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Abstract Let ϕ be a homomorphism from a group H to a group Aut(N). Denote by Hϕ×N the

semidirect product of N by H with homomorphism ϕ. This paper proves that: Let G be a finite

nonsolvable group. If G has exactly 40 maximal order elements, then G is isomorphic to one of

the following groups: (1) Z4ϕ × A5, kerϕ = Z2; (2) D8ϕ × A5, kerϕ = Z2 × Z2; (3) G/N = S5,

N = Z(G) = Z2; (4) G/N = S5, N = Z2 × Z2, N ∩ Z(G) = Z2.
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1. Introduction and main result

The number of maximal order elements of finite groups has strong influence on the structure

of finite groups. It was shown in [1–5] that if the number of maximal order elements of finite

groups is odd, or 2p, 2p2, 2p3, 4p, then the groups are solvable groups. Papers [1–5] concern about

that when the number of maximal order elements is given in special, the finite groups are solvable.

But we find that if the number of maximal order elements is 8p, there exists non-solvable groups.

The main target of this paper is to classify the non-solvable groups if the number of maximal

order elements is 40 (8p, p=5). We have the following result:

Theorem 3.2 Suppose that G is a finite nonsolvable group. Then G has 40 maximal order

elements if and only if G is isomorphic to one of the following groups:

(1) Z4ϕ × A5, kerϕ = Z2;

(2) D8ϕ × A5, kerϕ = Z2 × Z2;

(3) G/N = S5, N = Z(G) = Z2;

(4) G/N = S5, N = Z2 × Z2, N ∩ Z(G) = Z2.

For the sake of convenience, we introduce some notations. Let G be a finite group, πe(G) be

the set of orders of elements of G, π(n) = {p | p is a prime, p |n}, π(G)=π(|G|), Mi(G) = {x ∈

G, | o(x) = i, i ∈ πe(G)}, φ(x) be Eular function, M(G) be the set of maximal order elements
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of G, k = maxπe(G), and o(x) be the order of an element of x. We use Hϕ × N to denote the

semidirect product of N by H with homomorphism ϕ, where ϕ is a homomorphism from a group

H to a group Aut(N)[6]. The other symbols are standard. We begin with some lemmas.

2. Preliminaries

Lemma 2.1 Let G be a finite group and G have n cyclicsubgroups of order k, say, A1, A2, . . . , An.

We classify Ai, i = 1, . . . , n, by conjugation. Assume it has s orbits, and the length of orbit

containing Ai is ni, i = 1, 2, . . . , s. Without loss of generality, let Ai be the representative of

each orbit, i = 1, 2, . . . , s. Then:

(1) ni = |G : NG(Ai)|, n = n1 + n2 + · · · + ns;

(2) π(CG(Ai)) = π(Ai) = π(k), π(G) = π(ni) ∪ π(NG(Ai)), i = 1, 2, . . . , s;

(3) |NG(Ai) : CG(Ai)| |φ(k), π(NG(Ai)) ⊆ π(k) ∪ π(φ(k)), i = 1, 2, . . . , s;

(4) |G| = ni|NG(Ai) : CG(Ai)||CG(Ai)|, i = 1, 2, . . . , s.

Proof See Lemma 2.1 in the [5].

Lemma 2.2 Let N �G and N be a non-Abelin simple group. Then G/CG(N)N ∼= a subgroup

of Out(N).

Proof Since N is a simple group, Z(N) = 1. Thus N ∼= N/Z(N) ∼= Inn(N). Since N � G

and N is simple, CG(N)N = CG(N) × N . Therefore Inn(N) ∼= N ∼= CG(N)N/CG(N). By n-c

theorem, G/CG(N) ∼= a subgroup of Aut(N).

Hence G/CG(N)/CG(N)N/CG(N) ∼= a subgroup of Aut(N)/Inn(N), i.e., a subgroup of

G/CG(N)N ∼= Out(N).

Lemma 2.3 Let G be a finite group. If |M(G)| = φ(k), i.e., n = 1, then G is a supersolvable

group.

Proof See [1].

