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1. Introduction and preliminaries

The concept of semi-Markov process was first put forward and discussed by Lévy and Smith

in 1954. The theories and applications of semi-Markov process have extensively developed and

gradually been perfected in this half a century. Nowadays, semi-Markov has already become an

independent research direction of stochastic process.

Definition 1.1 The matrix Q(t) = (Qij(t); i, j ∈ E) is called semi-Markov matrix if it satisfies

the following conditions:

(1) Qij(t) ≡ 0 for every i, j ∈ E and t < 0;

(2) Qij(t) is non-decreasing and right continuous for every t ≥ 0;

(3)
∑

j∈E Qij(t)
∆
= pi(t) ≤ 1 for every i ∈ E and t ≥ 0.

Let pij = Qij(∞) = limt→∞ Qij(t); Gij(t) =

{

Qij(t)
Qij(∞) if Qij(∞) > 0,

0 if Qij(∞) = 0.

Semi-Markov process X(t, ω) is constructed in many ways in [1, §3–§7]. But they have many

shortages. For example, the expression of semi-Markov process is not obvious; and they are

multidimensional stochastic process. Actually, semi-Markov process has not been constructed

in the strict sense. Recently semi-Markov process is defined to be a special Markov skeleton
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process by Hou[2] etc, that is, the following Definition 1.2. And the shortcoming of construction

of semi-Markov process in reference [1, §3–§7] is overcome.

Definition 1.2 Let X(t, ω)
∆
= (xt(ω); t ≥ 0) be a Markov skeleton process defined on probability

space (Ω,F , P ) and valued in countable set E. X(t, ω) is called semi-Markov process, if it satisfies

the following conditions:

(1) There exists a sequence of stopping times {τn, n = 0, 1, 2, . . .} such that 0 = τ0 ≤ τ1 ≤

τ2 ≤ · · · , limn→∞ τn = τ , P-a.e;

(2) For every A ∈ B(E), P (xτn+1
∈ A|Fτn

) = P (xτn+1
∈ A|xτn

) = Pxτn
(xτ1

∈ A), PFτn
-a.e;

(3) If there exists n ≥ 0 such that τn+1(ω) > τn(ω), then xt(ω) = xτn
(ω) for all τn ≤ t <

τn+1, P–a.e.

Here Fτn
is a σ-algebra generated by X(t, ω) prior to τn; B(E) is a Borel σ-algebra generated

by E.

Semi-Markov process is intuitively described as follows: If we give the embedded Markov

chain Xτn

∆
= (xτn

(ω); n ≥ 0)
∆
= Xn of X(t, ω), then Xn is a homogeneous Markov chain. And

if τn+1(ω) > τn(ω), then X(t, ω) is a constant in the interval [τn(ω), τn+1(ω)). Let θn(ω) =

τn(ω) − τn−1(ω) for every n ≥ 1. Then the sequence of random variables {θn(ω); n ≥ 1} are

conditionally independent and have the same conditional distributions.

Using the semi-Markov matrix, we will solve the following problems in this paper: (1) We

will obtain the transition probability of jump chain and the sojourn time at state i (i ∈ E)

of semi-Markov process; (2) We will deduce the one-dimensional distribution of semi Markov

process, and construct the semi-Markov process by one-dimensional distribution matrix and

initial distribution; (3) Finally, we will prove that the Definitions 1.2 and 3.1, decided by semi-

Markov matrix and initial distribution, are equivalent.

2. The transition probability of jump chain and the distribution of

sojourn time

For convenience, the semi-Markov process decided by semi-markov matrix and initial distri-

bution is expressed by X(t, ω)
∆
= (xt(ω); t ≥ 0).

The two-dimensional Markov chain (ξn, θn, ζ), n = 0, 1, 2, . . . defined on the probability space

(Ω,F , P ) and valued in E× [0, +∞) is introduced in [1, §2], where the initial distribution of first

component of (ξn, θn, ζ) is given by vector Π = (πi; i ∈ E), that is, P (ξ0 = i) = πi; Q(t) is

decided by (ξn, θn, ζ) as follows:

P (ξn+1 = j, θn ≤ t|ξ0, . . . , ξn, θ0, . . . , θn−1, ζ > n)

= P (ξn+1 = j, θn ≤ t|ξn, ζ > n) = Qξnj(t).

