Packings and Coverings of a Graph with 6 Vertices and 7 Edges

DU Yan $K e^{1}$, KANG Qing $D e^{2}$
(1. Department of Basic Courses, Ordnance Engineering College, Hebei 050003, China;
2. Institute of Mathematics, Hebei Normal University, Hebei 050016, China)
(E-mail: dyk39@sohu.com)

Abstract

Let λK_{v} be the complete multigraph with v vertices and G a finite simple graph. A G-design (G-packing design, G-covering design) of λK_{v}, denoted by $(v, G, \lambda)-G D((v, G, \lambda)-P D$, $(v, G, \lambda)-C D)$, is a pair (X, \mathcal{B}) where X is the vertex set of K_{v} and \mathcal{B} is a collection of subgraphs of K_{v}, called blocks, such that each block is isomorphic to G and any two distinct vertices in K_{v} are joined in exactly (at most, at least) λ blocks of \mathcal{B}. A packing (covering) design is said to be maximum (minimum) if no other such packing (covering) design has more (fewer) blocks. In this paper, a simple graph G with 6 vertices and 7 edges is discussed, and the maximum G - $P D(v)$ and the minimum $G-C D(v)$ are constructed for all orders v.

Keywords $\quad G$-design; G-packing design; G-covering design.
Document code A
MR(2000) Subject Classification 05B40
Chinese Library Classification O157.2

1. Introduction

A complete multigraph of order v and index λ, denoted by λK_{v}, is a graph with v vertices, where any two distinct vertices x and y are joined by λ edges $\{x, y\}$. Let G be a finite simple graph. A G-design (G-packing design, G-covering design) of λK_{v}, denoted by G - $G D_{\lambda}(v)(G$ $\left.P D_{\lambda}(v), G-C D_{\lambda}(v)\right)$, is a pair (X, \mathcal{B}) where X is the vertex set of K_{v} and \mathcal{B} is a collection of subgraphs of K_{v}, called blocks, such that each block is isomorphic to G and any two distinct vertices in K_{v} are joined in exactly (at most, at least) λ blocks of \mathcal{B}. The necessary conditions for the existence of a $G-G D_{\lambda}(v)$ are $v \geq|V(G)|$ and

$$
\left\{\begin{array}{l}
\lambda v(v-1) \equiv 0(\bmod 2|E(G)|) \tag{*}\\
\lambda(v-1) \equiv 0(\bmod d)
\end{array}\right.
$$

where $V(G)$ and $E(G)$ denote the sets of vertices and edges of G respectively, and d is the greatest common divisor of the degrees of all vertices in G. A $G-P D_{\lambda}(v)\left(G-C D_{\lambda}(v)\right)$ is called maximum (minimum) if no other such packing (covering) has more (fewer) blocks. The number of blocks in a maximum packing (minimum covering), denoted by $p(v, G, \lambda)(c(v, G, \lambda)$), is called

Received date: 2006-10-29; Accepted date: 2007-03-23
Foundation item: the National Natural Science Foundation of China (No. 10671055).
the packing (covering) number. It is well known that

$$
\begin{equation*}
p(v, G, \lambda) \leq\left\lfloor\frac{\lambda v(v-1)}{2|E(G)|}\right\rfloor \leq\left\lceil\frac{\lambda v(v-1)}{2|E(G)|}\right\rceil \leq c(v, G, \lambda) \tag{**}
\end{equation*}
$$

A $G-P D_{\lambda}(v)\left(G-C D_{\lambda}(v)\right)$ is called optimal and denoted by $G-O P D_{\lambda}(v)\left(G-O C D_{\lambda}(v)\right)$ if the left (right) equality in $(* *)$ holds.

