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Abstract Let AK, be the complete multigraph with v vertices and G a finite simple graph. A
G-design (G-packing design, G-covering design) of AK,, denoted by (v, G, \)-GD ((v,G, A\)-PD,
(v, G, \)-CD), is a pair (X, B) where X is the vertex set of K, and B is a collection of subgraphs
of K, called blocks, such that each block is isomorphic to G and any two distinct vertices in K,
are joined in exactly (at most, at least) A blocks of B. A packing (covering) design is said to be
maximum (minimum) if no other such packing (covering) design has more (fewer) blocks. In this
paper, a simple graph G with 6 vertices and 7 edges is discussed, and the maximum G-PD(v)
and the minimum G-C'D(v) are constructed for all orders v.
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1. Introduction

A complete multigraph of order v and index A, denoted by AK,, is a graph with v vertices,
where any two distinct vertices  and y are joined by A edges {z,y}. Let G be a finite simple
graph. A G-design (G-packing design, G-covering design) of AK,, denoted by G-GDy(v) (G-
PDj(v), G-CDy(v)), is a pair (X, B) where X is the vertex set of K, and B is a collection of
subgraphs of K, called blocks, such that each block is isomorphic to G and any two distinct
vertices in K, are joined in exactly (at most, at least) A blocks of B. The necessary conditions
for the existence of a G-GDy(v) are v > |V(G)| and

{ A(v—1)=0 (mod 2|E(G)]) )

Alv—1)=0 (mod d)
where V(G) and E(G) denote the sets of vertices and edges of G respectively, and d is the
greatest common divisor of the degrees of all vertices in G. A G-PDy(v) (G-CDy(v)) is called

maximum (minimum) if no other such packing (covering) has more (fewer) blocks. The number

of blocks in a maximum packing (minimum covering), denoted by p(v, G, A) (¢(v, G, \)), is called
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the packing (covering) number. It is well known that

(v —1) (v —1) o
Plv, &) < {WJ < {WW < .G, A). ™)

A G-PDy(v) (G-CDy(v)) is called optimal and denoted by G-OP Dy (v) (G-OCDjy(v)) if the left
(right) equality in (*x) holds.

The leave Ly (D) of a packing D is a subgraph of AK, and its edges are the supplement of D
in AK,. The number of edges in Ly (D) is denoted by |Lx(D)|. Especially, when D is maximum,
|LA(D)] is called leave-number and is denoted by I (v). Similarly, the excess Rx(D) of a covering
D is a subgraph of AK, and its edges are the supplement of AK, in D. When D is minimum,
|Rx(D)] is called excess-number and denoted by 7y (v).

Let X = Ule X; be the vertex set of Ky, n,,..n,, a complete multipartite graph consisting
of t parts with size ni,na, ..., n; respectively, where the sets X; (1 < ¢ <t) are disjoint. Denote
v = 22:1 n; and G = {X1, Xo,...,X;}. For any given graph G, if the edges of AKp, ns....ne»
a t-partite graph with replication A, can be decomposed into sub-graphs A, each of which is
isomorphic to G and is called block, then the system (X, G,.A) is called a holey G-design with
index A, denoted by G-HD,(T), where T = nin}---n} is the type of the holey G-design.
Usually, the type is denoted by exponential form, for example, the type n’flné” ---nkm denotes
k1 occurrences of ny, ko occurrences of ng, etc. A G-HD)(1?~%w?) is called an incomplete
G-design, denoted by G-1D) (v, w).

There is a quite long time to the reseach of the graph packing and covering designs, which

(4, and some special graphs!®.

involved the simple graphs with less vertices and less edges!!~
But there is a few conclusions for the simple graphs with more than five vertices. In this paper,
we will discuss the maximum packing and the minimum covering of the folowing graph G with
six vertices and seven edges for A = 1. For convenience, as a block in a design, the graph may

be denoted by (a,b,c,d, e, f) according to the following vertex-labels.
f

e a d

c

Lemma 1.1  There exists a G-GDy(v) if and only if v > 6 and A = 1,v = 1,7 mod 14;
A=2,v=0,8mod 14; A=7,v=3,5,9,11,13 mod 14; A = 14,v = 0 mod 2.