The process (ξn, θn, ζ) is a special two-dimensional Markov process. The transition probability

only depends on the first discrete component {ξn, n ≥ 0}. ζ means the times that the process

may occur to transfer. (ξn, n ≥ 0) is a Markov chain, whose transition probability is

P (ξn+1 = j|ξn, ζ > n) = Qξnj(∞).
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It was proved in [1, §2, Lemma 1.1] that the sequence {θn; n ≥ 0} of second component of

(ξn, θn, ζ) are conditionally independent. Namely, we have

P (θ0 ≤ x0, θ1 ≤ x1, . . . , θn−1 ≤ xn−1|ξ0 = i0, . . . , ξn = in) =

n−1
∏

k=0

Gikik+1
(xk).

In [1, §5] was introduced the embedded Markov chain ξn, whose transition probability is

pij = P (ξn = j|ξn−1 = i) = Qij(∞),

and the sojourn time ζij of that X(t, ω) jump to j from state i, whose distribution is

P (ζij ≤ t) = P (θn−1 ≤ t|ξn−1 = i, ξn = j) = Gij(t).

We continue to use the symbol of [1, §5]. The semi-Markov process X(t, ω) evolves in the

following manner: X(t, ω) chooses next state j for transition probability pij = Qij(∞) at state i,

and spends a period of time ζij whose distribution function is Gij(t), whereafter transfer to state

j; X(t, ω) again chooses next state k for transition probability pjk = Qjk(∞) at state j, and

spends a period of time ζjk whose distribution function is Gjk(t), whereafter transfer to state k;

X(t, ω) goes on evolving in this way.

Since there may exist false jump case, that is, there exists i ∈ E such that pii
∆
= Qii(∞) > 0,

ξn may not be the jump chain of X(t, ω). Furthermore, ζij may also not be the sojourn time at

state i. Obviously, ξn become to be jump chain if and only if pii = Qii(∞) = 0 for all i ∈ E.

Theorem 2.1 (1) Let 0 = η0 ≤ η1 ≤ · · · ≤ ηn ≤ · · · be sequence of jump points of X(t, ω), that

is, they satisfy xηn−0
(ω)

∆
= lims↓0 xηn−s

(ω) 6= xηn
(ω) for every n ≥ 1. Then we have

P (xηn
= k|xηn−1

= i) = Pi(xη1
= k) =

{

pik

1−pii
if i 6= k,

0 if i = k.
(2.1)

(2) Let αik(ω) be the sojourn time at state i of that X(t, ω) jump to k from i. Set, for every

i, k ∈ E,

Fik(t) = P (αik ≤ t); F̄ik(λ) =

∫ +∞

0

e−λtdFik(t); Ḡik(λ) =

∫ +∞

0

e−λtdGik(t).

Then we have

Fik(t) =

∞
∑

n=0

pn
ii(1 − pii)(G

(n)
ii ∗ Gik)(t); (2.2)

F̄ik(λ) =

∞
∑

n=0

pn
ii(1 − pii)Ḡ

n
ii(λ)Ḡik(λ) =

1 − pii

1 − piiḠii(λ)
Ḡik(λ), (2.3)

where G
(n)
ii (t) is the n-fold convolution of Gii(t); (G

(n)
ii ∗ Gik)(t) is the convolution of G

(n)
ii (t)

with Gik(t).

(3) Let αi(ω) be the sojourn time at state i of X(t, ω). Set, for every i, j ∈ E,

Fi(t) = P (αi ≤ t); F̄i(λ) =

∫ +∞

0

e−λtdFi(t); Ḡij(λ) =

∫ +∞

0

e−λtdGij(t).
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Then we have

Fi(t) =
∑

j∈E−{i}

pij

1 − pii

Fij(t); F̄i(λ) =
∑

j∈E−{i}

pij

1 − piiḠii(λ)
Ḡij(λ).

Proof (1) Since ξn is a homogeneous Markov chain, Xn
∆
= (xηn

; n ≥ 0) satisfy homogeneity. So

we have, if i 6= k,

P (xηn
= k|xηn−1

= i) = P (xη1
= k|x0 = i) = Pi(X1 = k)

=

∞
∑

n=0

Pi(ξn+1 = k, ξ1 = i, . . . , ξn = i)

=

∞
∑

n=0

Pi(ξ1 = i, . . . , ξn = i) · Pi(ξn+1 = k|ξ1 = i, . . . , ξn = i)

=

∞
∑

n=0

pn
iipik =

pik

1 − pii

.

