
Journal of Mathematical Research & Exposition

Aug., 2008, Vol. 28, No. 3 pp. 699–705

DOI:10.3770/j.issn:1000-341X.2008.03.034

Http://jmre.dlut.edu.cn

Axioms in the Variety of eO-Algebras

FANG Jie1,2, SUN Zhong Ju1

(1. Department of Mathematics, Shantou University, Guangdong 515063, China;

2. Faculty of Mathematics and Computer Science, Guangdong Polytechnic Normal University,

Guangdong, 510665, China)

(E-mail: jfang@stu.edu.cn; g zjsun@stu.edu.cn)

Abstract The variety eO of extended Ockham algebras consists of those algebras (L;∧,∨, f ,

k, 0, 1) such that (L;∧,∨, 0, 1) is a bounded distributive lattice together with a dual endomor-

phism f on L and an endomorphism k on L such that fk = kf . In this paper we extend

Urquhart’s theorem to eO-algebras and we are in particular concerned with the subclass e2M

of eO-algebras in which f2 = id and k2 = id. We show that there are 19 non-equivalent axioms

in e2M and then order them by implication.
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1. Introduction

In [3], we introduced the notion of extended Ockham algebra. By an extended Ockham

algebra (L;∧,∨, f, k, 0, 1), we mean a bounded distributive lattice L on which two operations f

and k are defined such that

(1) f is a dual lattice endomorphism with f(1) = 0 and f(0) = 1;

(2) k is a lattice endomorphism with k(1) = 1 and k(0) = 0;

(3) f and k commute.

The class of such algebras is denoted by eO. In the class of eO-algebras, a particular inter-

esting subclass is so called class of symmetric extended de Morgan algebras for which f2 = idL

and k2 = idL. Such an algebra (L; f, k) is usually written as (L;− ,+ ), and we denote by e2M

the class of such algebras.

We recall [1] that if L is a bounded distributive lattice, then the dual space of L is Ip(L) ≡

(Ip(L); τ,⊆), where (Ip(L);⊆) is the lattice of primes ideals of L and the topology τ has as a

base the sets {x ∈ Ip(L)|x ∋ a} and {x ∈ Ip(L)|x 6∋ a} for every a ∈ L. By an extended

Ockham space we mean a compact totally ordered disconnected topological space (X ; τ,≤) on

which there are defined a continuous antitone mapping g and a continuous isotone mapping h

such that gh = hg. The set of clopen down-sets of such a space will be denoted by O(X). The
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following is an extension to eO of a fundamental theorem of Urquhart[6].

Theorem 1[3,Theorem 4.1] If (X ; g, h) is an extended Ockham space, then (O(X); f, k) is an

extended Ockham algebra, where

(∀A ∈ O(X)) f(A) = X \ g−1(A), k(A) = h−1(A).

Conversely, if (L; f, k) is an extended Ockham algebra, then (Ip(L); g, h) is an extended Ockham

space, where

(∀x ∈ Ip(L)) g(x) = {a ∈ L|f(a) 6∈ x}, h(x) = {a ∈ L|k(a) ∈ x}.

Moreover, these constructions give a dual equivalence.

For more details of Ockham algebras and extended Ockham algebras we refer the reader to

[1, 3, 4].

In [6], [7], Urquhart gave a nice theorem on the dual spaces of Ockham algebras showing that

any inequality that holds in an Ockham algebra can be translated into simple conditions on its

dual space. In 1996, Blyth, Fang and Varlet[2] extended this property to a double MS-algebra.

Here we shall extend it to eO-algebras, and use it to investigate axioms in class of symmetric

extended de Morgan algebras.

Through this paper we shall use the same methods and terminologies as used in [1] for the

variety of Ockham algebras and in [3] for the variety of double MS-algebras.

2. Extension of Urquhart’s theorem

Here we shall be interested in discussing some connection between axioms in the eO-algebras

and the universally quantified disjunctions in eO-spaces. In what follows we say A ≤ B is

an inequality in an extended Ockham algebra (L; f, k) if A and B are polynomials built from

variables a, b, c, . . . and the constants 0, 1 by means of the operations ∧,∨, f, k. We say that two

inequalities are equivalent if they determine the same equational class.

The following result is abopted by extending Urquhart’s theorem to extended Ockham alge-

bras. The proof is the same as that of [1] or [2].

