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Abstract This announcement is to raise an ultimate generalization to monotonicity condition

on the Fourier (trigonometric) coefficient sequences. We prove this condition cannot be weak-

ened any further to guarantee the uniform convergence of the sine series. Some interesting and

important classical results in Fourier analysis are re-established under this ultimate condition.

Over ninty year research history is surveyed in this announcement.The first original paper of this

series of papers is posted in arXiv:math.CA/0611805 v1, November 27, 2006.

Keywords MVBVS; trigonometric series; convergence; integrability; best approximation.

Document code A

MR(2000) Subject Classification 42A20; 42A32

Chinese Library Classification O174.2

1. Introduction

It is well known that there are a great number of interesting results in Fourier analysis

established by assuming monotonicity of coefficients. For example, Chaundy and Jolliffe[1] proved

that if {an} is a nonnegative and non-increasing (monotonic) real sequences (in symbol, {an} ∈

MS, i.e, Monotone Sequence) with limn→∞ an = 0, then a necessary and sufficient condition for

the uniform convergence of sine series

∞
∑

n=1

an sinnx (1.1)

is limn→∞ nan = 0. This classical result, together with many other convergence results of series

(1.1), such as L1-convergence, Lp-convergence, and best approximation, have been generalized

by loosing the condition {an} ∈ MS to {an} ∈ CQMS (Classical Quasi-monotone Sequences),

{an} ∈ RVQMS (O-regularly Varying Quasi-monotone Sequences), {an} ∈ RBVS (Rest Bounded

Variation Sequences), {an} ∈ GBVS (Group Bounded Variation Sequences), and {an} ∈ NBVS

(Non-onesided Bounded Variation Sequences). Readers can find details of the definitions of all

above sequences and generalizations of Chaundy and Jolliff’s results in [9]. We introduce the
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following new kind of sequences, which contains all classes of sequences mentioned earlier:

Definition 1 A nonnegative sequence A = {an} is said to be a mean value bounded variation

sequence ({an} ∈ MVBVS) if there is a λ ≥ 2 such that

2n
∑

k=n

|ak − ak+1| ≤
C(A)

n

[λn]
∑

k=[λ−1n]

ak

holds for all n = 1, 2, . . . and some constant C(A) depending only upon the sequence A.

We can generalize the definition of MVBVS to complex case as follows:

Definition 2 Let C := {cn}
∞
n=0 be a sequence satisfying cn ∈ K(θ1) := {z : |arg z| ≤ θ1} for

some θ1 ∈ [0, π/2) and n = 1, 2, . . . . If there is a number λ ≥ 2 such that

2m
∑

k=m

|∆ck| :=

2m
∑

k=m

|ck − ck+1| ≤ C(C)
1

m

λm
∑

k=[λ−1m]

|ck|

holds for all m = 1, 2, . . . , then we say that the sequence C belongs to the class MVBVS in

complex sense.

A nonnegative sequence A := {an} is said to be an almost monotonic sequence (A ∈ AMS) if

there is a positive constant C(A) such that ak ≤ C(A)bn for all k ≥ n. Evidently, AMS contains

RVQMS ∪ RBVS, but it is not comparable with GBVS, NBVS or MVBVS (we refer to [9] for

more discussion on this). We summarize the generalization of the monotone conditions in the

following two figures. Figure 1 shows the development of the generalization successively, while

Figure 2 shows the relations of the different generalized classes of monotonic sequences.

Figure 1 History of Development Figure 2 Relationship of Coefficient Sequences
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2. Main results

An AMS looks easy to manage, but the following result shows that it cannot guarantee the

uniform convergence of a trigonometric series.

Theorem 1 There exists a sequence {an} ∈ AMS with limn→∞ nan = 0 such that the series

(1.1) is not uniformly convergent.

The following theorem extends the monotonic condition on the sequence {an} in the classical

Chaundy-Jollif Theorem to MVBV condition:

Theorem 2 If A := {an} ∈ MVBVS, then a necessary and sufficient condition either for

the uniform convergence of series (1.1), or for the continuity of its sum function f , is that

limn→∞ nan = 0.

We conclude that MVBV condition is the ultimate condition to generalize the Chaundy-

Jolliffe’s result, that is, MVBV condition cannot be weakened any further to guarantee the

uniform convergence of the series (1.1). In fact, we have

Theorem 3 Let Mn be a given nonnegative increasing sequence tending to infinity. Then there

exists a sine series of the form (1.1) with limn→∞ nan = 0 such that for any given λ ≥ 2,

lim
n→∞

∑2n
k=n |∆ak|

Mn

n

∑[λn]
k=[λ−1n] |ak|

= 0,

however, the series is not uniformly convergent.