2. Recursive method

In what follows, the element (x,¢) in Z,, x Z,, may be denoted by x; briefly. And z; +y; =
(@ 4+ Y)itj, 00+ 2 =00, 00+ x; = 00, 00; + & = 0014,. For the block B = (z,y, z,u, v, w),
B+t=(z+t,y+t,z+t,u+t,v+t,w+t). In Z, X Z,, a block mod (m,n) means that
the first coordinate is mod m and the second is mod n, while mod (m, —) means that the first

coordinate is mod m and the second does not change. For i,j,k € Z, i < j and i = j (mod k),



Packings and coverings of a graph with 6 vertices and 7 edges 801

define [i,jlx = {z:i <z < j, x =i (mod k)}.

What’s more, the symbols C,,, P, and St(n) denote the cycle with n vertices, the path with
n vertices, and the star with n terminal vertices, respectively. The disjoint union of graphs G
and H is denoted by G| J H. Specially, the disjoint union of n graphs G is denoted by nG. And,
Ao means two ('3 with one common vertex.

Our recursive constructions use the following standard “Filling in Holes” method.

Lemma 2.1 For given graph G and positive integers h,w,m, X, if there exist a G-HDy(h™),
a G-IDy(h+ w,w) and a G-OPDy(s) (G-OCD(s)), where s = w or h + w, then there exists a

G-OPDy(mh + w) (G-OCDx(mh + w)) too.

wle

Lemma 2.2 There exists no G-OPD(v) and p(v,G,1) < L(g); | for even v. There exists no
G-OPD(v) forv =9,13 (mod 14). The leave of a G-OPD(v) must be Cs for v = 3,5 ( mod 14),
or one among {Cs,2C5, Ag} for v =11 ( mod 14).

Proof For even v, since the degree of any vertex in G is even, each vertex in K, must appear
in the leave, so the leave-number I > 3. However, for any OPD, the leave-number [ < 6. It is
impossible that [ > 3 for v > 12. But, for the remaining even orders v = 6,8,10 and 12, the
leave-numbers of corresponding OPD are 1,0,3 and 3. Thus, there exists no G-OPD(v) and
p(0,G, 1) < B2

For odd v, the degree of any vertex in the leave must be even. If a G-OPD(v) exists, the
leave-number will be the following three cases.

=1 for v=9,13 mod 14, so there exists no G-OPD(v) since the leave must be Ps;

I =3 for v = 3,5 mod 14, so the leave can only be St(3),3Ps, Py, Po|J P3 or C3, but the first
four graphs cannot become a leave;

l =6 for v = 11 mod 14. Let the number of 2°-vertices, 4°-vertices and 6°-vertices be a,b
and ¢, respectively. Then 2a+4b+ 6¢ = 12. The solutions are (a, b, ¢) = (0,0, 2), (1,1,1),(3,0, 1),
(0,3,0),(2,2,0),(4,1,0) and (6,0,0). Obviously, the first five solutions have no corresponding
graphs, while the graphs satisfying the last two solutions are Cg, 2C3 and As.

Since there is no G-GD(14) by Lemma 1.1, a new recursive construction is presented below.
First, define two auxiliary designs for even w:

G-IPD(14 + w,w) is a G-HD(2"w');

G-ICD(14 + w,w) is a union of a G-ID(14 + w,w) and 7Pz on the 14-set.
In the view of PD and CD, the first one is with the leave K, |J 7P, and the second one is with
the leave K, and the excess 7Ps.

Lemma 2.3 Fort > 0 and even w > 0, if there exist a G-HD(14%), a G-IPD(14 + w,w) (G-
ICD(14+w,w)) and a maximum G-PD(w) (minimum G-CD(w)), then there exists a maximum
G-PD(14t + w) (minimum G-CD(14t + w)).

Proof Let X = (Z14x Z;)|JW, where W is another w-set. Denote G-H D(14%) = (Z14 x Z;, A),
G-IPD(14+ w,w) = ((Z1a x {i}) UW, B;), or G-ICD(14+ w,w), i € Z;. And, C is a maximum
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G-PD(w) or minimum G-CD(w) on the set W. Define Q@ = AU(U:;& B;)UC. Then (X,Q) is
a maximum G-PD(14 4+ w) (minimum G-CD(14 + w)). In fact, denote v = 14¢ + w. Then

_ B (-G -7 B -%, _ww=2)
|A|_T_14t —14¢t, |B;| = - =12+2w, |C| = | - =1 T ].
But, by Lemma 2.2,

p(v,G,l)gL(2)7_§J:14t2+(2w—2)t+LWJ.

