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Abstract A quasi-rectangular mesh (denoted by ∆QR) is basically a rectangular mesh (∆R)

that allows local modifications, including T-mesh (∆T ) and L-mesh (∆L). In this paper,

the dimensions of the bivariate spline spaces S
µ
k (∆QR) are discussed by using the Smoothing

Cofactor-Conformality method. The dimension formulae are obtained with some constraints

depending on the order of the smoothness, the degree of the spline functions and the structure

of the mesh as well.
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1. Introduction

As we know, tensor-product B-splines which are a basic tool in computer aided geometric

design, are defined on rectangular meshes. B-spline surfaces have a weakness that the control

points must lie topologically on a rectangular grid. To overcome this limitation, Sederberg et

al.[1,2] invented T-spline, which is a pointbased spline defined on T-mesh. Then Deng et al.[3]

proposed a method based on B-nets to calculate the dimension of a spline space S(m, n, α, β, ∆T )

on a T-mesh with constraints m ≥ 2α + 1 and n ≥ 2β + 1. Recently, Li et al.[4] improved the

dimension formulae of the same spline spaces on the T-mesh by using the Smoothing Cofactor-

Conformality method[5,6].

In this paper, the dimension of the bivariate spline space S
µ
k (∆QR) on quasi-rectangular

mesh is further discussed by using the Smoothing Cofactor-Conformality method. The dimension

formulae are obtained with some constraints depending on the order of the smoothness, the degree

of the spline functions and the structure of the mesh as well.

We use the same definitions and notations as in [4]. Given a rectangular mesh (denoted by

∆R, as shown in Fig.1(a)), we modify it locally and get two new meshes (as shown in Fig.1(b)

and Fig.1(c)). There are three kinds of interior mesh segments.
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Figure 1 A rectangular mesh (a) and the corresponding locally modified T-mesh (b) and L-mesh (c).

a) cross-cut: both of its endpoints lie on the boundary of the mesh, e.g., v1v2 in Fig.1(b).

b) ray: only one of its endpoints lies on the boundary of the mesh, e.g., v3v11 in Fig.1(b)

and v1v4 in Fig.1(c).

c) Truncated-segment (or T-segment) : both of its endpoints do not lie on the boundary of

the mesh, e.g., v5v9 in Fig.1(b) and v5v7 in Fig.1(c).

According to the three kinds of mesh segments, there are also three kinds of interior vertices.

a) free-vertex: the vertex is an intersection point of two cross-cuts, or two rays, or one

cross-cut and one ray, e.g., v21, v23 in Fig.1(b) and Fig.1(c).

b) mono-vertex: the vertex is an intersection point of one T-segment and one cross-cut or

one ray, e.g., v4, v10 in Fig.1(b) and Fig.1(c).

c) multi-vertex: the vertex is an intersection point of two T-segments, e.g., v6, v15 in

Fig.1(b) and Fig.1(c).

We define some relations between two mesh segments.

a) T-connected: two segments are T-connected if an endpoint of one segment is an interior

point of the other segment. The intersection point is called a T-junction, e.g., v5v9 and v7v19

are T-connected at v7 in Fig.1(b), and v7 is a T-junction vertex.

b) L-connected: two segments are L-connected if they have one common endpoint. The

intersection point is called an L-junction, e.g., v5v7 and v7v19 are L-connected at v7 in Fig.1(c),

and v7 is an L-junction vertex.

c) connected component: the union of all connected T-segments and their vertices.

A connected component is called a T-connected component if it contains T-junction vertices,

as every independent part closed by dotted line shown in Fig.2(a), then the mesh is called a

T-mesh. Similarly, a connected component is called an L-connected component if it contains

L-junction vertices, as the central part closed by dotted line shown in Fig.2(b), then the mesh

is called an L-mesh. By the definition, the whole T-mesh (or L-mesh) can be decomposed into

many different T-connected components (or L-connected components) without intersections.

Given a quasi-rectangular mesh ∆QR. Let F denote all the cells in ∆QR, and Ω denote the

region occupied by all the cells in ∆QR. A bivariate spline space defined on ∆QR is

S
µ
k (∆QR) := {s(x, y) ∈ Cµ(Ω)| s(x, y)|φ ∈ Pk, ∀φ ∈ F},

where Pk denotes the space of all bivariate polynomials of total degree at most k.
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(a) ∆T (b) ∆L

Figure 2 (a) A T-mesh and its T-connected components, (b) an L-mesh and its L-connected

components.