The leave $L_{\lambda}(\mathcal{D})$ of a packing \mathcal{D} is a subgraph of λK_{v} and its edges are the supplement of \mathcal{D} in λK_{v}. The number of edges in $L_{\lambda}(\mathcal{D})$ is denoted by $\left|L_{\lambda}(\mathcal{D})\right|$. Especially, when \mathcal{D} is maximum, $\left|L_{\lambda}(\mathcal{D})\right|$ is called leave-number and is denoted by $l_{\lambda}(v)$. Similarly, the excess $R_{\lambda}(\mathcal{D})$ of a covering D is a subgraph of λK_{v} and its edges are the supplement of λK_{v} in \mathcal{D}. When \mathcal{D} is minimum, $\left|R_{\lambda}(\mathcal{D})\right|$ is called excess-number and denoted by $r_{\lambda}(v)$.

Let $X=\bigcup_{i=1}^{t} X_{i}$ be the vertex set of $K_{n_{1}, n_{2}, \ldots, n_{t}}$, a complete multipartite graph consisting of t parts with size $n_{1}, n_{2}, \ldots, n_{t}$ respectively, where the sets $X_{i}(1 \leq i \leq t)$ are disjoint. Denote $v=\sum_{i=1}^{t} n_{i}$ and $\mathcal{G}=\left\{X_{1}, X_{2}, \ldots, X_{t}\right\}$. For any given graph G, if the edges of $\lambda K_{n_{1}, n_{2}, \ldots, n_{t}}$, a t-partite graph with replication λ, can be decomposed into sub-graphs \mathcal{A}, each of which is isomorphic to G and is called block, then the $\operatorname{system}(X, \mathcal{G}, \mathcal{A})$ is called a holey G-design with index λ, denoted by G - $H D_{\lambda}(T)$, where $T=n_{1}^{1} n_{2}^{1} \cdots n_{t}^{1}$ is the type of the holey G-design. Usually, the type is denoted by exponential form, for example, the type $n_{1}^{k_{1}} n_{2}^{k_{2}} \cdots n_{m}^{k_{m}}$ denotes k_{1} occurrences of n_{1}, k_{2} occurrences of n_{2}, etc. A $G-H D_{\lambda}\left(1^{v-w} w^{1}\right)$ is called an incomplete G-design, denoted by $G-I D_{\lambda}(v, w)$.

There is a quite long time to the reseach of the graph packing and covering designs, which involved the simple graphs with less vertices and less edges ${ }^{[1]-[4]}$, and some special graphs ${ }^{[5]}$. But there is a few conclusions for the simple graphs with more than five vertices. In this paper, we will discuss the maximum packing and the minimum covering of the folowing graph G with six vertices and seven edges for $\lambda=1$. For convenience, as a block in a design, the graph may be denoted by (a, b, c, d, e, f) according to the following vertex-labels.

Lemma 1.1 ${ }^{[6]}$ There exists a $G-G D_{\lambda}(v)$ if and only if $v \geq 6$ and $\lambda=1, v \equiv 1,7 \bmod 14$; $\lambda=2, v \equiv 0,8 \bmod 14 ; \lambda=7, v \equiv 3,5,9,11,13 \bmod 14 ; \lambda=14, v \equiv 0 \bmod 2$.

2. Recursive method

In what follows, the element (x, i) in $Z_{m} \times Z_{n}$ may be denoted by x_{i} briefly. And $x_{i}+y_{j}=$ $(x+y)_{i+j}, \infty+x=\infty, \infty+x_{i}=\infty, \infty_{l}+x_{i}=\infty_{l+i}$. For the block $B=(x, y, z, u, v, w)$, $B+t=(x+t, y+t, z+t, u+t, v+t, w+t)$. In $Z_{m} \times Z_{n}$, a block mod (m, n) means that the first coordinate is $\bmod m$ and the second is $\bmod n$, while $\bmod (m,-)$ means that the first coordinate is $\bmod m$ and the second does not change. For $i, j, k \in Z, i<j$ and $i \equiv j(\bmod k)$,
define $[i, j]_{k}=\{x: i \leq x \leq j, x \equiv i(\bmod k)\}$.
What's more, the symbols C_{n}, P_{n} and $S t(n)$ denote the cycle with n vertices, the path with n vertices, and the star with n terminal vertices, respectively. The disjoint union of graphs G and H is denoted by $G \bigcup H$. Specially, the disjoint union of n graphs G is denoted by $n G$. And, \triangle_{2} means two C_{3} with one common vertex.

