
Journal of Mathematical Research & Exposition

Aug., 2008, Vol. 28, No. 3, pp. 706–712

DOI:10.3770/j.issn:1000-341X.2008.03.035

Http://jmre.dlut.edu.cn

On Odd Arithmetic Graphs

LIANG Zhi He
(Department of Mathematics, Hebei Normal University, Hebei 050016, China)

(E-mail: zhiheliang@sohu.com.cn)

Abstract The following results are obtained: (1) The graph C
n
m ·Pt is odd arithmetic when (i)

m ≡ 0 (mod 2) and t=m or m + 1; (ii) m ≡ 1 (mod 2) and t=m + 1. (2) The graph C
n
2m is odd

arithmetic when (i) m=2,4 and n is any positive integer; (ii) m=3 and n is even. (3) The graph

C
n
m is odd arithmetic when m=4n and t=2. (4) P

n
m+1 is odd arithmetic when (i) n is odd; (ii)

m ≤ 3 and n is any positive integer. (5) Windmill graph K
t
n is odd arithmetic if and only if

n=2. (6) Cycle Cn is odd arithmetic if and only if n ≡ 0 (mod 4). (7) For any positive integer

n and any positive integer m, Km,n is odd arithmetic.
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1. Introduction

The theory of graph labeling has attracted many mathematicians mainly because of its aes-

thetic aspect, as well as its wide range of applications in such areas as radar pulse codes, x-ray

crystallography, circuit design, missile guidance, radio astronomy, sonar ranging, and broadcast

frequency assignments[6]. Acharya and Hegde[3] introduced the conception of (k, d)-arithmetic

graph, and showed the following: Km,n,1 is (d+2r, d)-arithmetic; C4t+1 is (2dt+2r, d)-arithmetic;

C4t+2 is not (k, d)-arithmetic for any values of k and d; C4t+3 is ((2t + 1)d + 2r, d)-arithmetic;

while W4t+2 is (2dt + 2r, d)-arithmetic; and W4t is ((2t + 1)d + 2r, d)-arithmetic. They obtained

a number of necessary conditions for various kinds of graphs to have a (k, d)-arithmetic labeling.

Hegde and Shetty[1] discussed the generalized web W (t; n) to the problem. Shee and Ho[2] have

investigated the cordiality of the one-point union of n copies of various graphs. Among them are

the one-point union of n copies of Cm for Cn
m and the one-point union of n copies of Km for Kn

m.

Our goal in the paper is to prove that the graphs Cn
m, Kn

m and Cn
m · Pt etc. are odd arithmetic.

Let Z be the ring of integers and a, b ∈ Z. It will be convenient to use the following

notations. [a, b] = {x | x ∈ Z, a ≤ x ≤ b}, [a, b]k = {x ∈ Z | a ≤ x ≤ b, x ≡ a (mod k)},

⌊x⌋ = max{y | y ≤ x, y ∈ Z} for any real number x, and f(S) = {f(x)| x ∈ S} where S is a set

and f is a function.
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A graph that has order p and size q is called a (p, q)-graph. Let G = (V, E) be a finite

simple (p, q)-graph, D be a non-negative integer set, and let k and d be positive integers. A

labeling f from V to D is said to be (k, d)-arithmetic if the vertex labels are distinct non-

negative integers and the edge labels induced by f∗(xy)=f(x) + f(y) for each edge xy are

k, k + d, k + 2d, . . . , k + (q − 1)d. The G is said to be a (k, d)-arithmetic graph. The case where

k = 1, d = 2 and D = [0, 2q − 1] is called odd arithmetic labeling. The case where d = 1 and

D = [0, q − 1] is called sequential labeling. The case where k = 1, d = 1 and D = [0, q] is called

strongly harmonious labeling. It is easy to obtain the following results.

Lemma 1.1 If f is an odd arithmetic labeling of the (p, q)-graph G, then

(1) Odd arithmetic graphs, sequential graphs and strongly harmonious graphs are (k, d)-

arithmetic graphs,

(2) The maximal label of all vertices in an odd arithmetic graph G is at most 2q-δ(G), where

δ(G) is the minimum degree of the vertices of G,

(3) Each x in the set {0, 1} has inverse image in an odd arithmetic graph, and the two

inverse images are adjacent.

Lemma 1.2 (1) If G is an odd arithmetic graph, then G is a bipartite graph.