2. The dimensions of spline spaces S
µ
k (∆QR)

2.1 The conformality conditions along T-segments

At first, we introduce the conformality conditions on S
µ
k (∆QR). By using the Smoothing

Cofactor-Conformality method[5,6], there exist pi(x, y) ∈ Pk−µ−1, the corresponding smoothing

cofactors of each horizontal grid edge, and qj(x, y) ∈ Pk−µ−1, the corresponding smoothing cofac-

tors of each vertical grid edge. For each interior vertex (xi, yj) denoted by vi,j , the conformality

condition is

(pi(x, y) − pi−1(x, y))(y − yj)
µ+1 + (qj−1(x, y) − qj(x, y))(x − xi)

µ+1 = 0. (1)

When k ≥ 2µ + 2, there exists a conformality cofactor di,j(x, y) ∈ Pk−2µ−2 at the interior

vertex vi,j , satisfying
{

pi(x, y) − pi−1(x, y) = di,j(x, y)(x − xi)
µ+1,

qj(x, y) − qj−1(x, y) = di,j(x, y)(y − yj)
µ+1.

(2)

In order not to get the zero conformality cofactor, we suppose k ≥ 2µ + 2. Otherwise, the

T-segment dose not exist actually.

By Eq. (2), for a horizontal T-segment including N interior vertices, the corresponding

conformality factor di,j (i = 1, 2, . . . , N) at each vertex must satisfy the conformality condition

along the horizontal T-segment as follows

N
∑

i=1

di,j(x, y)(x − xi)
µ+1 = 0. (3)

Similarly, the conformality condition along the vertical T-segment is

N
∑

j=1

di,j(x, y)(y − yj)
µ+1 = 0, (4)

where N denotes the number of the interior vertices on the vertical T-segment.

Therefore, the global conformality conditions of a connected component are composed of

the conformality equations along its all T-segments, and the global conformality conditions of

different connected components are indpendent of each other. Similar to the spline space on the

cross-cut patition[6], the source cell has (k+2)(k+1)
2 degree of freedom, and each cross-cut has a
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free smoothing cofactor. Thus, the dimensions of the spline spaces on the whole partition are

given by the following lemma.

Lemma 1 Given a quasi-rectangular mesh ∆QR with LC cross-cuts and T different connected

components Ti, i = 1, 2, . . . , T . Then the dimension of the spline space defined on ∆QR is

dimS
µ
k (∆QR) =

(

k + 2

2

)

+ LC

(

k − µ + 1

2

)

+

T
∑

i=1

dim Ti,

where
(

k
µ

)

=
k!

µ!(k − µ)!
, and dim Ti denotes the dimension of the global conformality conditions

corresponding to the i-th connected component.

2.2 The dimensions of the conformality conditions along the T-segments

By Lemma 1, if we obtain the dimension of each connected component, then we obtain

the dimension of the whole spline space. Now we consider the dimension of the conformality

condition along any T-segment including N vertices. We have the following results.

Lemma 2 Let k ≥ 2µ + 2, di(x, y) ∈ Pk−2µ−2. The dimension of the solution space of the

system of equations
∑N

i=1 di(x, y)(x − xi)
µ+1 = 0 is

dimT (N) =
1

2
(k − 2µ − 1 − [

µ + 1

N − 1
])+((N − 1)k − 2Nµ− 2 + (N − 1)[

µ + 1

N − 1
]), (5)

where [x] denotes the largest integer not greater than x, µ+ = max{0, µ}.

If N > µ + 2,

dimT (N) = (N − K0)

(

k − 2µ

2

)

, (6)

where K0 =
k + 2

k − 2µ
.

Proof Since di(x, y) ∈ Pk−2µ−2, there exists ai
j(x) ∈ Pk−2µ−2−j , j = 0, 1, . . . , k − 2µ − 2, such

that

di(x, y) = ai
0(x) + ai

1(x)y + · · · + ai
k−2µ−2(x)yk−2µ−2 =

k−2µ−2
∑

j=0

ai
j(x)yj .

Then
N

∑

i=1

di(x, y)(x − xi)
µ+1 =

N
∑

i=1

k−2µ−2
∑

j=0

ai
j(x)(x − xi)

µ+1yj = 0.

Since all coefficients of yj equal to 0, we have k − 2µ − 1 independent systems of equations

N
∑

i=1

ai
j(x)(x − xi)

µ+1 = 0, j = 0, 1, . . . , k − 2µ − 2.

Now we focus on the system of equations

N
∑

i=1

ai(x)(x + xi)
µ+1 = 0. (7)
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We can expand each ai(x) ∈ Pk−2µ−2−j as

ai(x) = ci
0 + ci

1(x + xi) + · · · + ci
k−2µ−2−j(x + xi)

k−2µ−2−j ,

where ci
m ∈ R, m = 0, 1, . . . , k − 2µ − 2 − j. Then

ai(x)(x + xi)
µ+1 = ci

0(x + xi)
µ+1 + ci

1(x + xi)
µ+2 + · · · + ci

k−2µ−2−j(x + xi)
k−µ−1−j .

