Completeness of Complex Exponential System in L_{α}^{p} Space

YAN Feng ${ }^{1,2}$, DENG Guan Tie ${ }^{1 *}$
(1. Sch. Math. Sci. \& Lab. Math. Com. Sys., Beijing Normal University, Beijing 100875, China;
2. Department of Mathematics, Handan College, Hebei 056004, China)

(E-mail: denggt@bnu.edu.cn)

Abstract

A necessary and sufficient condition is obtained for the complex exponential system to be dense in the weighted Banach space $L_{\alpha}^{p}=\left\{f: \int_{-\infty}^{\infty}\left|f(t) e^{-\alpha(t)}\right|^{p} \mathrm{dt}<\infty\right\}$, where $1 \leq p<+\infty$ and $\alpha(t)$ is a nonnegative continuous function on \mathbf{R}.

Keywords completeness; complex exponential system; approximation.
Document code A
MR(2000) Subject Classification 31A10; 31A15
Chinese Library Classification O174.5; O174.52

1. Introduction

Suppose $\alpha(t)$ is a nonnegative continuous function on \mathbf{R} satisfying

$$
\begin{equation*}
\lim _{t \rightarrow \infty} \frac{\alpha(t)}{t}=\infty \quad \text { and } \quad \lim _{t \rightarrow-\infty} \frac{\alpha(t)}{|t|}=0 \tag{1}
\end{equation*}
$$

$\alpha(t)$ is henceforth called a weight on \mathbf{R}. Given a weight $\alpha(t)$, we take a weighted Banach space C_{α} consisting of complex continuous functions $f(t)$ defined on \mathbf{R} with $f(t) \exp (-\alpha(t))$ vanishing at infinity, and the norm of f is given by $\left|\mid f \|_{\alpha}=\sup \left\{\left|f(t) e^{-\alpha(t)}\right|: t \in \mathbf{R}\right\}\right.$. Suppose $L_{\alpha}^{p}=\left\{f:\|f\|_{\alpha}=\left(\int_{-\infty}^{\infty}\left|f(t) e^{-\alpha(t)}\right|^{p} \mathrm{~d} t\right)^{\frac{1}{p}}<\infty\right\}, 1 \leq p<+\infty$. Then L_{α}^{p} is also a Banach space.

Let $\Lambda=\left\{\lambda_{n}=\left|\lambda_{n}\right| e^{i \theta_{n}}: n=1,2, \ldots\right\}$ be a sequence of complex numbers in the open right half-plane $\mathbf{C}_{+}=\{z=x+i y: x>0\}$, and $L=\left\{l_{n}: n=1,2, \ldots\right\}$ be a sequence of positive integers. Denote by $M(\Lambda, L)$ the set of complex exponential polynomials which are finite linear combinations of the exponential system $M(\Lambda, L)=\left\{t^{k-1} e^{\lambda_{n} t}: k=1,2, \ldots, l_{n} ; n=1,2, \ldots\right\}$. Our condition (1) guarantees that $M(\Lambda, L)$ is a subspace of C_{α} and L_{α}^{p}. In [1], the author has obtained some results on completeness of $M(\Lambda, L)$ in C_{α} :

Theorem $\mathbf{A}^{[1]}$ Let nonnegative convex function $\alpha(t)$ on \mathbf{R} satisfy the following conditions:
(i) $\alpha(t)$ is twice continuously differentiable on \mathbf{R}, and $\alpha^{\prime}(t)$ is strictly increasing on $[1, \infty)$;
(ii) There exists $\varepsilon_{0}>0$ such that

$$
\begin{equation*}
\alpha^{\prime}(t) \geq \varepsilon_{0} \alpha(t) \quad t \geq 1 \tag{2}
\end{equation*}
$$

Received date: 2006-06-21; Accepted date: 2006-12-12
Foundation item: the National Natural Science Foundation of China (No. 10671022); the Research Fund for the Doctoral Program of Higher Education (No. 20060027023).

* Corresponding author.
(iii) There exists $A_{1}>0$ such that

$$
\begin{equation*}
\int_{1}^{\infty} \frac{\alpha^{\prime}\left(t-A_{1}\right) \alpha^{\prime \prime}(t)}{\left(\alpha^{\prime}(t)\right)^{2}} \mathrm{~d} t<+\infty \tag{3}
\end{equation*}
$$

Let $\Lambda=\left\{\lambda_{n}=\left|\lambda_{n}\right| e^{i \theta_{n}}: n=1,2, \ldots\right\}$ be a sequence of complex numbers in the right half-plane \mathbf{C}_{+}and $L=\left\{l_{n}: n=1,2, \ldots\right\}$ be a sequence of positive integers satisfying

$$
\begin{gather*}
\left|\lambda_{n}\right| \geq 1, \quad n=1,2, \ldots, \tag{4}\\
\limsup _{r \rightarrow \infty} \frac{N_{1}(r)}{r}<\infty . \tag{5}
\end{gather*}
$$

