty closed convex bounded subset of

C. K is also invariant under the nonexpansive mapping Jε. Indeed, noting (18), for w ∈ K,

g(Jεw) = LIMk
1
2‖wtk

− Jεw‖2 ≤ LIMk
1
2‖wtk

− w‖2 = g(w). Since a uniformly smooth Banach

space has the fixed point property for nonexpansive mappings and Jε is a nonexpansive mapping

of C, Jε has a fixed point in K, say w′. Now since w′ is also a minimizer of g over C, for w ∈ C,

0 ≤
g(w′) + λ(w − w′) − g(w′)

λ
= LIMk

1/2‖wtk
− w′ + λ(w′ − w)‖2 − 1/2‖wtk

− w′‖2

λ
.

E is uniformly smooth, the duality map J is uniformly continuous on bounded sets, letting

λ → 0+ in the last equation:

0 ≤ LIMk〈w
′ − w, J(wtk

− w′)〉, w ∈ C. (19)

Since wtk
− w′ = tk(f(wtk

) − w′) + (1 − tk)(vtk
wtk

− w′),

‖wtk
− w′‖2 =tk〈f(wtk

) − w′, J(wtk
− w′)〉 + (1 − tk)〈vtk

wtk
− w′, J(wtk

− w′)〉

≤αtk‖wtk
− w′‖2 − tk〈f(w′) − w′), J(wtk

− w′)〉+
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(1 − tk)‖vtk
wtk

− w′‖‖J(wtk
− w′)‖

≤(αtk + 1 − tk)‖wtk
− w′)‖2 + tk〈f(w′) − w′, J(wtk

− w′)〉.

It follows that

‖wtk
− w′‖2 ≤

1

1 − α
〈f(w′) − w′, J(wtk

− w′)〉. (20)

Letting w = f(w′) in (19), we get LIM‖wtk
−w′‖2 ≤ 0. Therefore {wtk

} contains a subsequence,

{wtk
} converging strongly to w (say). By (18), w is also a fixed point of Jε; i.e., a point in F .

To prove that the entire net {wt} converges strongly, assume {sk} is another null subsequence

in (0, 1) such that wsk
→ w2. Then w2 ∈ F . Repeating the argument of (20), we get

‖wt − w′‖2 ≤
1

1 − α
〈f(w′) − w′, J(wt) − w′)〉, ∀w′ ∈ F.

In particular,

‖w2 − w1‖
2 ≤

1

1 − α
〈f(w1) − w1, J(w2 − w1)〉;

‖w1 − w2‖
2 ≤

1

1 − α
〈f(w2) − w2, J(w1 − w2)〉.

Adding up the last two inequalities, ‖w1 − w2‖2 ≤ 0, that is w1 = w2.

Theorem 3.5 Suppose E is a uniformly smooth Banach space, A is an m-accretive operator in

E such that C = D(A). Assume that

(i) αn → 0, Σ∞
n=0αn = ∞ and Σ∞

n=1|αn+1 − αn| < ∞ (e.g. αn = 1
n
);

(ii) rn ≥ ε for all n and Σ∞
n=1|rn+1 − rn| < ∞ (e.g. rn = 1 + 1

n
).

Then {xn} converges strongly to a point in F .

Proof It is easy to see that {xn} is bounded, so are {Jrn
xn}, {f(xn)}. We show that lim supn→∞〈f(z)−

z, J(xn − z)〉 ≤ 0, where

z = Q(f) = lim
z→0

zt,n, zt,n = tf(zt,n) + (1 − t)Jrn
zt,n,

‖zt,n − xn‖
2 = t(f(zt,n) − xn) + (1 − t)(Jrn

zt,n − xn).

Putting an(t) = ‖Jrn
xn − xn‖(2‖zt,n − xn‖ + ‖Jrn

xn − xn‖) → 0(n → ∞) and by Lemma 2.3

‖zt,n − xn‖
2 ≤(1 − t)2‖Jrn

zt,n − xn‖
2 + 2t〈f(zt,n) − xn, J(zt,n − xn)〉

≤(1 − t)2(‖Jrn
zt,n − Jrn

xn‖ + ‖Jrn
xn − xn‖)

2+

2t〈f(zt,n) − zt,n, J(zt,n − xn)〉 + 2t‖zt,n − xn‖
2

≤(1 − t)2‖zt,n − xn‖
2 + an(t)+

2t〈f(zt,n) − zt,n, J(zt,n − xn)〉 + 2t‖zt,n − xn‖
2

which yields that 〈f(zt,n) − zt,n, J(xn − zt,n)〉 ≤ t
2‖zt,n − xn‖2 + 1

2t
an(t).

It follows that lim sup〈f(zt,n) − zt,n, J(xn − zt,n〉 ≤ t
2M , where M > 0 is a constant such

that M ≥ ‖zt,n − xn‖2 for all n ≥ 1 and t ∈ (0, 1). Hence

lim sup〈f(zt,n) − zt,n, J(xn − zt,n〉 ≤ 0. (21)
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J is uniformly continuous on bounded sets and the uniform convergence of {zt,n} to Q(f), so we

can interchange the two limits and deduce that

lim sup〈f(z) − z, J(xn − z)〉 ≤ 0. (22)

Finally to show xn → z. xn+1 − z = αn(f(xn)− z)+ (1−αn)(Jrn
xn − z). Applying the Lemma

2.3, we get

‖xn+1 − z‖2 ≤(1 − αn)2‖Jrn
xn − z‖2 + 2αn〈f(xn) − z, J(xn+1 − z)〉

≤(1 − αn)2‖xn − z‖2 + 2αn〈f(xn) − f(z) + f(z) − z, J(xn+1 − z)〉

≤(1 − αn)2‖xn − z‖2 + 2αnα‖xn − z‖‖xn+1 − z‖+

2αn〈f(z) − z, J(xn+1 − z)〉

≤(1 − αn)2‖xn − z‖2 + ααn(‖xn − z‖2 + ‖xn+1 − z‖2)+

2αn〈f(z) − z, J(xn+1 − z)〉.

It then follows that

‖xn+1 − z‖2 ≤
1 − (2 − α)αn + α2

n

1 − ααn

‖xn − z‖2 +
2αn

1 − ααn

〈f(z) − z, J(xn+1 − z)〉

≤
1 − (2 − α)αn

1 − ααn

‖xn − z‖2 +
2αn

1 − ααn

〈f(z) − z, J(xn+1 − z)〉 + Mα2
n

Put α̃n = 2(1−α)αn

1−ααn
, β̃n = M(1−2ααn)αn

1−α
+ 1

1−α
〈f(z) − z, J(xn+1 − z)〉, then we get

‖xn+1 − z‖2 ≤ (1 − α̃n)‖xn − z‖2 + α̃nβ̃n. (23)

From the assumptions (i) and (22), α̃n → 0, Σα̃n = ∞, lim sup β̃n ≤ 0. Using the Lemma 2.2 to

(23) we conclude xn → z as n → ∞.

Remark The results in our paper improve the results in [3]. When f = u is a constant, the

results reduce to the ones in [3], which are special cases of ours.
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