If i = k, obviously, P (xηn
= i|xηn−1

= i) = 0 holds by the definition of ηn.

(2) Let vi be the false jump times when X(t, ω) stays at state i. Obviously, it is a random

variable with geometric distribution, whose distribution is

P (vi = n) = pn
ii(1 − pii).

Here we suppose without loss of generality that pii < 1 (Otherwise, X(t, ω) have not jump point

starting from i for almost all ω). Obviously,

{ω : αik(ω) ≤ t} = {ω :

vi(ω)
∑

m=0

ζii(ω) + ζik(ω) ≤ t}, P-a.e.

Therefore, using total probability formula in the following formulae, we obtain

Fik(t) = P (αik ≤ t) = P (

vi(ω)
∑

m=0

ζii(ω) + ζik(ω) ≤ t)

=

∞
∑

n=0

P (vi = n)P (

n
∑

m=0

ζii(ω) + ζik(ω) ≤ t)

=

∞
∑

n=0

pn
ii(1 − pii)P (

n
∑

m=0

ζii(ω) + ζik(ω) ≤ t).

Again P (
∑n

m=0 ζii(ω) ≤ t) is equal to the n-fold convolution, denoted by G
(n)
ii (t), of Gii(t) from

P (ζii ≤ t) = Gii(t) (Convention: G
(0)
ii (t) = 1), and P (

∑n
m=0 ζii(ω) + ζik(ω) ≤ t) is equal to the

convolution, denoted by (G
(n)
ii ∗ Gik)(t), of G

(n)
ii (t) with Gik(t). Hence,

Fik(t) =
∞
∑

n=0

pn
ii(1 − pii)(G

(n)
ii ∗ Gik)(t),

which is (2.2). Taking Laplace transform we have

F̄ik(λ) =

∞
∑

n=0

pn
ii(1 − pii)Ḡ

n
ii(λ)Ḡik(λ) =

1 − pii

1 − piiḠii(λ)
Ḡik(λ),
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which is (2.3).

(3) If the jump chain {xηn
; n ≥ 0} of semi-Markov process is honest, that is,

∑

j∈E P (xηn
=

j) = 1 for every n ≥ 1, by total probability formula, we have

Fi(t) = P (αi ≤ t) =
∑

j∈E−{i}

P (αi ≤ t, xη1
= j) =

∑

j∈E−{i}

pij

1 − pii

Fij(t).

If the jump chain {xηn
; n ≥ 0} of semi-Markov process is not honest, by the above description

about the sample path of X(t, ω) we know that X(t, ω) moves in E. So we may take an interrupt

state d. Set the time when X(t, ω) jumps to d starting from any state i ∈ E is equal to ∞, that

is, we define Gid(t) = 0 for all t ≥ 0 and i ∈ E, and the transition probability, from i to d, of

the jump chain {xηn
; n ≥ 0} of X(t, ω) is defined by P (xηn

= d|xηn−1
= i) =

1−
∑

j∈E
pij

1−pii
. In this

case, by an analogous proof of the case that jump chain is honest we know that 3 is true. 2

3. One-dimensional distribution and the construction of semi-Markov

process

One-dimensional distribution of semi-Markov process was not obtained in [1]. That one-

dimensional distribution of semi-Markov is the smallest nonnegative solution of some equation

is obtained in [2, §4.13.2], but the solution was not computed. We will derive one-dimensional

distribution in the following.

Let τ(ω) = lim
n→∞

ηn(ω). τ(ω) is called leap point of X(t, ω). By the definition of semi-

Markov process we know that X(t, ω) is actually the process prior to leap point. Namely, it may

be written as (X(t, ω), t < τ(ω)) (that is, X(t, ω) = (X(t, ω), t < τ(ω))).

Lemma 3.1 Let F(η1) be the smallest σ-algebra generated by η1. For every fixed B ∈ F(η1),

set B = {B, B̄, ∅}. Let F(B, xη1
, xη0

) be the smallest σ-algebra generated by all sets of form

{B, xη1
= j, xη0

= l} for any j, l ∈ E, and every B ∈ B. Then we have, for every A ∈ F(xt(ω), t ≥

η1),

P (A|F(B, xη1
, xη0

)) = P (A|F(B, xη1
)), P-a.e.