3. Main theorem

In the following proof, we always assume that G has n cyclicsubgroups of order k and there are

s orbits among those cyclicsubgroups under the conjugacy action of G. Suppose A1, A2, . . . , As

are the representatives of each orbit and the length of the orbit Ai is ni, i = 1, 2, . . . , s. Further-

more, we assume that n1 ≤ n1 ≤ n2 ≤ · · · ≤ ns and A = A1. Clearly, |M(G)| (the number of

maximal order elements), n (the number of cyclicsubgroups of order k), and Euler function φ(k)

have the relation of |M(G)| = nφ(k). We list the relation in following Table 1:

n 1 2 4 5 10 20 40

φ(k) 40 20 10 8 4 2 1

k k 52, 3.11, 4.11, 6.11, 2.3.11 11, 2.11 16, 20, 24, 15, 30 5, 8, 10, 12 3, 4, 6 2

Table 1
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Lemma 3.1 In above cases, G is solvable except for k = 12.

Proof

Case 1. If n = 1 and φ(k) = 40, then |M(G)| = φ(k). By Lemma 2.3, G is solvable.

Case 2. If n = 2 and φ(k) = 20. Since n = 2, |G : NG(A)| ≤ 2 and NG(A) � G follows.

Also since |NG(A) : CG(A)| |φ(k) = 20, NG(A)/CG(A) is solvable. We know |A| = ka and

φ(k) = 22.5. So let k = paqb · · · rc. Then φ(k) = pa−1(p − 1)qb−1(q − 1) · · · rc−1(r − 1). Firstly,

we prove that k has no more than two distinct prime factors, except k = 2.3.11. Let p be the

minimal prime factor of k, and p = 2. (i) If a = 1, that is, φ(k) = qb−1(q − 1) · · · rc−1(r − 1).

Since 22 ||φ(k) = 22.5, if k has more than two prime factors, then q = 3, r = 11, i.e., k = 2.3.11.

(ii) If a ≥ 2, then k has no more than two prime factors since 22 ||φ(k) = 22.5. If p > 2, since

p− 1, q− 1, r − 1 all have factor 2, k has no more than two prime factors. Secondly, we prove G

is solvable. By Lemma 2.1(2), π(CG(A)) = π(A) = π(k). If k = 2.3.11, then CG(A) is {2, 3, 11}

group. G is nonsovable implies that CG(A) is nonsolvable and CG(A) has a simple section to

be a K3-simple group. By [9], the order of the K3-simple group does not have prime factor 11,

which is a contraction. Therefore k has at most two prime factors, and CG(A) is a {p, q} group.

It follows that G is solvable.

Case 3. If n = 4 and φ(k) = 10 = 2.5, then k = 11, 22 and π(CG(A)) = π(k) ⊆ {2, 11}.

Let |NG(A) : CG(A)| = 2a.5b and |CG(A)| = 2u.11v. By Lemma 2.1(4), |G| = n1|NG(A) :

CG(A)||CG(A)|= n1.2
a.5b.2u.11v. Clearly, v = 1 and n1 ≤ 4. Let P11 ∈ Syl11(G). Then

P11 � G. Hence G/P11 is a {2, 5} group and a solvable group. So G is solvable.

Case 4. If n = 5, φ(k) = 8, k = 16, 24, 15, 20, 30. Let P3 ∈ Syl3(G) and P5 ∈ Syl5(G). In the

following, we discuss various cases.

(1) If k = 16 and |G| = n1.2
a.2u, then G is solvable.

(2) If k = 24, by Lemma 2.1, |G| = n1|NG(A) : CG(A)||CG(A)| = n1.2
a.2u.3v. Since

n1 ≤ n2 ≤ · · · ≤ ns, we have n1 = 1, 2, 5. G is nonsolvable implies that n1 = 5, v = 1. Since P3

char CG(A) � NG(A), P3 � NG(A) and NG(A) ≤ NG(P3). By |G : NG(A)| = n1 = 5, we have

|G : NG(P3)| = 3l + 1 | 5, and |G : NG(P3)| = 1 follows. That is, P3 � G and G/P3 is solvable.