Theorem 2 Let (L; f, k) be an extended Ockham algebra and let (X, g, h) be its dual space.

Let E be a finite subset of N4, say

E = {(pi, qi, ui, vi)|i = 1, 2, . . . , n}

and let

A = {fpikqi(ai)|pi even} ∪ {fuikvi(ai)|ui odd},

B = {fpikqi(ai)|pi odd} ∪ {fuikvi(ai)|ui even}.

Consider the inequality
∧

A ≤
∨

B (*)
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and the universally quantified disjunction

(∀x ∈ X)
∨

i

{gpihqi ≥ guihvi |(pi, qi, ui, vi) ∈ E}. (**)

Then (L; f, k) satisfies (∗) if and only if (X ; g, h) satisfies (∗∗).

Proof Observing first that the inequality (∗) fails in L if and only if there exist clopen down-sets

Ai of X such that
⋂

pieven
fpikqi(Ai) ∩

⋂

uiodd

fuikvi(Ai) *
⋃

piodd

fpikqi(Ai) ∪
⋃

uieven
fuikvi(Ai)

which is the case if and only if there exists x ∈ X such that
{

x ∈ fpikqi(Ai) ⇐⇒ pi even

x ∈ fuikvi(Ai) ⇐⇒ ui odd.
(†)

Since f(Ai) = X \ g−1(Ai), k(Ai) = h−1(Ai), and note that g is antitone and h is isotone with

gh = hg, we can see

x ∈ f rks(Ai) ⇐⇒

{

grhs(x) ∈ Ai, if r is even

grhs(x) 6∈ Ai, if r is odd.

Thus the above condition (†) is equivalent to the existence of down-sets Ai and element x such

that for every i ∈ {1, 2, . . .},

gpihqi(x) ∈ Ai and guihvi(x) 6∈ Ai.

This in turn is equivalent to the existence of an element x with the property gpihqi(x) � guihvi(x)

for every i, which is the case if and only if (∗∗) fails in X . 2

The inequality (∗) in above Theorem 2 can be represented by the following tabulation:
∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

t11 t12 t13 t14

t21 t22 t23 t24
...

tn1 tn2 tn3 tn4

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

where ti1 = (pi, qi) if pi is even; ti2 = (ui, vi) if ui is odd; ti3 = (pi, qi) if pi is odd; and

ti4 = (ui, vi) if ui is even.

This notion was first introduced by Blyth and Varlet in [1] for Ockham algebras and was also

introduced in [2] for double MS-algebras.

Example The inequality

f2(a) ∧ fk3(a) ∧ f2k2(c) ≤ fk(b) ∨ f2k(b) ∨ f2(c)

is represented by the tabulation
∣

∣

∣

∣

∣

∣

∣

(2, 0) (1, 3) − −

− − (1, 1) (2, 1)

(2, 2) − − (2, 0)

∣

∣

∣

∣

∣

∣

∣

.
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3. Axioms in e2M-algebras

By way of illustrating the power of the extension of Urquhart’s theorem to eO-algebras, we

now concentrate on the class e2M of symmetric extended de Morgan algebras. We say that

(X ; g, h) is a symmetric extended de Morgan space (shortly, e2M-space) if it is the duality of

a symmetric extended de Morgan algebra. Clearly, for an e2M-space (X ; g, h), g2 = idX and

h2 = idX with gh = hg.

In [5], we characterized equational bases for subvarieties of e2M-algebras. Here we use the

dual space to rediscover the determination of all equational bases for subdirectly irreducible

e2M-algebras. In particular, we shall characterize all non-equivalent equational bases in the

variety of e2M-algebras.

For any given element x in an e2M-space, since h is isotone, we see that either h(x) = x or

h(x)‖x (it means that they are not comparable). Thus

x ≥ h(x) ⇐⇒ h(x) ≥ x ⇐⇒ h(x) = x.

The following property can also be easily seen:

(a) x ≥ g(x) ⇐⇒ h(x) ≥ gh(x);

(b) gh(x) ≥ x ⇐⇒ g(x) ≥ h(x);

(c) x ≥ gh(x) ⇐⇒ h(x) ≥ g(x).

Therefore, we have by the above observations that there are exactly five non-equivalent and

non-trivial binary relations to be considered in an e2M-space:

(1) x ≥ g(x);

(2) g(x) ≥ x;

(3) x = h(x);

(4) h(x) ≥ g(x);

(5) g(x) ≥ h(x).