In particular, we obtain

P (A|B, xη1
= k, xη0

= i)) = P (A|B, xη1
= k), P-a.e.

Proof For every G ∈ F(B, xη1
, xη0

), we will prove the following formula holds.

P (AG) =

∫

G

P (A|F(B, xη1
)P (dω) for every G ∈ F(B, xη1

, xη0
). (3.1)

First suppose that G has the form G = {B, xη1
= j, xη0

= l}.

If P (B) > 0, P (xη1
= j, xη0

= l) > 0 and P (B, xη1
= j, xη0

= l) > 0, let PB be the

conditional probability measure relative to B. Then

P (AG) = P (B)PB(A ∩ {xη1
= j, xη0

= l})

= P (B)

∫

{xη1
=j,xη0

=l}

PB(A|F(xη1
, xη0

))PB(dω). (3.2)
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Since {xη1
= j, xη0

= l} is an atom of F(xη1
, xη0

), by the property of conditional expectation [4,

Chapter 5, §2.3, Theorem 5] we know that PB(A|F(xη1
, xη0

))(ω) is equal to some constant K

for all ω ∈ {ω : xη1
= j, xη0

= l}. So we have

K = PB(A|xη1
= j, xη0

= l) =
P (AB, xη1

= j, xη0
= l)

P (B, xη1
= j, xη0

= l)
=

P (AB|xη1
= j, xη0

= l)

P (B|xη1
= j, xη0

= l)
.

Again B ∈ F(xt(ω), t ≥ η1) since η1 is a stopping time. Therefore, using the Markov property

at jump point, the formula above is changed into

K =
P (AB|xη1

= j)

P (B|xη1
= j)

=
P (AB, xη1

= j)

P (B, xη1
= j)

= P (A|B, xη1
= j). (3.3)

From which and (3.2) it follows that

P (AG) = P (B)

∫

{xη1
=j,xη0

=l}

P (A|B, xη1
= j)PB(dω)

=

∫

{xη1
=j,xη0

=l}

P (B)P (A|B, xη1
= j)PB(dω) =

∫

G

P (A|B, xη1
= j)P (dω), (3.4)

where the last equality follows from theorem of integral transformation.

If P (B, xη1
= j, xη0

= l) = 0, we define

PB(A|xη1
= j, xη0

= l) =

{

P (A|B, xη1
= j) if P (B, xη1

= j) 6= 0,

any fixed constant k ≤ 1 if P (B, xη1
= j) = 0.

In this case (3.4) also holds.

By (3.4) we know that (3.1) holds for G of the form {B, xη1
= j, xη0

= l}. So (3.4) holds for

G of the form

G = {C, xη1
∈ A1, xη0

∈ A0}, where A0, A1 ⊆ E, C is the union of elements in B. (3.5)

All G which satisfy (3.1) form a λ-system Λ. All G shaped as (3.5) form a π-system Π. Hence

by λ-π-system method we obtain Λ ⊃ F(Π) = F(B, xη1
, xη0

). Therefore (3.1) holds. Again from

the definition of conditional probability we complete proof of this lemma. 2

Theorem 3.1 (1) Set pij(t) = Pi(xt = j). Then pij(t) satisfies the following equations:

pij(t) = δij [1 − Fi(t)] +
∑

k 6=i

pik

1 − pii

·

∫ t

0

pkj(t − s)dFik(s), for any i, j ∈ E.

(2) Set hi(λ) =
∫ +∞

0 e−λt(1 − Fi(t))dt; ϕij(λ) =
∫ +∞

0 e−λtpij(t)dt;

πij(λ) =

{

F̄ij(λ) · pij

1−pii
if i 6= j,

0 if i = j;
Π(λ) = (πij(λ); i, j ∈ E);

H(λ) = diag(hi(λ); i ∈ E); Φ(λ) = (ϕij(λ); i, j ∈ E).

Then Φ(λ) =
∑∞

k=0 Πk(λ)H(λ).