Our recursive constructions use the following standard "Filling in Holes" method.
Lemma 2.1 ${ }^{[6]}$ For given graph G and positive integers h, w, m, λ, if there exist a $G-H D_{\lambda}\left(h^{m}\right)$, a $G-I D_{\lambda}(h+w, w)$ and a $G-O P D_{\lambda}(s)\left(G-O C D_{\lambda}(s)\right)$, where $s=w$ or $h+w$, then there exists a $G-O P D_{\lambda}(m h+w)\left(G-O C D_{\lambda}(m h+w)\right)$ too.

Lemma 2.2 There exists no $G-O P D(v)$ and $p(v, G, 1) \leq\left\lfloor\frac{\binom{v}{2}-\frac{v}{2}}{7}\right\rfloor$ for even v. There exists no $G-O P D(v)$ for $v \equiv 9,13(\bmod 14)$. The leave of a $G-O P D(v)$ must be C_{3} for $v \equiv 3,5(\bmod 14)$, or one among $\left\{C_{6}, 2 C_{3}, \triangle_{2}\right\}$ for $v \equiv 11(\bmod 14)$.

Proof For even v, since the degree of any vertex in G is even, each vertex in K_{v} must appear in the leave, so the leave-number $l \geq \frac{v}{2}$. However, for any $O P D$, the leave-number $l \leq 6$. It is impossible that $l \geq \frac{v}{2}$ for $v>12$. But, for the remaining even orders $v=6,8,10$ and 12 , the leave-numbers of corresponding $O P D$ are $1,0,3$ and 3 . Thus, there exists no $G-O P D(v)$ and $p(v, G, 1) \leq\left\lfloor\frac{\binom{v}{2}-\frac{v}{2}}{7}\right\rfloor$.

For odd v, the degree of any vertex in the leave must be even. If a $G-O P D(v)$ exists, the leave-number will be the following three cases.
$l=1$ for $v \equiv 9,13 \bmod 14$, so there exists no $G-O P D(v)$ since the leave must be P_{2};
$l=3$ for $v \equiv 3,5 \bmod 14$, so the leave can only be $S t(3), 3 P_{2}, P_{4}, P_{2} \cup P_{3}$ or C_{3}, but the first four graphs cannot become a leave;
$l=6$ for $v \equiv 11 \bmod 14$. Let the number of 2°-vertices, 4°-vertices and 6°-vertices be a, b and c, respectively. Then $2 a+4 b+6 c=12$. The solutions are $(a, b, c)=(0,0,2),(1,1,1),(3,0,1)$, $(0,3,0),(2,2,0),(4,1,0)$ and $(6,0,0)$. Obviously, the first five solutions have no corresponding graphs, while the graphs satisfying the last two solutions are $C_{6}, 2 C_{3}$ and \triangle_{2}.

Since there is no $G-G D(14)$ by Lemma 1.1, a new recursive construction is presented below. First, define two auxiliary designs for even w :

$$
\begin{aligned}
& G-I P D(14+w, w) \text { is a } G-H D\left(2^{7} w^{1}\right) \\
& G-I C D(14+w, w) \text { is a union of a } G-I D(14+w, w) \text { and } 7 P_{2} \text { on the } 14 \text {-set. }
\end{aligned}
$$

In the view of $P D$ and $C D$, the first one is with the leave $K_{w} \bigcup 7 P_{2}$, and the second one is with the leave K_{w} and the excess $7 P_{2}$.

Lemma 2.3 For $t>0$ and even $w \geq 0$, if there exist a $G-H D\left(14^{t}\right)$, a $G-I P D(14+w, w)(G$ $I C D(14+w, w)$) and a maximum $G-P D(w)$ (minimum $G-C D(w)$), then there exists a maximum $G-P D(14 t+w)$ (minimum $G-C D(14 t+w)$).