Therefore G is solvable, a contradiction.

(3) If k = 15, by Lemma 2.1, |G| = n1.2
a.2u.5v. Since |CG(A)| = 3u.5v, and G has exactly

40 maximal order elements, we have u = 1, v = 1. Since n1 ≤ 5, if n1 < 5, then P5 � G and G is

solvable since n1 ≤ 5. If n1 = 5, as the same as (2), we have P3 � G. So G/P3 is solvable, which

means that G is solvable, a contradiction.

(4) If k = 20, by Lemma 2.1, |G| = n1.2
a.2u.5v. Since |M(G)| = 40, we have v = 1.

Considering the minimum of n1 and n1 + n2 + · · · + ns = 5, we have n1 = 1, 2, or 5. So G is a

{2, 5} group, which means that G is solvable.

(5) If k = 30, by Lemma 2.1, |G| = n1.2
a.2b.3u.5v. Since the number of maximal order

elements of G is 40, we have u = v = 1. In the same way as (3), if n1 < 5, then P5 �G; if n1 = 5,
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then P3 � G. Both lead to that G is solvable.

Case 5. n = 10, φ(k) = 4, k = 5, 8, 10, 12.

(1) If k = 5, by Lemma 2.1, |G| = n1.2
a.5u. Since n1 + n2 + · · · + ns = 10 and n1 ≤ n2 ≤

· · · ≤ ns, n1 = 1, 2, 3, 4, 5, 10. If n1 = 3, considering |G| = ni.2
a.5u, i = 1, 2, . . . , s, we have s = 3

and n2 = 3, n3 = 4. So |G| = 3.2a.5u = |G| = 4.2a.5u, a contradiction. Hence n1 = 1, 2, 4, 5, 10.

Clearly, G is a {2, 5} group, so G is solvable.

(2) If k = 8, 10, we can conclude that G is a {2, 5} group and G is solvable. We discuss the

case k = 12 later.

Case 6. n = 20, φ(k) = 2, k = 3, 4, 6. It is easy to see that if k = 3, 4, then G is solvable. When

k = 6, by Lemma 2.1, |G| = n1.2
a.2u.3v, n1 +n2 + · · ·+ns = 20. If G is nonsolvable, then 5 |n1,

n1 = 5, 10. So πe(G) = {1, 2, 3, 4, 5, 6}, or πe(G) = {1, 2, 3, 5, 6}. By Refs. [7], [8], G is solvable.

Case 7. n = 40, φ(k) = 1, k = 2. It is easy to see that G is solvable.

Now we begin to prove Theorem 3.2.

Proof of Theorem 3.2 Firstly, we verify the groups in Theorem 3.2 are nonsolvable groups

with exactly 40 maximal order elements. Considering the length of this paper, we only verify

G/N ∼= S5. The other groups can be verified similarly.

Let G/N = S5 and N = Z2 × Z2. By n − c theorem, G/CG(N) ≤ Aut(N) = S3. G

is nonsolvable implies that CG(N) is nonsolvable. So we have 3 | |CG(N)|. By CG(N) � G, we

know that CG(N) contains all Sylow 3-subgroups of G. Evidently, the maximal order of elements

of G is not greater than 12. We assert that G has exactly 40 elements of order 12.

Firstly, we prove that G has elements of order 12.

Otherwise, let a, b be any elements of order 3 of G. Then ā, b̄ are also elements of order 3 of

G/N . Since all elements of order 3 of S5 lie in one conjugacy class, ā, b̄ are conjugate in G/N , that

is, there exists g ∈ G, such that ag = bc, c ∈ N . So bc is an element of order 3. But b ∈ CG(N), so

c = 1. Therefore a, b are conjugate in G, i.e., all elements of order 3 of G lie in one conjugacy class.

Now we know that a and b are conjugate in G if and only if ā and b̄ are conjugate in G/N . Since

|(ā)Ḡ| = 20, |aG| = 20. Therefore |CG(a)| = |G|/20 = 25.3.5/22.5 = 23.3. Let P2 ∈ Syl2(CG(a))

and P3 ∈ Syl3(CG(a)). Then P3 is a Sylow-3 subgroup of G too, and CG(a) = P2×〈a〉. G has no

element of order 12 implies that P2 is an elementary Abelian 2-group. So CG(a) has 7 × 2 = 14

elements of order 6. Since G/N = S5 has 10 Sylow 3-subgroups, G has 10 Sylow 3-subgroups too.