Then $M(\Lambda, L)$ is complete in C_{α} if and only if

$$
\begin{equation*}
\limsup _{r \rightarrow \infty}\left(2 N_{2}\left(\alpha^{\prime}(r)\right)-r\right)=\infty \tag{6}
\end{equation*}
$$

where

$$
\begin{equation*}
N_{k}(r)=\sum_{1<\left|\lambda_{n}\right| \leq r} \frac{l_{n} \cos \theta_{n}}{\left|\lambda_{n}\right|^{k-1}}, \quad r>1, k=0,1,2,3 . \tag{7}
\end{equation*}
$$

A similar result is obtained for L_{α}^{p} in this paper as follows:
Theorem 1 Let $\alpha(t)$ be a nonnegative even convex function on \mathbf{R}, satisfying (i), (ii), (iii) of Theorm $A, \Lambda=\left\{\lambda_{n}=\left|\lambda_{n}\right| e^{i \theta_{n}}: n=1,2, \ldots\right\}$ a sequence of complex numbers in the right half-plane \mathbf{C}_{+}and $L=\left\{l_{n}: n=1,2, \ldots\right\}$ a sequence of positive integers satisfying (4) and (5). Then $M(\Lambda, L)$ is complete in L_{α}^{p} if and only if (6) holds.

Remark 1 There exist some functions which satisfy (i), (ii), (iii) of Theorem A, for example: $\alpha(t)=e^{|t|^{a}}\left(\log ^{+}|t|\right)^{b}, t \neq 0, a>1, b \geq 0$.

2. Proof of Theorem 1

Hereafter, we denote a positive constant by A, not necessaryly the same at each occurrence. In order to prove Theorem 1, we need the following technical lemmas:

Lemma $\mathbf{1}^{[1]}$ Let $\alpha(x)$ be a nonnegative convex function on \mathbf{R} satisfying (1), and assume that

$$
\begin{equation*}
\beta(t)=\sup \{x t-\alpha(x): x \in \mathbf{R}\}, t \in \mathbf{R} \tag{8}
\end{equation*}
$$

is the Young transform ${ }^{[2]}$ of the function $\alpha(x)$. Suppose that $k(r)$ is an increasing function on $[0,+\infty)$. If there exists $a \in \mathbf{R}$, such that

$$
\begin{equation*}
\int_{1}^{\infty} \frac{\alpha(k(t)-a)}{1+t^{2}} \mathrm{~d} t<+\infty \tag{9}
\end{equation*}
$$

then there exists an analytic function $f(z) \not \equiv 0$ in \mathbf{C}_{+}satisfying

$$
\begin{equation*}
|f(z)| \leq \frac{e^{-x}}{1+|z|^{2}} \exp \{\beta(x-1)-x k(|z|)\}, z=x+i y \in \mathbf{C}_{+}, \quad x \geq 1 \tag{10}
\end{equation*}
$$

Remark 2 Lemma 1 is a result of uniqueness about Watson's problem ${ }^{[3-5]}$. Some similar results have been proved in [4].

Lemma $\mathbf{2}^{[1]}$ Let $\Lambda=\left\{\lambda_{n}=\left|\lambda_{n}\right| e^{i \theta_{n}}: n=1,2, \ldots\right\}$ be a sequence of complex numbers in \mathbf{C}_{+} and $L=\left\{l_{n}: n=1,2, \ldots\right\}$ a sequence of positive integers satisfying (4) and (5). Let

$$
\begin{equation*}
g_{n}(z)=\left(\frac{1-z\left|\lambda_{n}\right|^{-1} e^{-i \theta_{n}}}{1+z\left|\lambda_{n}\right|^{-1} e^{i \theta_{n}}}\right) \exp \left(\frac{2 z \cos \theta_{n}}{\left|\lambda_{n}\right|}\right), \quad n=1,2, \ldots \tag{11}
\end{equation*}
$$

Then the weighted Blaschke product

$$
\begin{equation*}
G(z)=\prod_{n=1}^{\infty}\left(g_{n}(z)\right)^{l_{n}} \tag{12}
\end{equation*}
$$

is analytic in \mathbf{C}_{+}, and for all $\varepsilon \in(0,1)$, there exists an $A_{\varepsilon}>0$, such that

$$
\begin{equation*}
|G(z)| \leq \exp \left\{2 x N_{2}(\varepsilon r)+A_{\varepsilon} x\right\}, \quad z=x+i y, r=|z|>1 \tag{13}
\end{equation*}
$$