Proof Set npij(t) = Pi(xt = j, t < ηn). Let Fη1
be the σ-algebra prior to η1. Obviously,

η1 = αik P{xη0
=i,xη1

=k}– a.e; lim
n→∞

npij(t) = Pi(xt = j, t < τ) = pij(t).
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Again

npij(t) = Pi(xt = j, t < ηn) = Pi(xt = j, t < ηn, t < η1) + Pi(xt = j, t < ηn, η1 ≤ t)

= Pi(xt = j, t < η1) + Pi[Pi(xt = j, t < ηn, η1 ≤ t|Fη1
)]

= δijPi(t < η1) +
∑

k 6=i

Pi(xη1
= k)Pi(xt = j, t < ηn, η1 ≤ t|xη1

= k)

= δij [1 − Fi(t)] +
∑

k 6=i

pik

1 − pii

P (xt = j, t − η1 < ηn − η1, 0 ≤ t − η1|xη0
= i, xη1

= k)

5
= δij [1 − Fi(t)] +

∑

k 6=i

pik

1 − pii

∫ t

0

Pk(xt−s = j, t − s < ηn−1)dFik(s)

= δij [1 − Fi(t)] +
∑

k 6=i

pik

1 − pii

∫ t

0
n−1pkj(t − s)dFik(s). (3.6)

Let n → +∞, using monotone convergence theorem we know (1) holds.

(2) Let nϕij(λ) =
∫ +∞

0
e−λt

npij(t)dt; nΦ(λ) = (nϕij(λ); i, j ∈ E). Taking Laplace trans-

form at both sides of (3.6), we have

nϕij(λ) = δijhi(λ) +
∑

k 6=i

F̄ik(λ)
pik

1 − pii
n−1ϕkj(λ); i, j ∈ E.

Obviously, 1ϕij(λ) = δijhi(λ), 0ϕij(λ) = 0. Above equalities may be written as the following

matrix equation:
{

nΦ(λ) = H(λ) + Π(λ) n−1Φ(λ), n = 1, 2, . . . ,

1Φ(λ) = H(λ).

Solving equations above gives

nΦ(λ) =
n−1
∑

k=0

Πk(λ)H(λ), (3.7)

from which and monotone convergence theorem it follows that

lim
n→∞

nΦ(λ) = Φ(λ) =
∞
∑

k=0

Πk(λ)H(λ),

which is (2). 2

Remark The total probability formula of continuous type random variable and the fact that

xt(ω) has homogeneity at jump point are used in the fifth equality of (3.6). What is more, we

may also deduce it by using the definition of R-S integral, Markov property (that is, Lemma 3.1)

and homogeneity. It is deduced as follows:

P (xt = j, t − η1 < ηn − η1, 0 ≤ t − η1|xη0
= i, xη1

= k)

=

[2mt]
∑

v=2

P (
v − 1

2m
< η1 ≤

v

2m
|xη0

= i, xη1
= k)×

P (xt = j, t − η1 < ηn − η1, 0 ≤ t − η1|xη0
= i, xη1

= k,
v − 1

2m
< η1 ≤

v

2m
)+
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P (
[2mt]

2m
< η1 ≤ t|xη0

= i, xη1
= k)×

P (xt = j, t − η1 < ηn − η1, 0 ≤ t − η1|xη0
= i, xη1

= k,
[2mt]

2m
< η1 ≤ t)+

P (0 ≤ η1 ≤
1

2m
|xη0

= i, xη1
= k)×

P (xt = j, t − η1 < ηn − η1, 0 ≤ t − η1|xη0
= i, xη1

= k, 0 ≤ η1 ≤
1

2m
)

= lim
m→∞

[2mt]
∑

v=2

P (
v − 1

2m
< η1 ≤

v

2m
|xη0

= i, xη1
= k)×

P (xt = j, t − η1 < ηn − η1, 0 ≤ t − η1|xη0
= i, xη1

= k,
v − 1

2m
< η1 ≤

v

2m
)+

lim
m→∞

P (
[2mt]

2m
< η1 ≤ t|xη0

= i, xη1
= k)×

P (xt = j, t − η1 < ηn − η1, 0 ≤ t − η1|xη0
= i, xη1

= k,
[2mt]

2m
< η1 ≤ t)+

lim
m→∞

P (0 ≤ η1 ≤
1

2m
|xη0

= i, xη1
= k)×

P (xt = j, t − η1 < ηn − η1, 0 ≤ t − η1|xη0
= i, xη1

= k, 0 ≤ η1 ≤
1

2m
)