Proof Let $X=\left(Z_{14} \times Z_{t}\right) \bigcup W$, where W is another w-set. Denote G - $H D\left(14^{t}\right)=\left(Z_{14} \times Z_{t}, \mathcal{A}\right)$, $G-I P D(14+w, w)=\left(\left(Z_{14} \times\{i\}\right) \bigcup W, \mathcal{B}_{i}\right)$, or $G-I C D(14+w, w), i \in Z_{t}$. And, \mathcal{C} is a maximum
$G-P D(w)$ or minimum $G-C D(w)$ on the set W. Define $\Omega=\mathcal{A} \bigcup\left(\bigcup_{i=0}^{t-1} \mathcal{B}_{i}\right) \bigcup \mathcal{C}$. Then (X, Ω) is a maximum $G-P D(14+w)$ (minimum $G-C D(14+w)$). In fact, denote $v=14 t+w$. Then
$|\mathcal{A}|=\frac{\binom{t}{2} 14^{2}}{7}=14 t^{2}-14 t,\left|\mathcal{B}_{i}\right|=\frac{\binom{14+w}{2}-\binom{w}{2}-7}{7}=12+2 w,|\mathcal{C}|=\left\lfloor\frac{\binom{w}{2}-\frac{w}{2}}{7}\right\rfloor=\left\lfloor\frac{w(w-2)}{14}\right\rfloor$.
But, by Lemma 2.2,

$$
p(v, G, 1) \leq\left\lfloor\frac{\binom{v}{2}-\frac{v}{2}}{7}\right\rfloor=14 t^{2}+(2 w-2) t+\left\lfloor\frac{w(w-2)}{14}\right\rfloor .
$$

Therefore, $|\mathcal{A}|+t\left|\mathcal{B}_{i}\right|+|\mathcal{C}|=14 t^{2}+(2 w-2) t+\left\lfloor\frac{w(w-2)}{14}\right\rfloor=p(v, G, 1)$. Furthermore, there is no excess edge in Ω, so the lemma holds for $P D$.

As for $C D,\left|\mathcal{B}_{i}\right|=\frac{\binom{14+w}{2}-\binom{w}{2}+7}{7}=14+2 w,|\mathcal{C}|=\left\lceil\frac{\binom{w}{2}-\frac{w}{2}}{7}\right\rceil=\left\lceil\frac{w^{2}}{14}\right\rceil, c(v, G, 1) \geq\left\lceil\frac{\binom{v}{2}+\frac{v}{2}}{7}\right\rceil=$ $14 t^{2}+2 w t+\left\lceil\frac{w^{2}}{14}\right\rceil$, so $c(v, G, 1)=14 t^{2}+2 w t+\left\lceil\frac{w^{2}}{14}\right\rceil$.

By the recursive constructions in Lemmas 2.1 and 2.3, our task in $\S 3$ and $\S 4$ is to construct $G-H D\left(14^{t}\right)$ and those small designs listed in the following Table.

$v(\bmod 14)$	$I D(14+w, w)$	$I P D(14+w, w), I C D(14+w, w)$	$\max P D, \min C D$
0		$w=0$	0,28
2		$w=2$	2,30
3	$w=3$	$w=4$	3,31
4		$w=6$	4,32
5	$w=5$	$w=8$	$5(19), 33$
6		$w=10$	6,34
8			8,36
9	$w=9$		9,37
10			10,38
11	$w=11$		11,39
12			12,40
13	$w=13$		13,41