Therefore, |A| + ¢|B;| + [C| = 142 + (2w — 2)t + [ 292 | — p(v, G, 1). Furthermore, there is no
excess edge in €2, so the lemma holds for PD.
(447)-(5)
As for CD, |Bj| = 22— =14+ 2w, [C| =
1442 + 2wt + [, s0 ¢(v, G, 1) = 1462 4 2wt + [2].
By the recursive constructions in Lemmas 2.1 and 2.3, our task in §3 and §4 is to construct
G-H D(14%) and those small designs listed in the following Table.

Gl—%9 _ (22 (v, G,1) > [

7 14

v(modl4) | ID(14 +w,w) | IPD(14 4+ w,w),ICD(14 + w,w) | maxPD, minCD
0 w=0 0,28
2 w =2 2,30
3 w=3 3,31
4 w = 4 4,32
5 w=5 5(19),33
6 w=26 6,34
8 w=3, 8,36
9 w=9 9,37
10 w=10 10, 38
11 w=11 11,39
12 w =12 12,40
13 w=13 13,41

Table 2.1 The desired designs for the main results

3. HD, ID and IPD (ICD)
Lemma 3.1[6 There exists a G-HD(14%) for t > 3.
Lemma 3.2 There exists a G-ID(14 + w,w) for w = 3,5,9,11, 13, no one for any even w.

Proof Take the vertex set (Z7 x Zz2) |U{z1,..., 2w}, where {x1,..., 2y} is the hole.
w = 3: (09, 21,01, 2,41, 61), (01,20, 23, 31, 11, 00), mod (7, —);

(09, 21, 60, 50, 31, 10), (1o, 60, 11, 50, 41, 20), (20,00, 60,40,51,30),
(30, 60, 20, 5o, 61, 40), (40, 00, 30, 10, 01, 50)-
: ( )

w =5: (00,30, 21,31,11,21), (01,00, 22,21, 24, 30), (01, 31, x3, 19, ¥5,20) mod (7, —);
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(0o, Lo, 30, 20, 60, 50), (40 20, Lo, 60, 30, 50)-

9: (09, z5,21,21,01,11), (00, xg, 01, 22, 21,41), (09, 27,01, x5, 31, 61),
(
(

0o, 8,01, T4, Z9,51) mod (7, -);
30, 00, 10, 20, 40, 50), (60, 40, 00, 20, 10, 30), (50, 20, 40, 1o, 60, o).
11:

0o, Lo, 1, 11,6, 01), (0o, 20, T2, 31, 27, 21), (00, 30, 73, 51, T8, 41),
01, g, 09, 24, 11,31), (00, 210,01, x5, 211, 61). mod (7, —).
=13: (0o, 25,01, x4, x6,31), (00, s, 01, 7, T9, 51),
0o, *11, 01, 10, 20, 61), (01,213, 00, 212,11,31) mod (7, —);
(60, 50, 40, 30, 11, 00), (1o, 40, 61, 50, 21, 00), (20, 50, 01, 60, 31, 10), (30, 51, 40, 00, 41, 20)-
If G-ID(14 4+ w, w) exists for even w, take the vertex set Z14J{z1,..., Ty}, then the degree

13 + w of any vetex in Z14 is odd. It is a contrary since the degree of any vertex in G is even.

00, 2, 11,21, 23,01),

(
(
(
(

Lemma 3.3 There exists a G-IPD(14 + w,w) for w € [0,12]5.

Proof Each G-IPD(14 + w,w) is constructed on the given vertex set.

w=0: ZinU{a1, 22}, (0,4,21,5,1,3)+2i, (0,4,22,5,1,3)+2i+1 0<i<5.

w=2: Zig, (0,4,11,5,1,3) mod 16.

w=4: Ziys|Ha,b,c,d}, (0,4,a,5,1,3)+ 24, (0,4,0,5,1,3)+2i+1 0<i<6;
(¢,6,0,8,1,7), (¢, 10,4,12,13,5), (c,0,d, 2, 3, 11),
(d,1,9,3,12,6), (d,8,2,10,7,13), (d, 4, ¢, 9,5, 11).

w=06: ZuJ{x1,...,z6}, (0,3,21,4,1,6) + 24, (0,3,22,4,1,6)+2i+1 0<1i<6;
(0,24,7,25,23,2) +71=0,1,4,5; (0,24,7,25,26,2) +1 1 =2,3,6;
(26,7,9,11,0,12), (ws,10,23,9,1,13), (x3,12,10,8,11,13).
w=28: (Z7 x Za) J{z1,..., 28}, (00,21,31,61,22,51), (00,23, 11,31, 24,41),