Assume they are P3, P x2

3 , . . . , P x10

3 . Because P3 6= P xi

3 , CG(a) ∩ (CG(a))xi has no elements of

order 6 and G has at least 10×14 = 140 elements of order 6. But we know that G/N = S5 has 20

elements of order 6, the inverse images of them under the natural homomorphism of G → G/N

also are the elements of order of 6. Therefore G has at most 20|N | = 80 elements of order of 6.

This contradicts the former result.

Secondly, we prove that G has exactly 40 elements of order 12.

Let ab = ba be an element of order 12, where o(a) = 3, o(b) = 4. We have proven that the

elements of order 3 lie in one conjugacy class of G and the length of the conjugacy class is 20,
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so 12 ≤ |CG(ab)| ≤ |CG(a)| = 24. Furthermore, |(ab)G| = 40, or |(ab)G| = 20.

Let 1 6= z ∈ N ∩ Z(G). Then zb is element of order 4 of CG(a). Let CG(a) = 〈a〉 × P2.

Since a Sylow 2-subgroup of G/N = S5 is D8, P2 = D8 and two elements of order 4 of P2 = D8

are conjugate. So there exists h ∈ P2 ≤ CG(a), such that zb = bh. If |(ab)G| = 20, then

|CG(ab)| = |CG(a)| = 24. Thus CG(ab) = CG(a). Since h ∈ CG(a) = CG(ab), we have

zab = (ab)h = ab, a contradiction. Hence |(ab)G| = 40. Now we prove that all elements of

order 12 of G are in one conjugacy class. Let x = a1b1 be an element of order 12 of G, where

o(a1) = 3, o(b1) = 4. Since all elements of order 3 of G are in one conjugacy class, there exists

g ∈ G, such that a = ag
1. Therefore, xg = ag

1b
g
1 = bg

1a
g
1 = abg

1 = bg
1a, and bg

1 ∈ CG(a) = 〈a〉 × D8.

So bg
1 ∈ D8. Evidently, b is an element of order 4 of CG(a), so there exists h ∈ D8 ≤ CG(a), such

that bg
1 = bh. Hence xg = abg

1 = abh = (ab)h, and G has exactly 40 elements of order 12.

In the same way, we can prove that in other cases, the maximal order of elements of G is 12,

and G has exactly 40 maximal order elements.

Conversely, if G is a nonsolvable group with 40 maximal order elements, by Lemma 3.1 and

table 1, we know that the maximal order of elements of G is k = 12, φ(k) = 4, n = 10. By

Lemma 2.1, n = n1 + n2 + · · · + ns = 10. G is nonsolvable implies that 5 |n1. Considering n1 is

minimal, we have n1 = 5, 10 and |G| = n1.2
a.2u.3v. Let A = A1 = 〈a〉, o(a) = 12, H = CG(A)

and P3 ∈ Syl3(G). If v ≥ 3, then H = CG(A) has at least 2× (33 − 1) = 52 elements of order 12

since |CG(A)| = 2u.3v and k = 12. It is contrary to that G has 40 maximal order elements. So

v ≤ 2.

(I) Let v = 2. Then G has a simple section to be K3- simple group. By Refs. [9] and [10],

we know that the simple section is A5 or A6. If G has a simple section M/K = A5 (M, K

are normal subgroup of G), by Lemma 2.2, Ḡ/CḠ(M̄)M̄ ≤ Out(M̄) = Z2. If 3 | |K|, then G

has a principal factor L/N to be a group of order 3 (where N � L � N � K). Since 5 | |G/N |,

and a Sylow 5-subgroup of G/N acts on L/N by conjugacy, the action is trivial. So we can

conclude that G has elements of order 15, a contradiction. Therefore, 3 † |K|, and 3 | |CḠ(M̄)|.