= lim
m→∞

[2mt]
∑

v=2

P (
v − 1

2m
< η1 ≤

v

2m
|xη0

= i, xη1
= k)×

Pk(xt−η1
= j, t − η1 < ηn − η1, 0 ≤ t − η1|

v − 1

2m
< η1 ≤

v

2m
)+

lim
m→∞

P (
[2mt]

2m
< η1 ≤ t|xη0

= i, xη1
= k)×

Pk(xt−η1
= j, t − η1 < ηn − η1, 0 ≤ t − η1|

[2mt]

2m
< η1 ≤ t)+

lim
m→∞

P (0 ≤ η1 ≤
1

2m
|xη0

= i, xη1
= k)×

Pk(xt = j, t − η1 < ηn − η1, 0 ≤ t − η1|0 ≤ η1 ≤
1

2m
)

=

∫ t

0

Pk(xt−s = j, t − s < ηn−1)dFik(s).

Definition 3.1 (πi; i ∈ E) is called a distribution defined on E if πi ≥ 0,
∑

j∈E πi = 1.

Theorem 3.2 Suppose that we are given a distribution (πi; i ∈ E) defined on E and a semi-

Markov matrix Q(t)
∆
= (Qij(t); i, j ∈ E). Then there exists a probability space (Ω,F , P ) and a

stochastic process X(t, ω)
∆
= (xt(ω); t ≥ 0), which is defined on the probability space (Ω,F , P )

with initial distribution {πi; i ∈ E} and one-dimensional matrix P (t)
∆
= (pij(t); i, j ∈ E). Here

P (t) = (pij(t); i, j ∈ E) is obtained by Theorem 3.1.

Proof Without loss of generality, we suppose that E is a rational number set, and P (t) is

honest, that is, P (t) · 1 = 1. Otherwise, we take interrupt state ∆, and let
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p̃ij(t) =























pij(t) i, j ∈ E,

1 −
∑

j∈E pij(t) i ∈ E, j = ∆,

1 i = j = ∆,

0 i = ∆, j ∈ E.

Then P̃ (t)
∆
= (p̃ij(t); i, j ∈ E

⋃

{∆}) is honest, and is one-dimensional distribution matrix. In

the same way we may construct stochastic process X̃(t, ω) whose one-dimensional distribution

matrix is P̃ (t). And then if X̃(t, ω) is tabooed on E we obtain X(t, ω).

We are given a probability space (Ω′,F ′, P ′). For any tj ≥ 0, j = 1, 2, . . . , we define a discrete

random variable αtj
valued in E with the following distributions:

P ′(αtj
≤ λj) =











∑

m≤λj

∑

k∈E

πkpkm(tj) if tj > 0,

∑

m≤λ0

πm if tj = 0;
(3.8)

F0,tj
(λ0, λj) = Ftj ,0(λj , λ0) = P ′(α0 ≤ λ0, αtj

≤ λj) =
∑

m≤λj

∑

k≤λ0

πkpkm(tj), tj > 0. (3.9)

Let

Ft1,...,tn
(λ1, . . . , λn) = P ′(αt1 ≤ λ1, . . . , αtn

≤ λn). (3.10)

We obtain a multivariate distribution function family

F = {Ft1,...,tn
(λ1, . . . , λn), n = 1, 2, . . . , tj ≥ 0, j = 1, 2, . . . , n}.

From (3.8)–(3.10) it follows that F satisfies consistency conditions, that is, F satisfies the fol-

lowing conditions:

(A) For an arbitrary permutation (i1, . . . , in) of (1, . . . , n) it follows that

Ft1,...,tn
(λ1, . . . , λn) = Fti1

,...,tin
(λi1 , . . . , λin

).

(B) If m < n, then,

Ft1,...,tm
(λ1, . . . , λm) = lim

λm+1,...,λn→∞
Ft1,...,tn

(λ1, . . . , λn).