(09, 5,01, 11,6, 21), (09, 27,01, 28, 19, 39) mod (7, —).
w=10: Zy U{z1,..., 210}, (0,23,7,25,21,1) 4+ 2¢, (0,24,7,26,22,1) +2i + 1,
(0,27,7,29,2,5) + 14, (0,28,7,210,2,5)+i+7 0<14<6;
(6,0,4,12,2,10) + i, (8,0,10,4,2,12)+i i =0,1.
w=12: (Zi12 x Zo) {1, 22}, (41,20,%1,21,00,11), (51,20, 22,11, 00,01),
(00,91, 10,111,61,71) mod (12, —).

Lemma 3.4 There exists a G-ICD(14 + w,w) for w € [0, 12].

Proof Take the vertex set Z14 for w =0 or (Z7 x Z2) | J{z1,...,2} for w > 0.

w=0: (0,4,11,5,1,3) mod 14.

w=2: (01,40,21,11,00,20), (61,60, 22,31,00,41) mod (7,—);

(60, 30, 40, 50, 00, 11), (10, 50, 61, 40, 00, 21), (20, 60, 01, 50, L0, 31), (30, 00, 40, 51, 20, 41).
(00,30, 3, 21, 01, 24), (01, 20, 51, Lo, 11,31) mod (7, —);
(20,40, 71,31, 21, 22) +io i =0,1,3,4;
(
(
(

g
Il
W~

00, 20, 30, 10, 01, z2), (60, 21, 11, 00,40, 50), (10, 20, 1, 21, 11, 22), (4o, 30, 21,51, 41, T2).
01,10, 21, 11,00, x2), (51, Lo, 23,31, 00, 24), (11, Lo, 5,41, 00, 26) mod (7, —);
00, 50, 60, 21, 10, 31), (10, 50, 11, 60, 20, 41), (20, 40, 60, 00, 30, 51),

g
Il
o
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(307 507 205 605 40; 61)7 (40; 107 307 007 50; 01)
(

w=28: (00,30,21,11,01,22), (31,00, 3, 21, 1o, z4), (51, 00, 5, 31, 1o, Z¢),
(61,00, 7,31,60,28) mod (7,—); (00, 60, 40, 50, 10, 20), (30, 50, 60, 10, 20, 40)-
w=10: (09, 1,11, 22,01, 23), (00, x4, 11, 25,01, 26), (41, 20, 27,21, 00, T3),

(61, 1o, xg, 31,00, x10) mod (7,—); (00, 31,21, 11,20, 60), (20, 51, 41, 31, 10, 30),

(49,01, 61,51, 50, 20), (60, 50, 11,01, 40, 30), (50, 10,40, 00, 30, 61), (10, 00, 30, 41, 60, 21)-
w=12: (0o, 21,11, 22,01, 23), (00, 24, 11, 75,01, 26), (21, 1o, 27, 11, 00, 73),

(41, 1o, g, 21,00, x10), (61, 1o, 11, 31, 00, T12) mod (7,—);

(305 00, 1o, 20, 40, 50), (60, 40, 00, 20, 10, 30), (50, 20, 40, 1o, 60, Oo)-

4. Packings and coverings

Theorem 4.1 There exists a (v,G,1)-OPD for v = 3,5,11 (mod 14) and v > 6. But, p(14t +
w, Gy 1) = 1482 + (2w — 1)t + [ 2| — 1 for w = 9,13 and ¢ > 0.

Proof By Table 2.1, the OPDs for desired small orders are constructed as follows.
G-OPD(31) (Z7 x Zg) | U{x1, 22,23}, (02,00, 23, 51, 23, 20), (0o, 12, z3, 33, 21, 63),
(02, 30,1, 21,03, 11), (01, 32, 21, 03, 00, 23), (13, 40, 2, 31, 02,01), (0p, 32, 22, 13, 11, 22),
(01, 30,61, 10,31, 11), (02, 31,63, 19, 32, 12), (03, 32,63, 12,33,13) mod (7, —);
(00, 30, 20, Lo, 60, 20), (40, 60, Lo, 30, 20 50), (50 Lo, 40, 0o, 30, 60)-