Given a trigonometric series
∑∞

k=−∞ cke
ikx := limn→∞

∑n
k=−n cke

ikx, write

f(x) =

∞
∑

k=−∞

cke
ikx

for those points x where the series converges. Denote its nth partial sum
∑n

k=−n cke
ikx again by

Sn(f, x). We generalize the Chaundy-Jolliffe’s result to the complex spaces by establishing the

following:

Theorem 4 Let C = {cn} be a complex sequence satisfying

cn ∈ K(θ0) and cn + c−n ∈ K(θ0), n = 1, 2, . . .

for some θ0 ∈ [0, π/2) and C ∈ MVBVS. Then the necessary and sufficient conditions for f ∈ C2π

and limn→∞ ‖f − Sn (f) ‖ = 0 are that

lim
n→∞

ncn = 0

and
∞
∑

n=1

|cn + c−n| <∞.

Next we show some important classical results (previously appearing in [2–11] etc.) still keep

true by applying MVBV condition.
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Denote by En(f) the best approximation of f by trigonometric polynomials of degree n.

Then

Theorem 5 Let
{

f̂(n)
}∞

n=0
∈ MVBVS,

{

f̂(n) + f̂(−n)
}∞

n=0
∈ MVBVS, and

f(x) =

∞
∑

n=−∞

f̂(n)einx.

Then f ∈ C2π if and only if

lim
n→∞

nf̂(n) = 0,

and
∞
∑

n=1

|f̂(n) + f̂(−n)| <∞.

Furthermore, if f ∈ C2π, then

En(f) ∼ max
1≤k≤n

k
(

|f̂(n+ k)| + |f̂(−n− k)|
)

+ max
k≥2n+1

k|f̂(k) − f̂(−k)| +

∞
∑

k=2n+1

|f̂(k) + f̂(−k)|.

Let f(x) =
∑∞

n=0 cn cosnx. The following corollary is an interesting application of Theorem

5 to a hard problem in classical Fourier analysis (see [12], for background).

Let {f̂(n)} ∈ MVBVS be a real sequence. If f ∈ C2π and

2n
∑

k=n+1

f̂(k) = O

(

max
1≤k≤n

kf̂(n+ k)

)

,

then

‖f − Sn(f)‖ = O(En(f)).

Let L2π be the space of all complex valued integrable functions f(x) of period 2π with the

norm ‖f‖L =
∫ π

−π
|f(x)|dx. Denote the Fourier series of f ∈ L2π by

∑∞
k=−∞ f̂(k)eikx.

Theorem 6 Let f(x) ∈ L2π be a complex valued function. If the Fourier coefficients f̂(n) of f

satisfy that {f̂(n)}+∞
n=0 ∈ MVBVS and

lim
µ→1+0

lim sup
n→∞

[µn]
∑

k=n

|∆f̂(k) − ∆f̂(−k)| log k = 0.

Then

lim
n→∞

‖f − Sn(f)‖L = 0

if and only if

lim
n→∞

f̂(n) log |n| = 0.

Let En(f)L be the best approximation of a complex valued function f ∈ L2π by trigonometric

polynomials of degree n in the integral metric. We establish the following L1-approximation

theorem:
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Theorem 7 Let f(x) ∈ L2π be a complex valued function and {ψn} a decreasing sequence

tending to zero with

ψn ∼ ψ2n.

If both {f̂(n)}+∞
n=0 ∈ MVBVS and {f̂(−n)}+∞

n=0 ∈ MVBVS, then

‖f − Sn(f)‖L = O(ψn)

if and only if

En(f)L = O(ψn) and f̂(n) log |n| = O(ψ|n|).

Let Lp, 1 < p <∞, be the space of all p-power integrable functions of 2π equipped with the

norm

‖f‖p =

(
∫ π

−π

|f(x)|pdx

)1/p

.

Write

f(x) =

∞
∑

k=1

ak cos kx, g(x) =

∞
∑

k=1

bk sin kx

for those x where the series converge. Denote by φ(x) either f (x) or g (x) and let λn be its

associated Fourier coefficients, i.e., λn is either an or bn.

Theorem 8 Let 1 < p <∞. If {λn} ∈ MVBVS, then x−γφ(x) ∈ Lp, 1/p− 1 < γ < 1/p, if and

only if
∞
∑

n=1

np+pγ−2λp
n <∞. (2.1)

Let f (x) ∈ Lp, 1 < p <∞ and 1/p−1 < γ < 1/p. Define the weighted modulus of continuity

in Lp norm as follows:

ω(f, h)p,x−γ := ω(f, h)p,γ := sup
|t|≤h

∥

∥x−γ (f(x+ t) − f(x))
∥

∥

p
.

Theorem 9 Let 1 < p < ∞. If {λn} ∈ MVBVS satisfies (2.1), then for 1/p− 1 < γ < 1/p, we

have

ω(φ,
1

n
)p,γ ≤ Cn−1

(

n−1
∑

k=1

k2p+pγ−2λp
k

)1/p

+ C

(

∞
∑

k=n

kp+pγ−2λp
k

)1/p

.

Theorem 9 above is the first result on the relations among Fourier coefficients and the weighted

modulus of continuity in Lp-norm.
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