(2) Let (d1, d2, . . . , dp) be a degree sequence of (p, q)-graph G. If the graph G is odd

arithmetic, then the equation
p

∑

i=1

dixi = q2 (I)

has non-negative integer solutions (x1, x2, . . . , xp) satisfying xi 6= xj if i 6= j and xi ≤ 2q − δ(G)

for i ∈ [1, p].

Proof Part (1). First, we show that G has no odd-cycle if G is an odd arithmetic graph with

odd arithmetic labelling f . Suppose that C=v1v2 · · · v2n−1v2nv2n+1v1 is an odd-cycle of G, and

without loss of generality, one may suppose f(v1) is an odd number. Since f∗(uv) is odd for any

uv ∈ E(G) and v1v2 ∈ E(G), then the f(v2) is even. In general, f(v2i−1) is odd and f(v2i) is

even. Since v1v2n+1 ∈ E(G) and f(v2n+1) is odd, f(v1) is even. This is a contradiction. It is

well known that a graph is bipartite if and only if it has no odd-cycle. Therefore, the graph G

is a bipartite graph.

Part (2). Let f be an odd arithmetic labelling of G. For every vi ∈ V (G) (i ∈ [1, p]), let

deg(vi)=di and f(vi)=xi. By adjacent relation, we have

∑

uv∈E(G)

f∗(uv) =

p
∑

i=1

dixi. (i)

On the other hand
∑

uv∈E(G)

f∗(uv) = 1 + 3 + · · · + (2q − 1) = q2. (ii)

It follows immediately from (i) and (ii) that the equation (I) holds. Since f is an injection,
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there exist solutions (x1, x2, . . . , xp) satisfying xi 6= xj if i 6= j and 0 ≤ xi ≤ 2q − δ(G) for

i ∈ [1, p]. 2

2. Preliminary results

Given n-dimensional vectors

A1 =















a1,1

a2,1

...

an,1















, A2 =















a1,2

a2,2

...

an,2















, . . . , Am =















a1,m

a2,m

...

an,m















. (*)

A vector Ak is called an EPD vector if the elements of Ak are pairwise distinct. A vectors group

A1, A2, . . . , Am (shortly {Ak}) is called an EPDVG if the elements of the A1, A2, . . . , Am are

pairwise distinct, i.e., |{ai,j | j ∈ [1, m], i ∈ [1, n]}|=mn, and the matrix [A1, A2, . . . , Am] is called

EPD matrix. Denote by 〈Ak〉 the set of all elements of Ak. Ak is called an arithmetic vector if the

elements a1,k, a2,k, . . . , an,k of 〈Ak〉 form an arithmetic progression, and the common difference

of the arithmetic progression is called the common difference of the Ak. {A1, A2, . . . , Am} is

called a consecutive vector group if a1,1, a2,1, . . . , an,1, a1,2, a2,2, . . . , an,2, . . . , a1,m, . . . , an,m is an

arithmetic progression, and Ak+1 is called the successor of Ak.

Lemma 2.1 If two vectors Ak with common difference d1 and Ak+1 with common difference d2

in (*) are arithmetic vectors, and d1 + d2 6= 0, then their sum Ak + Ak+1 is an EPD vector.

Proof Let aj,k=a+ d1(j − 1), j ∈ [1, n], aj,k+1=b+ d2(j − 1), j ∈ [1, n]. Then aj,k + aj,k+1=a+

b + (d1 + d2)(j − 1), j ∈ [1, n]. Since d1 + d2 6= 0, Ak + Ak+1 is an EPD vector with first term

a + b and last term a + b + (d1 + d2)(n − 1). 2

Lemma 2.2 Let (*) be an arithmetic vectors group. If the common difference of Ak is d1 if k

is even, and the common difference of Ak is d2 if k is odd, then {Ak + Ak+1} is a consecutive

vector group when a1,j+2=a1,j + n(d1 + d2).

Proof Suppose that aj,k=a1,k + d1(j − 1), j ∈ [1, n], and aj,k+1=a1,k+1 + d2(j − 1), j ∈ [1, n]

for any k ∈ [1, m − 1]. If we want Ak+1 + Ak+2 to become a successor of Ak + Ak+1, then

a1,k +a1,k+1 +n(d1 +d2)=a1,k+2 +a1,k+1 must be satisfied. Therefore, a1,k+2=a1,k +n(d1 +d2).

2

Lemma 2.3 Let (*) be an arithmetic vectors group. If d1 is the common difference of A2k, and d2

is the common difference of A2k−1 satisfying d1 +d2 6= 0, then [A1 +A2, A2+A3, . . . , Am−1 +Am]

is an EPD matrix when a1,j+2=a1,j + n(d1 + d2).