But M̄ = M/K = A5, we also get a contradiction of G having elements of order 15.

Hence G does not have a simple section A5, and it is only possible that G has a simple section

A6. Let M/K = A6. We know that A6 has 80 elements of order 3, and 32 | |A6|, 32 || |G|, so

3 † |K|. Therefore, we can conclude that under natural homomorphism (G → Ḡ), the 3-part of

inverse image of M/K = A6 are different, i.e., M , moreover, G has at least 80 elements of order

3. On the other hand, |H | = |CG(a)| = 2u.32, and any Sylow 3-subgroup of G is contained in

H = CG(a) conjugately. So any element of order 3 corresponds to at least two elements of order

12 since G has 40 elements of order 12, and distinct element of order 3 corresponds to distinct

elements of order 12. Hence G has at most 20 elements of order 3, a contradiction.

(II) If v = 1, since H = CG(a), by Lemma 2.1(2), π(H) = π(A). So |H | = 2u.3 and P3

char H = CG(A) � NG(A), furthermore, NG(A) ≤ NG(P3). If n1 = |G : NG(A)| = 5, since

n1 = |G : NG(A)| = 5, 10, |G : NG(P3)| = 1, 5. The former implies P3 � G, and G is solvable, a

contradiction, and the later by Sylow theorem implies 5 = 3l + 1, a contradiction. So n1 = |G :

NG(A)| = 10. Since G is nonsolvable, P3 is not normal subgroup of G, and |G : NG(P3)| = 10
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follows. That is, G has 10 Sylow 3-subgroups. Suppose they are P3, P x2

3 , P x3

3 , . . . , P x10

3 , xi ∈

G, i = 2, 3, . . . , 10. Therefore, H ∩Hxi doses not contain any Sylow 3-subgroup of G (otherwise,

we have a contradiction of P3 = P xi

3 ) and H∩Hxi has no elements of order 12 of G, which means

that H ∪ Hx2 ∪ Hx3 ∪ · · · ∪ Hx10 has ten times as many elements of order 12 as H does. Since

|M(G)| = 40, u = 2 by simple calculating. Thus |H | = 22.3, and H = A, |G| = 2.5.2α.22.3.

(A) If α = 1, that is, |G| = 2.5.2.22.3. Let 1 = G0�G1�· · ·�Gm = G be a principal series of

G. Since G is nonsolvable, G has a simple section, say, A5. Furthermore, four cases may occur in

the principal series of G: (i) m = 3, 1 = G0�G1�G2�G3 = G, G1 = Z2, G2/G1 = A5, G/G2 =

Z2, (ii) m = 3, G1 = A5, G2/G1 = Z2, G/G2 = Z2, (iii) m = 2, G1 = Z2 × Z2, G/G1 = A5,

(iv) m = 2, G1 = A5, G/G1 = Z2 × Z2. If G/A5 = Z2 × Z2, we can conclude that G has no

elements of order 12, a contradiction, which means that case (iv) will not occur. If (iii) is true,

since G/G1 = A5, CG(G1) = G1, moreover, we have a contradiction of G/CG(G1) = A5 ≤

Aut(G1) = S3. If (ii) is true, since A5 � G, by Lemma 2.2, G/CG(A5) × A5 ≤ Out(A5) = Z2.

Thus G = A5 × Z2 × Z2, or G = Z4ϕ × A5, but the former implies that G has no elements of

order 12. Therefore, G = Z4ϕ × A5, where kerϕ = Z2. If (i) is true, then G/G1 is a nonsolvable

group of order 120. So G/G1
∼= Z2 × A5, or G/G1

∼= SL(2, 5), or G/G1
∼= S5. It is easy to see

that there are at most 20 elements of order 6 in Z2 × A5, SL(2, 5). Therefore, G has at most

20 elements of order 12, which contradicts the fact G has 40 elements of order 12. So it is only

possible that G/G1
∼= S5.

Now we have proven that if α = 1, G ∼= Z4ϕ × A5, where kerϕ = Z2, or G/Z2
∼= S5, where

Z2 ≤ Z(G).