The binary relations (1), (2), (3), (4) and (5) are the basic axioms of this work. For later

purpose we denote by (0) the trivial case:

(0) h(x) = g(x) = x.

This is the case where x satisfies (1), (2) and (3), and so clearly, (0) ⇒ (1), (0) ⇒ (2),

(0) ⇒ (3), (0) ⇒ (4) and (0) ⇒ (5).

If the dual space (X ; g, h) of the e2M-algebra (L;− ,+ ) satisfies (n1)∨ (n2)∨ · · · ∨ (nr), then

we say that L satisfies the axiom (n1n2 · · ·nr). For instance, if every element of X satisfies (2), or

(3), or (5), namely, (2)∨ (3)∨ (5), we say that the axiom (235) holds in L. Clearly, an axiom (A)

implies an axiom (B) if the set of digits in the label of (A) (or in any equivalent) is contained in the

set of digits of that of (B) (or in any equivalent). For instance, (1) ⇒ (14) ⇒ (145) ⇒ (12345).

The following simple property can be easily verified:

Theorem 3 Let X be an e2M-space with x ∈ X . If x satisfies

(i) (1) and (3), then it satisfies (4);

(ii) (3) and (4), then it satisfies (1);
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(iii) (2) and (3), then it satisfies (5);

(iv) (3) and (5), then it satisfies (2);

(v) (1) and (5), then it satisfies (0);

(vi) (2) and (4), then it satisfies (0).

Proof Suppose that x satisfies (1) and (3). Then x ≥ g(x) and x = h(x), which implies

h(x) ≥ g(x), and so x satisfies (4). By the similar arguments we can also easily prove that the

cases (ii)–(vi) are true.

For the purpose of characterizing the implication relationship of axioms in e2M, we first give

the following property.

Theorem 4 In e2M one can define at most 19 non-equivalent axioms. The equivalences between

the 31 axioms that can be defined are as follows:

(a) (1) = (2); (4) = (5).

(b) (14) = (25); (15) = (24); (13) = (23); (34) = (35).

(c) (124) = (125); (145) = (245); (135) = (234); (134) = (235).

(d) (1234) = (1235); (1345) = (2345).

Proof This follows by the following observations of substituting g(x) for x, say α : x → g(x),

in each axiom:

(a) (1)
α
⇒ (2)

α
⇒ (1); (4)

α
⇒ (5)

α
⇒ (4).

(b) (14)
α
⇒ (25)

α
⇒ (14); (15)

α
⇒ (24)

α
⇒ (15); (13)

α
⇒ (23)

α
⇒ (13); (34)

α
⇒ (35)

α
⇒ (34).

(c) (124)
α
⇒ (215)

α
⇒ (124); (145)

α
⇒ (254)

α
⇒ (145); (135)

α
⇒ (234)

α
⇒ (135); (134)

α
⇒

(235)
α
⇒ (134).

(d) (1234)
α
⇒ (2135)

α
⇒ (1234); (1345)

α
⇒ (2354)

α
⇒ (1345). 2

Theorem 5 In an e2M-algebra (L;− ,+ ), we have the following statements:

(i) (14) ⇒ (15);

(ii) (134) ⇒ (135).

Proof (i) Suppose that (14) holds in L, but (15) fails to hold. Then there exists xo ∈ X such

that xo � g(xo) and g(xo) � h(xo). Since (14) holds, we have either xo ≥ g(xo) or h(xo) ≥ g(xo),

and then we must have that h(xo) ≥ g(xo). Substituting now g(xo) for xo in (14), then we have

either g(xo) ≥ xo or g(xo) ≥ h(xo). The former gives h(xo) ≥ g(xo) ≥ xo, which leads to the

contradiction that h(xo) = g(xo) = xo; the later gives the contradiction again that g(xo) = h(xo).

Therefore (15) holds in L.