Sufficiency of Theorem 1 If $M(\Lambda, L)$ is incomplete in L_{α}^{p}, then by Hahn-Banach Theorem ${ }^{[6]}$, there exists a bounded linear functional T on L_{α}^{p}, such that

$$
\begin{equation*}
\|T\|=1, T\left(t^{k-1} e^{\lambda_{n} t}\right)=0, k=1,2, \ldots, l_{n} ; n \in \mathbb{N} \tag{14}
\end{equation*}
$$

By the Riesz representation theorem, there exists a $g \in L_{-\alpha}^{q}$ such that $\|T\|=\|g\|_{q,-\alpha}$ and $T(f)=\int_{-\infty}^{\infty} f(t) g(t) \mathrm{d} t, f \in L_{\alpha}^{p}$, where $\frac{1}{p}+\frac{1}{q}=1(q=\infty$ if $p=1)$,

$$
\begin{gathered}
L_{-\alpha}^{q}=\left\{g:\|g\|_{q,-\alpha}=\left(\int_{-\infty}^{\infty}\left|g(t) e^{\alpha(t)}\right|^{q} \mathrm{~d} t\right)^{\frac{1}{q}}<\infty\right\} \\
L_{-\alpha}^{\infty}=\left\{g:\|g\|_{\infty,-\alpha}=\operatorname{ess} \sup \left\{|g(t)| e^{\alpha(t)}: x \in \mathbf{R}\right\}<\infty\right\} .
\end{gathered}
$$

Let $h(z)=T\left(e^{t z}\right)=\int_{-\infty}^{\infty} e^{z t} g(t) \mathrm{d} t$. Then by (14), for each $b>0$ and $x=\operatorname{Re} z \in[0, b]$, since $\left|e^{z t} g(t)\right| \leq e^{b t}|g(t)|$ for $t \geq 0$ and $\left|e^{z t} g(t)\right| \leq|g(t)| \in L^{1}$ for $t<0$, we see that $h(z)$ is continuous on $\overline{\mathbf{C}}_{+}$and analytic in \mathbf{C}_{+}. The number of the zeros of $h(z)$ at $\lambda_{n} \in \Lambda$ is not less than l_{n}.

Let $\beta(x)$ be defined by (8), by virtue of Hölder inequality, $|h(z)| \leq e^{\beta(x)}$. Furthermore, for $r>1$, by Carleman formula ${ }^{[7]}$,

$$
\varphi(r)=\frac{1}{\pi r} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \log \left|h\left(r e^{i \theta}\right)\right| \cos \theta \mathrm{d} \theta+\frac{1}{2 \pi} \int_{1}^{r}\left(\frac{1}{y^{2}}-\frac{1}{r^{2}}\right) \log |h(i y) h(-i y)| \mathrm{d} y+d(r)
$$

where $\varphi(r)=N_{2}(r)-r^{-2} N_{0}(r)$ and $d(r)$ is bounded on $(1, \infty)$. Hence there exists $A>0$ such that

$$
\begin{equation*}
N_{2}(r) \leq A+\varphi(r) \leq A+\frac{1}{\pi} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{\beta(r)}{r}(\cos \theta)^{2} \mathrm{~d} \theta=A+\frac{\beta(r)}{2 r} \tag{15}
\end{equation*}
$$

By the definition of $\beta(x)$, there exists $t_{0}>0$ such that, for each $t \geq t_{0}$, there exists an $x(t) \geq 1$ satisfying

$$
t=\alpha^{\prime}(x(t)), \beta(t)=x(t) t-\alpha(x(t))=t\left(x(t)-\frac{\alpha(x(t))}{\alpha^{\prime}(x(t))}\right)
$$

By $(2), \beta(t) t^{-1}-x(t)$ is bounded on $\left[t_{0}, \infty\right)$. Let $x=\gamma(y)$ be the inverse function of $y=\alpha^{\prime}(x)$. Then $\beta(t) t^{-1}-\gamma(t)$ is bounded on $\left[t_{0}, \infty\right)$. By (15), (6) does not hold. This completes the proof of sufficiency of Theorem 1.