Denote

C = (c1, c2, . . . , cN )T,

where

ci = (ci
k−2µ−2−j , . . . , c

i
0)

T

and

A = (A1, A2, . . . , AN ),

where Ai (i = 1, 2, . . . , N) is a (k − µ − j) × (k − 2µ − 1 − j) matrix of the following form

Ai =























1
(

k−µ−1−j
1

)

xi 1
(

k−µ−1−j
2

)

x2
i

(

k−µ−2−j
1

)

xi

. . .

...
...

. . . 1
...

...
. . .

...
(

k−µ−1−j
k−µ−1−j

)

x
k−µ−1−j
i

(

k−µ−2−j
k−µ−2−j

)

x
k−µ−2−j
i · · ·

(

µ+1
µ+1

)

x
µ+1
i























.

Then the systems of equations (7) is equivalent to the linear system AC = 0. Using the

method similar to that in [7], we have

rank(A) = min{k − µ − j, N(k − 2µ − 1 − j)}.

Then the dimension of the solution space is

(N(k − 2µ − 1 − j) − (k − µ − j))+, j = 0, 1, . . . , k − 2µ − 2.

Thus, the dimension of the solution space
∑N

i=1 di(x, y)(x − xi)
µ+1 = 0 is

dimT (N) =

k−2µ−2
∑

j=0

(N(k − 2µ − 1 − j) − (k − µ − j))+

=
1

2
(k − 2µ − 1 − [

µ + 1

N − 1
])+((N − 1)k − 2Nµ− 2 + (N − 1)[

µ + 1

N − 1
]).

This result agrees with the formula of the conformality condition at one point given in [6].

If N > µ + 2, then

dimT (N) = N

(

k − 2µ

2

)

−

(

k − µ + 1

2

)

+

(

µ + 2

2

)

= (N − K0)

(

k − 2µ

2

)

.

Similarly, the dimension of the solution space
∑N

i=1 dj(x, y)(y − yj)
µ+1 = 0 is the same. 2

Let K1 =
k − µ

k − 2µ − 1
(≤ K0 ≤ µ + 2, when k ≥ 2µ + 2). By the above result of dimension,

N > K1 is a necessary condition for one T-segment with N interior vertices not to degenerate.
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The corresponding matrix A shows that, when N > µ+2, there are N−K0 conformality cofactors

belonging to the basis of the solution space. Table 1 shows how K0 and K1 vary with k.

k 2µ + 2 2µ + 3 2µ + 4 2µ + 5 · · ·

K0 µ + 2 2µ+5
3

2µ+6
4

2µ+7
5 · · ·

K1 µ + 2 µ+3
2

µ+4
3

µ+5
4 · · ·

Table 1 K0 and K1 vary with k

2.3 The dimensions of spline spaces S
µ
k (∆T )

Given a T-mesh, by using the regular order of T-segments defined in [4]. we can obtain

the dimensions of the global conformality conditions on T-connected component with some con-

straints as in the following lemma.

Lemma 3 Let Ti be the i-th T-connected component. There are Ni T-segments and Vi interior

vertices in Ti. Each T-segment Ls contains hs interior vertices including h
(1)
s mono-vertices and

h
(2)
s multi-vertices except the two end vertices (i.e. hs = h

(1)
s + h

(2)
s + 2). Suppose hs > µ + 2

and h
(1)
s + 2 ≥ K0. Then the dimension of Ti is

dim Ti = Vi

(

k − 2µ

2

)

− Ni(

(

k − µ + 1

2

)

−

(

µ + 2

2

)

). (8)

Proof Case 1 When Ti has no T-cycle, the Ni T-segments can be arranged in a regular order

as

LNi
→ LNi−1 → · · · → L2 → L1.

Denote by ts the number of interior multi-vertices on Ls, which are common vertices with the

latter s − 1 T-segments Ls−1, . . . , L1. It is clear that t1 = 0, ts ≤ h
(2)
s , s = 2, . . . , Ni. The

global conformality conditions of Ti are composed of Ni conformality equations along the Ni

T-segments. Then the dimension of the global conformality conditions can be determined by the

inverse of the regular order.

1) Let L1 have its all degree of freedom dim L1 = dimT (h1).

2) By h
(1)
s + 2 ≥ K0, s = 2, . . . , Ni, for Ls, even if its h

(2)
s conformality cofactors are

determined by L1, . . . , Ls−1, the rest h
(1)
s + 2 conformality cofactors have (h

(1)
s + 2 − K0)

(

k−2µ
2

)

degree of freedom. Then Ls has its real degree of freedom dimLs − ts
(

k−2µ
2

)

. Notice that
∑Ni

s=1(hs − ts) = Vi, we have

dim Ti =

Ni
∑

s=1

(dim Ls − ts

(

k − 2µ

2

)

)

=

Ni
∑

s=1

(hs − K0 − ts)

(

k − 2µ

2

)

=

Ni
∑

s=1

(hs − ts)

(

k − 2µ

2

)

− NiK0

(

k − 2µ

2

)
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= Vi

(

k − 2µ

2

)

− Ni(

(

k − µ + 1

2

)

−

(

µ + 2

2

)

).