(ii) Suppose that (134) holds in L. Then, for every x ∈ X we have either x ≥ g(x) or

x = h(x) or h(x) ≥ g(x). We assume now that (135) fails to hold in L. Then there exists xo ∈ X

such that xo � g(xo), xo 6= h(xo) and g(xo) � h(xo). Since xo satisfies (134), we must have

h(xo) ≥ g(xo). Substituting now g(xo) for xo in (134) and noting that xo 6= h(xo), we see that

either g(xo) ≥ xo or g(xo) ≥ h(xo). The former gives h(xo) ≥ g(xo) ≥ xo, which results in the

contradiction that h(xo) = g(xo) = xo; the later gives the contradiction again that g(xo) = h(xo).
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Hence (135) holds in L. 2

In [3] we showed that there are precisely nine non-isomorphic subdirectly irreducible sym-

metric extended de Morgan algebras, all of which are simple. In the same paper, we also gave

the Hasse diagrams of these subdirectly irreducible algebras. Here we use the same symbols

Ai (i = 1, 2, . . . , 9) as in [3] to denote subdirectly irreducible e2M-algebras. In order to de-

scribe the implications linking the 19 basic axioms and to show that these axioms are indeed

non-equivalent, we require the determination of axioms on subdirectly irreducible e2M-algebras.

Here we list them in the table below.

algebra L dual space satisfies not satisfies

A1

r

x = g(x) = h(x) (0) —

A2

r r

x = gh(x) g(x) = h(x) (4)=(5) (123)

A3

r r

x = g(x) h(x) = gh(x) (1)=(2) (345)

A4

r r

x = h(x) g(x) = gh(x) (3) (1245)

A5 r

r

g(x) = gh(x)

x = h(x)

(3), (12), (15)=(24), (45) (14)=(25)

A6 r

r

r

r

g(x)

x

gh(x)

h(x)

(12) (1345)=(2345)

A7 r

r

r

r

gh(x)

x

g(x)

h(x)

(45) (1234)=(1235)

A8 r

r

r

r

g(x)

x

gh(x)

h(x)

�
�
Z

Z
(12), (15)=(24), (45) (134)=(235)

A9

r r r r

x g(x) h(x) gh(x) — (12345)

Table 1

By the above table we have the following observations:

(i) A2 satisfies (4) but not (123). This shows that (4) ≻ (0), (14) ≻ (1), (34) ≻ (3),

(124) ≻ (12), (134) ≻ (13) and (1234) ≻ (123).

(ii) A3 satisfies (1) but not (345). Hence it shows that (1) ≻ (0), (13) ≻ (3), (14) ≻ (4),

(134) ≻ (34), (145) ≻ (45) and (1345) ≻ (345).

(iii) A4 satisfies (3) but not (1245). This shows that (3) ≻ (0), (13) ≻ (1), (34) ≻ (4),

(123) ≻ (12), (134) ≻ (14), (135) ≻ (15), (345) ≻ (45), (1234) ≻ (124), (1345) ≻ (145) and

(12345) ≻ (1245).

(iv) A5 satisfies (3), (12), (15) and (45) but not (14). Hence this shows that (3) ≻ (0),

(12) ≻ (1), (13) ≻ (1), (15) ≻ (14), (45) ≻ (4) and (134) ≻ (14).

(v) A6 satisfies (12) but not (2345). This shows that (12) ≻ (1), (123) ≻ (13), (124) ≻ (15),

(1234) ≻ (135), (1245) ≻ (145) and (12345) ≻ (1345).

(vi) A7 satisfies (45) but not (1234). This shows that (45) ≻ (4), (145) ≻ (15), (345) ≻ (34),

(1245) ≻ (124), (1345) ≻ (135) and (12345) ≻ (1234).
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(vii) A8 satisfies (12), (15) and (45) but not (235). This shows that (12) ≻ (1), (15) =

(24) ≻ (14), (45) ≻ (4), (123) ≻ (13), (135) ≻ (134) and (345) ≻ (34).

Using the above observations and Theorems 4 and 5, we now can draw the poset of all non-

equivalent axioms in e2M as in the following Hasse diagram:

s

s

s s

s

s s

s

s

s s

s

s

s s

s

s s

s

s

HHHHHHHH

�
�

��
�

��
�

�

HHHHHHHH

HHHH

HHHHHHHH

HHHH

HHHHHHHH HHHHHHHH

�
�

�

�
�

�

�
�

�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�

(0)

(4) (3)

(34)

(45)

(345)

(1)

(13)(14)

(134)
(15)

(135)(145)

(1345)

(12)

(123)

(124)

(1234)
(1245)

(12345)

Figure 1
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