Proof To solve the recursive equation a1,j+2=a1,j + n(d1 + d2), we obtain that

a1,2t−1=a1,1 + (t − 1)n(d1 + d2), and a1,2t=a1,2 + (t − 1)n(d1 + d2).

Since each {Ak + Ak+1} is strictly monotone vectors group, the matrix [A1 + A2, A2 +
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A3, . . . , Am−1 + Am] is an EPD matrix from Lemma 2.2. 2

Lemma 2.4 Let n be odd, and A2t and A2t−1 be an arithmetic vector with common difference

-4 and 2, respectively. If a1,2t=2n(t+1)−2 and a1,2t−1=2n(t−1)+1, then both [A1, A2, . . . , Am]

and [A1, A1 + A2, A2 + A3, . . . , Am−1 + Am] are EPD matrices.

Proof By the hypotheses, we have a1,2t ≡ 0 (mod 4) if t is even, and a1,2t ≡ 2 (mod 4) if t is

odd. Since the common difference of the vector A2t is -4, 〈A2t〉
⋂

〈A2s〉 = φ when s and t have

opposite parity.

When t=2k−1, the greatest element of 〈A2t〉 is 4nk−2 and the least element is 4nk−4n+2.

When t=2k + 1, the greatest element of 〈A2t〉 is 4nk + 4n − 2 and the least element is 4nk + 2.

Therefore {A2t} is an EPDVG when t is odd. In the same way, we obtain that {A2t} is also an

EPDVG when t is even. Thus {A2t} is EPDVG.

When a1,2t−1 = 2n(t−1)+1, {A2t−1} is a consecutive vector group because the vector A2t−1

is an arithmetic vector with common difference 2. Also, each ai,2t ∈ 〈A2t〉 is even and each

ai,2t−1 ∈ 〈A2t−1〉 is odd, then the matrix [A1, A2, . . . , Am] is an EPD matrix. Furthermore, we

can also get [A1 + A2, A2 + A3, . . . , Am−1 + Am] is an EPD matrix. 2

3. Main results

Let the one-point union of n copies of graph G be denoted by Gn. Then the common vertex

is called the center of Gn, denoted by x0. We denote by Kn the complete graph with n vertices,

Pn the path with n vertices and Cn the cycle with n vertices.

Theorem 3.1 If regardless of the order of pendant vertices, then the star graph K1,n exactly

has two odd arithmetic labelings.

Proof It is easy to see that the center of K1,n is only labelled 0 or 1. When the center of K1,n is

labelled 0, then the pendant vertices are labelled 1, 3, . . . , 2n − 1, successively; When the center

of K1,n is labelled 1, then the pendant vertices are labelled 0, 2, . . . , 2n − 2 successively. 2

Theorem 3.2 When n is odd, and m ≤ 3 and n is a positive integer, the graph Pn
m+1 is odd

arithmetic.

Proof Let x0 be the center of Pn
m+1. The vertices of k’th path on the Pn

m+1 from center to

outside are xk1, xk2, . . . , xkm successively, and akj , k ∈ [1, n], j ∈ [1, m] are the elements in {Ak}

satisfying the conditions of Lemma 2.4.

Put f(xkj)=akj , k ∈ [1, n], j ∈ [1, m], i.e., for any k ∈ [1, n],

f(xkj) =

{

n(j − 1) + 1 + 2(k − 1), j ∈ [1, m]2

n(j + 2) − 2 − 4(k − 1), j ∈ [2, m]2

and f(x0)=0. Then f is an odd arithmetic labeling of Pn
m+1 from Lemma 2.4.

When m ≤ 3 and n is a positive integer, applying Lemmas 2.2 and 2.3 immediately obtains
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that the graph Pn
m+1 is odd arithmetic. 2

Theorem 3.3 Let n and t be positive integers. Then

(1) The windmill graph Kt
n is odd arithmetic if and only if n = 2;

(2) All complete bipartite graphs are odd arithmetic.

Proof From Lemma 1.2 and Theorem 3.1 it follows the conclusion (1). In the following we

prove conclusion (2). Let (X, Y ) be the bipartition of the complete bipartite graph Km,n, where

X={xj | j ∈ [1, m]} and Y ={yj | ∈ [1, n]}. Define f(xj)=2j − 1, j ∈ [1, m], f(yj)=2m(j − 1),

j ∈ [1, n]. Then f is an odd arithmetic labelling of Km,n. 2

Theorem 3.4 If m is odd and t is a positive integer, where m ≡ 2 (mod4) and t is odd, then

Ct
m is not odd arithmetic.