So by an analogous proof of [3, §1.1, Theorem 1] we obtain a probability space (Ω,F , P ) and a

stochastic process X(t, ω) = (xt(ω); t ≥ 0) which is defined on (Ω,F ,P) such that

Ft1,...,tn
(λ1, . . . , λn) = P (xt1 ≤ λ1, . . . , xtn

≤ λn) (3.11)

for any natural number n and any λj ∈ R1, tj ≥ 0, j = 1, 2, . . . , n. By (3.8), (3.11) we obtain

P (x0 = i) = πi whenever n = 1, t1 = 0. By (3.11), (3.9) we obtain P (x0 = i, xt = j) = P ′(α0 =

i, αt = j) = πipij(t) whenever n = 2, t1 = 0, t2 = t. Hence, P (xt = j|x0 = i) = pij(t). Here if

πi = 0, P (xt = j|x0 = i) is undefined, we may stipulate P (xt = j|x0 = i) = pij(t). 2

We know that the processes, constructed by virtue of Kolmogorov’ concordant theorem and

the same finite dimensional function family, are in fact one class of processes, all of which are

equivalent (that is, all of these processes have the same initial distribution and finite dimensional
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function family). So we may choose a representative process (that is, if and only if almost all

sample path is right continuous) from these processes. Therefore, we suppose that the process

obtained by Theorem 3.2 is a representative process.

Definition 3.2 X(t, ω) obtained by Theorem 3.2 is called semi-Markov process decided by

initial distribution Π = (πi; i ∈ E) and semi-Markov matrix Q(t).

4. The equivalence of two definitions

We shall show that Definitions 1.2 and 3.2 are equivalent.

Theorem 4.1 (1) Let X(t, ω) be the semi-Markov process defined by Definition 3.2. Then we

have the following statements:

There exists a sequence of stopping times {τn, n = 0, 1, 2, . . .} with 0 = τ0 ≤ τ1 ≤ τ2 ≤ · · ·

and limn→∞ τn = τ, P-a.e, such that:

(i) P (xτn+1
∈ A|Fτn

) = P (xτn+1
∈ A|xτn

) = Pxτn
(xτ1

∈ A) =
∑

j∈A

pxτn j

1−pxτn xτn

;

(ii) If τn+1 − τn > 0 for some n ≥ 0, then xt = xτn
for all t with τn ≤ t < τn+1, P-a.e.

(2) Let X(t, ω) be the semi-Markov process defined by Definition 1.2. Then there are one

distribution Π = (πi; i ∈ E) on E and one semi-Markov matrix Q(t).

Proof (1) We take the representative process whose sample path is right continuous. Let

τ0(ω) ≡ 0, τ1(ω) = inf(t : xt(ω) 6= x0(ω), t > 0), . . . , τn(ω)

= inf(t : xt(ω) 6= xτn−1
(ω), t > τn−1(ω)) · · · .

Hence {τn, n = 0, 1, 2, . . .} are stopping times. Let limn→∞ τn = τ .

(i) By the Markov property and homogeneity of jump point we know (i) holds.

(ii) The proof of (ii) is obtained by the definition of τn, n ≥ 0.

(2) Suppose that X(t, ω) is the semi-Markov process defined by Definition 1.2. Set pij
∆
=

P (xτn
= j, τn < +∞|xτn−1

= i) = P (xτ1
= j, τ1 < +∞|x0 = i), and

Gij(t)
∆
=

{

P (θn ≤ t|xτn−1
= i, xτn

= j, τn < +∞) if P (τn < +∞) > 0,

0 if P (τn < +∞) = 0,

=

{

P (θ1 ≤ t|x0 = i, τ1 = j, τ1 < +∞) if P (τ1 < +∞) > 0,

0 if P (τ1 < +∞) = 0.

Let

Qij(t)
∆
= P (θn ≤ t, xτn

= j|xτn−1
= i)

= P (θn ≤ t, xτn
= j, τn < +∞|xτn−1

= i) + P (θn ≤ t, xτn
= j, τn = +∞|xτn−1

= i)

= P (θn ≤ t, xτn
= j, τn < +∞|xτn−1

= i) = pijGij(t).

It is easy to know limt→+∞ Gij(t) =

{

1 if P (τ1 < +∞) > 0,

0 if P (τ1 < +∞) = 0.
Set Q(t) = (Qij(t); i, j ∈ E).
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Then for every i, j ∈ E, Q(t) satisfies the following properties:










Qij(t) ≡ 0 t < 0,

Qij(t) is non-decreasing and right continous t ≥ 0,
∑

j∈E Qij(t)
∆
= pi(t) ≤

∑

j∈E pij ≤ 1 i ∈ E, t ≥ 0.

(4.1)

Therefore, Q(t) is a semi-Markov matrix. Let πi = P (x0(ω) = i), Π = (πi; i ∈ E). 2
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