G—OPD(lg) ZIG U{xl, o, 1'3}, (O, 4, 11, 5, 3, 1) mod 16;
($2,4,I1, 125078) + 7;5 ($3,4,I1, 125078) +i+ 45 0 <i< 3.
G_OPD(33) (Z15 X ZQ) U{I17x27x3}5 (00,70,:131,31,60,71), (00,50,$2,41,01,61),

(00, 121, 20, 131, 10, 30), (00, 40, 3, 51, 21,91), (01, 1o, 91, 41, 11,31), mod (15, —).
G-OPD(11) Z7;\J{zo, 21, 22,23}, (2:,1,0,2,3,6)+7 0<1¢<3;
(0,5,21,6,23,3), (1,21, z0, 23,4, 6), (5,2, 22,6, 4, x¢).
G-OPD(39) Zss\U{z1,...,24}, (0,13,2,14,1,3),(0,8,1,10,20,4) mod 35;
(0,5,23,6,17, 1) + 24, (0,5, 24,6,17,22) + 20 + 17 0 <i < 8;
(0,5,24,6,17, 1) + 20 + 1, (0,5, 23,6,17,22) +2i + 18 0<i <T;
(z1,24,5,34, x2,x3).
By Lemma 2.2, there exists no G-OPD(v) for v = 9,13 mod 14. In the following, we give
the maximum G-PD(v)s for desired small orders v.
p(9,G.1) =4 Zo, (0,7,4,5,3,1),(1,7,5,8,2,4),(2,7,8,0,5,3), (6,7,3,8,1,5).
p(37,G, 1) =94 Zs1 {1, ..., 26}, (0,5,11,4,1,3),(0,11,23,10,17,8) mod 31;

(21,15, 25,0,22,7) + 1, (22,15,25,0,22,7) +i + 7, (24,15,26,0,22,7) +i+21 0<i<6;

(23,15,26,0,22,7)+i+15 0 <i < 5; (x5, T6, T3, Ta, T, T1),

(23,29, 25,14, 5,21), (we, 12, 23,13, 21, 29), (22, 5, 20, 24, 6, 21), (24, 3, 28, 6, 4, 19).
p(13,G,1) =10 (Z5%x Z2) | U{x1, 22,23}, (00,20,21,11,01,22), (01, 30, 3,21, 10,20) mod (5, —).
p(41,G,1) = 116 ZsoU{x1, 22}, (0,23,13,6,5,4),(0,12,1,14,17,19) mod 39;

(0,8,21,9,15,18) + 2i, (0,8,25,9,15,18) +2i+1 0 <i < 18.
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Theorem 4.2 There exists a G-OCD(v) for v = 3,5,9,13 (mod 14). But, ¢(14t +11,G,1) =
148% + 21t + 9 for t > 0.

Proof By Table 2.1, the OCDs for desired small orders are constructed as follows.

(1) For v = 3,31,19,33, the leave L(B) of G-OPD(v) is a subgraph of G, so we can obtain
the G-OCD(v) by adding a block containing this L(B).

(2) For v=19,37,13,41, the leave L(B) of the maximum (v, G,1)-PD can be covered by two
G, so we can obtain the (v, G, 1)-OCD by adding two blocks containing this L(B).

(3) Suppose a G-OCD(14t + 11) exists for ¢t > 0. Then the excess must be P, = {a,b}, and
the sum of degree of a in the OC'D is 14t 4+ 11, an odd number. It is impossible since the degree
of each vertex in G is even. Thus, there exists no G-OCD(14t 4+ 11). While for v = 11, 39, the
leave of G-OPD(v) can be covered by two G, so ¢(14t + 11, G, 1) = 14¢% + 21t + 9.

Theorem 4.3 p(14t + w, G, 1) = 142 + (2w — 2)t + 22| for t > 0 and w € [0,12)s.