Proof From Lemma 1.2, one can know that Ct
m is not odd arithmetic when m is odd and t is

a positive integer.

We show the case m ≡ 2 (mod 4) and t is odd by contradiction. Suppose that f is odd

arithmetic labeling of Ct
m and m=4n + 2. Using Lemma 1.2, we have

∑

v∈V d(v)f(v) = 2
∑

v∈V \{x0}
f(v) + 2tf(x0)=[t(4n + 2)]2.

Thus
∑

v∈V \{x0}
f(v) + tf(x0) = 2[t(2n + 1)]2.

i) If f(x0) is even, then the sum of labels of all vertices except x0 on each Cm of Ct
m is an

odd number. Since t is odd, the first term on left side of the equality is odd and the second term

is even. But the right side of the equality is even, this is a contradiction.

ii) If f(x0) is odd, then the sum of labels of all vertices except x0 on each Cm of Ct
m is an

even number. Thus the first term on left side of the equality is even. Since t is odd, the second

term on left side of the equality is odd. But the right side of the equality is even, which also

leads to a contradiction. 2

Theorem 3.5 (1) The cycle Cm is odd arithmetic if and only if m ≡ 0 (mod4).

(2) When m = 2, 4 and n is a positive integer, where m = 3 and n is even, Cn
2m is odd

arithmetic.

(3) When m = 4n and t=2, Ct
m is odd arithmetic.

Proof Part (1). If Cm is odd arithmetic, then Cm is a bipartite graph by Lemma 1.2. This

implies that m is an even number. From Theorem 3.4 one can obtain Cm is not odd arithmetic

if m ≡ 2 (mod 4). When m ≡ 0 (mod 4), define

f(x2i−1) = 2(i − 1), i ∈ [1, m/2]; f(x2i) = 2i − 1, i ∈ [1, m/4];

f(x2i) = 2i + 1, i ∈ [m/4 + 1, m/2].

It is easy to verify that f is an odd arithmetic labeling of Cm.

Part (2). Let the vertices (except center x0) of t’th C2m on Cn
2m be a2t−1,1, a2t−1,2, . . . , a2t−1,m−1,

at,m, a2t,m−1, a2t,m−2, . . . , a2t,1, successively. We define f(x0)=0, and write the labels of all ver-

tices (except center x0) of each C2m on Cn
2m for vector.
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When m = 2 and n is a positive integer, let arithmetic vector A1 = [a1,1, a2,1, . . . , a2n,1]
T

with common difference 2 and a1,1 = 1, and let vector A2 = [a1,2, a1,2, a2,2, a2,2, . . . , an,2, an,2]
T,

where ak,2 = 8(n − k) + 4, k ∈ [1, n]. Then [A1, A1 + A2] is an EPD matrix.

When m = 4 and n is a positive integer, let the vectors A1, A2, A3 be the same as the vectors

in Lemma 2.4. Define A4 = [a1,4, a1,4, a2,4, a2,4, . . . , an,4, an,4]
T, where ak,4 = 12n + 4 − 8k,

k ∈ [1, n]. Then A∗
4=[a1,4, a2,4, . . . , an,4]

T and A1, A2, A3 are EPD vector group. Therefore,

[A1, A1 + A2, A2 + A3, A3 + A4] is an EPD matrix.

When m = 3 and n is even, let the vectors A1 and A2 be the same as the vectors in Lemma 2.4.

Define A3 = [a1,3, a1,3, a2,3, a2,3, . . . , an,3, an,3]
T, where ak,3 = 4(t+k)−2+(−1)k, k ∈ [1, n]. Then

A∗
3 = [a1,3, a2,3, . . . , an,3]

T and A1, A2 are EPD vector group. Therefore, [A1, A1 + A2, A2 + A3]

is an EPD matrix. Combining the results, we obtain that the result (2) is true.

Part (3). Let the vertices of one C4n be x1, x2, . . . , x4n, and let the vertices of another C4n be

x4n+1, x4n+2, . . . , x8n. The vertex x4n is identified with x8n, denoted by x0. Define the function

f as follows: f(x0) = 0, f(x2k−1) = 2(k − 1), k ∈ [1, 4n],

f(x2k) =











2k − 1, k ∈ [1, n],

2k + 1, k ∈ [n + 1, 3n− 1],

2k + 3, k ∈ [3n, 4n− 1].