Table 2.1 The desired designs for the main results

3. $H D, I D$ and $I P D(I C D)$

Lemma 3.1 ${ }^{[6]}$ There exists a $G-H D\left(14^{t}\right)$ for $t \geq 3$.
Lemma 3.2 There exists a G-ID $(14+w, w)$ for $w=3,5,9,11,13$, no one for any even w.
Proof Take the vertex set $\left(Z_{7} \times Z_{2}\right) \bigcup\left\{x_{1}, \ldots, x_{w}\right\}$, where $\left\{x_{1}, \ldots, x_{w}\right\}$ is the hole.
$\underline{w=3:}\left(0_{0}, x_{1}, 0_{1}, x_{2}, 4_{1}, 6_{1}\right),\left(0_{1}, 2_{0}, x_{3}, 3_{1}, 1_{1}, 0_{0}\right), \quad \bmod (7,-) ;$
$\left(0_{0}, 2_{1}, 6_{0}, 5_{0}, 3_{1}, 1_{0}\right),\left(1_{0}, 6_{0}, 1_{1}, 5_{0}, 4_{1}, 2_{0}\right),\left(2_{0}, 0_{0}, 6_{0}, 4_{0}, 5_{1}, 3_{0}\right)$,
$\left(3_{0}, 6_{0}, 2_{0}, 5_{0}, 6_{1}, 4_{0}\right),\left(4_{0}, 0_{0}, 3_{0}, 1_{0}, 0_{1}, 5_{0}\right)$.
$\underline{w=5:}\left(0_{0}, 3_{0}, x_{1}, 3_{1}, 1_{1}, 2_{1}\right),\left(0_{1}, 0_{0}, x_{2}, 2_{1}, x_{4}, 3_{0}\right),\left(0_{1}, 3_{1}, x_{3}, 1_{0}, x_{5}, 2_{0}\right) \bmod (7,-) ;$

$$
\begin{gathered}
\quad\left(0_{0}, 1_{0}, 3_{0}, 2_{0}, 6_{0}, 5_{0}\right),\left(4_{0}, 2_{0}, 1_{0}, 6_{0}, 3_{0}, 5_{0}\right) \\
\underline{w=9:}\left(0_{0}, x_{5}, 2_{1}, x_{1}, 0_{1}, 1_{1}\right),\left(0_{0}, x_{6}, 0_{1}, x_{2}, 2_{1}, 4_{1}\right),\left(0_{0}, x_{7}, 0_{1}, x_{3}, 3_{1}, 6_{1}\right) \\
\left(0_{0}, x_{8}, 0_{1}, x_{4}, x_{9}, 5_{1}\right) \\
\quad\left(3_{0}, 0_{0}, 1_{0}, 2_{0}, 4_{0}, 5_{0}\right),\left(6_{0}, 4_{0}, 0_{0}, 2_{0}, 1_{0}, 3_{0}\right),\left(5_{0}, 2_{0}, 4_{0}, 1_{0}, 6_{0}, 0_{0}\right) \\
\underline{w=11:}\left(0_{0}, 1_{0}, x_{1}, 1_{1}, x_{6}, 0_{1}\right),\left(0_{0}, 2_{0}, x_{2}, 3_{1}, x_{7}, 2_{1}\right),\left(0_{0}, 3_{0}, x_{3}, 5_{1}, x_{8}, 4_{1}\right) \\
\quad\left(0_{1}, x_{9}, 0_{0}, x_{4}, 1_{1}, 3_{1}\right),\left(0_{0}, x_{10}, 0_{1}, x_{5}, x_{11}, 6_{1}\right) . \\
\underline{w=13:}\left(0_{0}, x_{2}, 1_{1}, x_{1}, x_{3}, 0_{1}\right),\left(0_{0}, x_{5}, 0_{1}, x_{4}, x_{6}, 3_{1}\right),\left(0_{0}, x_{8}, 0_{1}, x_{7}, x_{9}, 5_{1}\right) \\
\\
\left(0_{0}, x_{11}, 0_{1}, x_{10}, 2_{0}, 6_{1}\right),\left(0_{1}, x_{13}, 0_{0}, x_{12}, 1_{1}, 3_{1}\right) \\
\\
\left(6_{0}, 5_{0}, 4_{0}, 3_{0}, 1_{1}, 0_{0}\right),\left(1_{0}, 4_{0}, 6_{1}, 5_{0}, 2_{1}, 0_{0}\right),\left(2_{0}, 5_{0}, 0_{1}, 6_{0}, 3_{1}, 1_{0}\right),\left(3_{0}, 5_{1}, 4_{0}, 0_{0}, 4_{1}, 2_{0}\right) .
\end{gathered}
$$

If $G-I D(14+w, w)$ exists for even w, take the vertex set $Z_{14} \bigcup\left\{x_{1}, \ldots, x_{w}\right\}$, then the degree $13+w$ of any vetex in Z_{14} is odd. It is a contrary since the degree of any vertex in G is even.