Csse 2 When Ti has T-cycles, by using the same method as in [4], each T-cycle can be dismissed

by adding a virtual mono-vertex. Then the dimension formula (8) is right. 2

Remark 1 (a) When the T-connected component contains only one free-vertex, dim Ti =
(

k−2µ
2

)

.

That is the degree of freedom of one conformality cofactor.

(b) When the T-connected component contains only one T-segment, by Lemma 2 and Eq.

(5), the constraint h
(1)
s +2 ≥ K0 can be relaxed as hs > K1, then dim Ti = dimT (hs). If hs ≤ K1,

then dim Ti = 0, the T-segment will vanish from the T-mesh.

By Lemmas 1 and 3, we can obtain the dimension of spline space S
µ
k (∆T ) with constraints

hs > µ + 2 and h
(1)
s + 2 ≥ K0.

Theorem 1 Given a T-mesh ∆T , which includes LC cross-cuts, LT T-segments and V interior

vertices, and the s-th T-segment Ls contains hs interior vertices, including h
(1)
s mono-vertices

except the two end vertices. Suppose hs > µ + 2, h
(1)
s + 2 ≥ K0. Then the dimension of the

spline space S
µ
k (∆T ) (k ≥ 2µ + 2) is

dimS
µ
k (∆T ) =

(

k + 2

2

)

+ V

(

k − 2µ

2

)

+ (LC − LT )

(

k − µ + 1

2

)

+ LT

(

µ + 2

2

)

. (9)

Remark 2 If each T-connected component contains one T-segment at most, and the constraints

can be relaxed as hs > K1 (such that the T-segment does not degenerate), then the dimension

dimS
µ
k (∆T ) can be calculated by Lemma 1 and Eq. (5) in Lemma 2.

2.4 The dimensions of spline spaces S
µ
k (∆L)

The difference between T-mesh and L-mesh is that L-mesh contains L-junctions (as shown

in Fig.1 (c)), that is, two T-segments have one common end point. Hence, each L-junction can

be changed into a T-junction by adding a virtual mono-vertex to one of the T-segments. As

shown in Fig. 3, an L-connected component is changed into a T-connected component by adding

two virtual mono-vertices v8 and v17. Similarly, an L-cycle is changed into a T-cycle by adding

six virtual mono-vertices v4, v5, v8, v14, v18, v21, as shown in Fig.4.

4
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10 11

12 13

14 15 16

18 19 20

(a) ∆L

4

5 6 7

10 11

12 13

14 15 16

18 19 20

8

17

(b) ∆T

Figure 3 An L-connected component is changed into a T-connected component by adding two

virtual mono-vertices.

When an L-mesh (∆L) is changed into a T-mesh (∆T ) by adding N virtual mono-vertices,
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Figure 4 An L-cycle is changed into a T-cycle by adding six virtual mono-vertices.

the dimension of the spline space on ∆T can be obtained by Eq. (9) (dim S
µ
k (∆T )). Then let all

added virtual mono-vertices vanish again. We can get the dimension of spine space on L-mesh

dimS
µ
k (∆L). In fact, if the N virtual mono-vertices have all degree of freedom in dimS

µ
k (∆T ),

then

dimS
µ
k (∆L) = dimS

µ
k (∆T ) − N

(

k − 2µ

2

)

.

The correctness of the above procedure can be guaranteed by hypothesis hs > µ+2 and h
(1)
s +1 ≥

K0 according to the proof of Lemma 3. Thus, the dimension formula can be generalized to the

spline space on L-mesh S
µ
k (∆L).

Theorem 2 Given an L-mesh ∆L, which includes LC cross-cuts, LT T-segments and V interior

vertices, and the s-th T-segment Ls contains hs interior vertices, including h
(1)
s mono-vertices

except the two end vertices. Suppose hs > µ + 2 and h
(1)
s + 1 ≥ K0. Then the dimension of the

spline space S
µ
k (∆L) (k ≥ 2µ + 2) is

dimS
µ
k (∆L) =

(

k + 2

2

)

+ V

(

k − 2µ

2

)

+ (LC − LT )

(

k − µ + 1

2

)

+ LT

(

µ + 2

2

)

. (10)

Remark 3 Similarly to the dimension formula in [4], if the number of mono-vertices does not

satisfy the constraints in Theorem 1 or Theorem 2, then the corresponding dimension formula is

a lower bound of the real dimension.
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