Necessity of Theorem 1 If (6) does not hold, there exists $A_{2}>0$ such that $2 N_{2}\left(\alpha^{\prime}(t)\right)-t \leq$
$A_{2}(t \geq 1)$. Let $x=\gamma(y)\left(y \geq \alpha^{\prime}(1)\right)$ be the inverse function of $y=\alpha^{\prime}(x)(x \geq 1)$. Then $2 N_{2}(r)-\gamma(r) \leq A_{2}\left(r \geq \alpha^{\prime}(1)\right)$. By (2), (3) and (7), we have

$$
\int_{\alpha^{\prime}(1)}^{\infty} \frac{\alpha\left(2 N_{2}(r)-A_{1}-A_{2}\right)}{r^{2}} \mathrm{~d} r \leq \int_{\alpha^{\prime}(1)}^{\infty} \frac{\alpha\left(\gamma(r)-A_{1}\right)}{r^{2}} \mathrm{~d} r \leq \int_{1}^{\infty} \frac{\alpha^{\prime}\left(t-A_{1}\right)}{\varepsilon_{0}\left(\alpha^{\prime}(t)\right)^{2}} \alpha^{\prime \prime}(t) \mathrm{d} t<\infty
$$

By Lemma 1, there exists an analytic function $f(z) \not \equiv 0$ in \mathbf{C}_{+}satisfying (10) with $k(r)$ replaced by $2 N_{2}(r)$.

Let $g_{0}(z)=G(z) f(z)(1+z)^{-2} e^{-A z-A}$, where A is a large positive constant and $G(z)$ is defined by (12). By (13), we have

$$
\begin{equation*}
\left|g_{0}(z)\right| \leq \frac{1}{1+|z|^{2}} \exp \{\beta(x-1)-x\} \quad z \in \mathbf{C}_{+} \tag{16}
\end{equation*}
$$

The function

$$
h_{0}(t)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} g_{0}(1+i y) e^{-(1+i y) t} \mathrm{~d} y
$$

is continuous on \mathbf{R} and by the Cauchy theorem,

$$
\begin{equation*}
h_{0}(t)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} g_{0}(x+i y) e^{-(x+i y) t} \mathrm{~d} y, \quad x>0 \tag{17}
\end{equation*}
$$

Since $\beta(t)$ is the Young transform of the convex function $\alpha(x)$, we may assume, without loss of generality, that ${ }^{[2]} \alpha(t)=\sup \{x t-\beta(x): x \geq 0\}, t \geq 0$. We obtain from (16) and (17) that

$$
\begin{equation*}
\left|h_{0}(t)\right| \leq \exp (-\alpha(t)-|t|), \quad g_{0}(z)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} h_{0}(t) e^{t z} \mathrm{~d} t, \quad x>0 \tag{18}
\end{equation*}
$$

Moreover, by the definition of g_{0},

$$
g_{0}^{(k)}(z)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} h_{0}(t) t^{k} e^{t z} \mathrm{~d} t, g_{0}^{(k)}\left(\lambda_{n}\right)=0, k=0,1, \ldots, l_{n}-1
$$

i.e.,

$$
\begin{equation*}
\int_{-\infty}^{\infty} h_{0}(t) t^{k-1} e^{t \lambda_{n}} \mathrm{~d} t=0, \quad k=1,2, \ldots, l_{n}, n \in \mathbb{N} \tag{19}
\end{equation*}
$$

Therefore by (18) and (19), linear functional T defined by $T(h)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} h_{0}(t) h(t) \mathrm{d} t(h \in$ $\left.L_{\alpha}^{p}\right)$ is a bounded linear functional on L_{α}^{p} and satisfies $T\left(e^{z t}\right)=g_{0}(z), T\left(t^{k-1} e^{\lambda_{n} t}\right)=0, k=$ $1,2, \ldots, l_{n} ; n \in \mathbb{N}$. The norm of T is $\|T\|=\frac{1}{\sqrt{2 \pi}}\left\|h_{0}\right\|_{q,-\alpha}>0$. By the Hahn-Banach Theorem and Riesz representation theorem, the space $M(\Lambda, L)$ is incomplete in L_{α}^{p}. This completes the proof of Theorem 1.

References

[1] DENG Guantie. Completeness of complex exponential systems [J]. Chinese Ann. Math. Ser. A, 2005, 26(4): 537-542. (in Chinese)
[2] ROCKAFELLAR R. Convex Analysis [M]. Princeton University Press, Princeton, N.J. 1970.
[3] MALLIAVIN P. Sur quelques procédés d'extrapolation [J]. Acta Math., 1955, 93: 179-255. (in French)
[4] DENG Guantie. Weighted exponential polynomial approximation [J]. Sci. China Ser.A, 2003, 46(2): 280-287.
[5] DENG Guangtie. On Watson's problem and its applications [J]. Bull. Sci. Math. (2), 1985, 109(1): 3-12.
[6] RUDIN W. Real and Complex Analysis [M]. Third edition. McGraw-Hill Book Co., New York, 1987.
[7] BOAS R P Jr. Entire Functions [M]. Academic Press, New York, 1954.