Proof By Lemma 2.3, we only need to construct those maximum PDs listed in Table 2.1.
p(v,G,1)=0 forv=0,2,4.
p(28,G,1) =52 (Z13 x Z2) U{x1,22}, (00,60,x1,41,01,61), (00,50, x2,51,21,71),
(01,441, 19, 50,31, 11), (01, 40, 60, 30, 20, 19) mod (13, -).
p(30,G,1) =60 Zy5 X Zz, (00,141,71,40,70,60), (00,101,81,111,121,134),
(0o, 21, 20, 81, 30, 50), (00, 51, 11, 71,41,91) mod (15, —).
p(32,G,1) =68 Z3o, (0,8,16,24,3,1)+14, (4,0,5,11,20,12)4+¢ 0<¢<3;
(0,12,26,11,19,9) mod 32; (4,9,15,8,7,5)+¢ 0<i<27.
p(6,G,1)=1 Zs, (0,1,2,3,4,5).
p(34,G,1) =77 (Z11 x Zs)U{z}, (00,40,31,50,10,30) mod (11, 3);
(00,71, 10,92,81,102), (09, 41, 19,42, 51, 62),
(01, 52,21, 82,00, 72), (52, 50, z, 51,00, 11) mod (11,—).
p(8,G,1)=3 Z;J{z}, (0,5,4,2,3,1)+i i=0,1,2.
p(36,G,1) =87 Zy2 x Z3, (00,60, 80,100, 1o, 20), (40, 50, 70, 60, 30, 20), (90, 30, Lo, 110, 80, 70);
(00, 11, 90, 40, 30, 01), (52, 40, 42, 20, 02, 32), (02, 29, 102, 19, 12, 51), (62, 09, 72, 20, 102, 01),
(01,31,42,41,112,21), (09, 51, 20,81, 101, 111), (21, 52,31, 72,00, 71) mod (12, ).

p(10,G,1) =5 Zs5 x Za, (00,31,51,10,21,11) mod (5,—).
p(38,G,1) =97 ZsoU{x1,..., 26} (x1,22,T3,24,T5,%6);

(0,13, 25,15,8,18) + 4i + k, (0,13,26,15,8,18) +4i+24+ k0<i<T7,k=0,1;

(0,6,21,7,1,3)+ 24, (0,6,22,7,1,3) +2i+ 1,

(0,11,23,12,4,9) + 27, (0,11,24,12,4,9)+2i+1 0<i < 15.
p(12,G,1) =8 Z4 x Z3, (00,11, 10,31,02,12),(32,21,22,01,10,00) mod (4,—).
p(40,G,1) =108 Zsg|J{z1,--- 24}, (0,15,1,17,6,13) mod 36;

(0,11, 21,12,1,3) + 24, (0,11,22,12,1,3)+2i+1 0<i<17;
(0,8,23,10,4,9) +4i + k, (0,8,24,10,4,9)+4i+2+k 0<i<8, k=0,1.

Theorem 4.4 c(14t +w, G, 1) = 14¢2 + 2wt + [%2] for t > 0 and w € [0,12].
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Proof By Lemma 2.3, we only need to construct those minimum CDs listed in Table 2.1.

(1) For ¢t = 0, by the proof of Theorem 3.1, it is obvious that the leave of the maximum
G-PD(w), where w € [0,12]2, can be covered by H’—:] - L%J blocks.

(2) For t = 2, when w = 2,4,10, it is easy to see that the leave of the maximum G-
PD(28+w) can be covered by HJ—:] - L%J +4 blocks, so we only need to consider the cases
for w =0,6,8,12.
c(28,G,1) =56 Zr x Zu, (00, 51, 20, 61, 10, 30), (00, 52, 20, 62, 11, 21),

(02,53,22,63,11,31), (02,03, 51, 50, 21, 61), (02, 23, 12, 00, 22, 32),
(0o, 53, 20, 63,03, 23), (01, 22,21, 32,03, 13), (13,31, 63,21, 00,43) mod (7,—).
c(34,G,1) = 83 (Z16 x Z2) U{z1, 22}, (00, 101, 20, 111, 60, 70), (0o, 21, 01, Z2, 30, 50),
(41,10, 81,20, 00, 40), (01, 150,41, 81,61, 71), (01, 20, 141, 19, 31,51) mod (16, —);
(20, 40, 120, 100, 00, 80), (30, 50, 130, 110, Lo, ), (To, 1, 2, 150, 60, 14o).
c(36,G,1) =93 Zis x Zo, (00, 21,160, 11,20, 50) mod (18, 2);
(0o, 81, 29, 60, 70, 80), (01, 60, 161, 50, 71,81), (00, 71,111,51,01,91) mod (18, —);
(30, 60, 150,120, 00,9) +i9 ¢=0,1,2.
c(40,G,1) =115  Zzg | J{x1, 22}, (0,15,2,14,4,7), (0,19,2,18,5,6) mod 38;
(0,8,19,9,2, 1) + 4i + k, (0,8,19,9,2,20) +4i+2+k 0<i<8, k=0,1;
(36,6,17,7,0,21), (37,7,18,8,1, 22), (21, 2,0, 22, 37, 1).
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