Then f is an odd arithmetic labeling of the C2
4n. 2

Theorem 3.6 The graph Cn
m · Pt is obtained by identifying the center of Cn

m with the end

vertex of Pt. Suppose n is a positive integer. Then Cn
2m ·Pm and Cn

2m ·Pm+1 are odd arithmetic

if m ≡ 0 (mod2), and Cn
2m · Pm+1 is odd arithmetic if m ≡ 1 (mod2).

Proof Let f(x0)=0, the vertices of t’th C2m on the Cn
2m be

a2t−1,1, a2t−1,2, . . . , a2t−1,m−1, at,m, a2t,m−1, a2t,m−2, . . . , a2t,1,

and the vertices of Ps be x0, a2n+1,1, a2n+1,2, . . . , a2n+1,s−2, an+1,s−1.

(1) When m ≡ 0 (mod 2), let the vectors A1, A2, . . . , Am−1 be the same as the vectors in

Lemma 2.4. For the graph Cn
2m · Pm, let Am=[a1,m, a1,m, a2,m, a2,m, . . . , an,m, an,m,−]T, where

ak,m=(2n + 1)m + 4n − 4 − 8(k − 1), k ∈ [1, n] and “-” denote no elements in the cell. Then

A∗
m =[a1,m, a2,m, . . . , an,m]T and A1, A2, . . . , Am−1 are EPD vectors. Thus [A1, A1 + A2, A2 +

A3, . . . , Am−1 + Am] is an EPD matrix.

Since

max〈Am−1 + Am−2〉 = a1,m−1 + a1,m−2 = (2n + 1)(2m − 2) − 1,

min〈Am−1 + Am〉 = an,m + a2n−1,m−1 = [(2n + 1)m − 4n + 4] + [(2n + 1)(m − 2) + 4n− 3]

= (2n + 1)(2m− 2) + 1,

and

max〈Am−1 + Am〉 = a1,m + a2,m−1 = [(2n + 1)m + 4n− 4] + [(2n + 1)(m − 2) + 3]

= (2n + 1)(2m − 2) + 4n − 1,
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〈Am−1 + Am〉 = [(2n + 1)(2m − 2) + 1, (2n + 1)(2m − 2) + 4n− 1]2.

Let Bm denote the vector generated by arranging the elements of Am−1 + Am from small to

large. Then A1, A1 + A2, A2 + A3, . . . , Am−2 + Am−1, Bm form a consecutive vector group.

For the graph Cn
2m · Pm+1, let Am=[a1,m, a1,m, a2,m, a2,m, . . . , an,m, an,m, an+1,m]T, where

ak,m = (2n + 1)m + 4n + 4 − 8k, k ∈ [1, n], an+1,m = (2n + 1)m.

Then A∗
m=[a1,m, a2,m, . . . , an,m, an+1,m]T and A1, A2, . . . , Am−1 are EPD vectors. Thus

[A1, A1 + A2, A2 + A3, . . . , Am−1 + Am] is an EPD matrix.

〈Am−1 +Am〉 = [(2n+1)(2m−2)+1, (2n+1)(2m−2)+4n+1]2. Let Bm denote the vector

generated by arranging the elements of Am−1 +Am from small to large. Then A1, A1 +A2, A2 +

A3, . . . , Am−2 + Am−1, Bm form a consecutive vector group.

(2) When m ≡ 1 (mod 2), let the vertices of Pm+1 be x0, a2n+1,1, a2n+1,2, . . . , a2n+1,m−1, an+1,m

successively, and the vectors A1, A2, . . . , Am−1 be the same as in Lemma 2.4. Define

Am = [a1,m, a1,m, a2,m, a2,m, . . . , an,m, an,m, an+1,m]T,

where

ak,m = (2n + 1)(m − 3) + 4n + 4k + (−1)k, k ∈ [1, n].

Then A∗
m=[a1,m, a2,m, . . . , an,m, an+1,m]T and A1, A2, . . . , Am−1 are EPD vectors. Thus [A1, A1+

A2, A2 +A3, . . . , Am−1 +Am] is an EPD matrix. Let Bm denote the vector yielded by arranging

the elements of Am−1+Am from small to large. Then A1, A1+A2, A2+A3, . . . , Am−2+Am−1, Bm

form a consecutive vector group. 2
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