(B) If α = 2, |G| = 2.5.22.22.3 = 25.3.5. We can know from the order of G that the only

simple section of G is A5. Let N, H be normal subgroups of G satisfying N = A5 or H/N = A5.

Case 1. If N = A5, by Lemma 2.2, G/CG(A5)×A5 ≤ Out(A5) = Z2. If G = CG(A5)×A5, then

CG(A5) = Z2×Z2×Z2 since the maximal order of elements of G is 12. But there is no elements

of order 12 in G, a contradiction. So G/CG(A5)×A5 = Z2, and CG(A5) = Z2 ×Z2. Also, since

the maximal order of elements of G is 12, we have G ∼= D8ϕ × A5, where kerϕ = Z2 × Z2.

Case 2. If H/N = A5, then N is a 2- subgroup. Let |N | = 2s. Then s ≤ 3.

(1) If |N | = 23, then H = G and G/N = A5 is a simple group. So CG(N) = N , or

CG(N) = G. If CG(N) = N , we have A5 = G/N ≤ Aut(N), furthermore, |A5| = 22.3.5 divides

|Aut(N)|. But |Aut(N)| divides 23(3−1)/2.(23−1).(22−1).(2−1) = 23.3.7, this is a contradiction.

If CG(N) = G, then N ≤ Z(G). Furthermore if exp(N) = 2, then G has no elements of order

12; if exp(N) = 4, then G has elements of order 20, which contradicts that the maximal order of

elements of G is 12.

(2) If |N | = 22 (Clearly, N is an elementary Abelian subgroup, otherwise, we have a contra-

diction of G having elements of order 20), then H/N = A5. Since |G/N | = 120 and H/N = A5,

G/N is isomorphic to A5 × Z2 or S5. If G/N ∼= A5 × Z2 = A5 × 〈ā〉, then N〈a〉 is a normal

subgroup with order 8 of G, we have a contradiction as same as (1). Thus G/N ∼= S5. Now we

prove N ∩Z(G) = Z2. If N ≤ Z(G), let a be an element of order 12 of G. Then ā is an element
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of order 6 of Ḡ = S5. Since all elements of order 6 of S5 belong to one conjugacy class, for any

element b̄ of order 6 of S5, there exists g ∈ G such that b = agz, z ∈ N ≤ Z(G). Therefore b is

an element of order 12 of G, that is, the inverse images (under the natural homomorphism) of

all elements of order 6 of Ḡ = S5 are the elements of order 12 of G. So we can conclude that

G has 80 elements of order 12, a contradiction. Moreover, CH(N) = N or CH(N) = H since

H/N = A5. If CH(N) = N , then A5 = H/N = H/CH(N) ≤ Aut(N) = S3, a contradiction.

Hence CH(N) = H , from here we can know that all Sylow 3-subgroups and Sylow-5 subgroups

of G are contained in CH(N) = H . Let P2 be a Sylow 2-subgroup of G, then N � P2. So let

a ∈ N ∩ Z(P2) > 1. Then P2 ≤ CG(a), and a ∈ Z(G) follows. Therefore, N ∩ Z(G) = Z2.

(3) If |N | = 2, let Ḡ = G/N, H̄ = H/N = A5. Then Ḡ/CḠ(H̄) ≤ Aut(H̄) = S5. Since H̄ is

a simple group and the maximal order of elements of G is 12, CḠ(H̄) does not contain elements

of order 3, 5. So CḠ(H̄) = 1, or CḠ(H̄) is a 2-group. If the former is true, then Ḡ ≤ S5, but

|Ḡ| = 24.3.5 > |S5|, a contradiction. Therefore, CḠ(H̄) = K̄ is a 2-group. Since K̄ � Ḡ, we have

K � G. But |K| = 2t, t > 2, we have solved this case in (1), or (2).

Therefore we have proven that: if α = 2, then G ∼= D8ϕ × A5, where kerϕ = Z2 × Z2, or

G/N ∼= S5, where N = Z2 × Z2, N ∩ Z(G) = Z2.

This proves the sufficiency of Theorem 3.2. The proof is completed.
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