Lemma 3.3 There exists a G - $I P D(14+w, w)$ for $w \in[0,12]_{2}$.
Proof Each $G-I P D(14+w, w)$ is constructed on the given vertex set.
$\underline{w=0}: Z_{12} \bigcup\left\{x_{1}, x_{2}\right\}, \quad\left(0,4, x_{1}, 5,1,3\right)+2 i, \quad\left(0,4, x_{2}, 5,1,3\right)+2 i+1 \quad 0 \leq i \leq 5$.
$\underline{w}=2: \quad Z_{16}, \quad(0,4,11,5,1,3) \bmod 16$.
$\underline{w=4:} Z_{14} \bigcup\{a, b, c, d\}, \quad(0,4, a, 5,1,3)+2 i,(0,4, b, 5,1,3)+2 i+1 \quad 0 \leq i \leq 6 ;$
$(c, 6,0,8,1,7),(c, 10,4,12,13,5),(c, 0, d, 2,3,11)$, $(d, 1,9,3,12,6),(d, 8,2,10,7,13),(d, 4, c, 9,5,11)$.
$\underline{w=6:} Z_{14} \bigcup\left\{x_{1}, \ldots, x_{6}\right\}, \quad\left(0,3, x_{1}, 4,1,6\right)+2 i, \quad\left(0,3, x_{2}, 4,1,6\right)+2 i+1 \quad 0 \leq i \leq 6 ;$

$$
\left(0, x_{4}, 7, x_{5}, x_{3}, 2\right)+i i=0,1,4,5 ;\left(0, x_{4}, 7, x_{5}, x_{6}, 2\right)+i i=2,3,6
$$

$$
\left(x_{6}, 7,9,11,0,12\right),\left(x_{6}, 10, x_{3}, 9,1,13\right),\left(x_{3}, 12,10,8,11,13\right)
$$

$\underline{w=8:}\left(Z_{7} \times Z_{2}\right) \bigcup\left\{x_{1}, \ldots, x_{8}\right\}, \quad\left(0_{0}, x_{1}, 3_{1}, 6_{1}, x_{2}, 5_{1}\right),\left(0_{0}, x_{3}, 1_{1}, 3_{1}, x_{4}, 4_{1}\right)$, $\left(0_{0}, x_{5}, 0_{1}, 1_{1}, x_{6}, 2_{1}\right),\left(0_{0}, x_{7}, 0_{1}, x_{8}, 1_{0}, 3_{0}\right) \bmod (7,-)$.
$\underline{w=10:} Z_{14} \bigcup\left\{x_{1}, \ldots, x_{10}\right\}, \quad\left(0, x_{3}, 7, x_{5}, x_{1}, 1\right)+2 i,\left(0, x_{4}, 7, x_{6}, x_{2}, 1\right)+2 i+1$,

$$
\begin{aligned}
& \left(0, x_{7}, 7, x_{9}, 2,5\right)+i,\left(0, x_{8}, 7, x_{10}, 2,5\right)+i+7 \quad 0 \leq i \leq 6 \\
& (6,0,4,12,2,10)+i,(8,0,10,4,2,12)+i \quad i=0,1
\end{aligned}
$$

$\underline{w=12}:\left(Z_{12} \times Z_{2}\right) \bigcup\left\{x_{1}, x_{2}\right\},\left(4_{1}, 2_{0}, x_{1}, 2_{1}, 0_{0}, 1_{1}\right),\left(5_{1}, 2_{0}, x_{2}, 1_{1}, 0_{0}, 0_{1}\right)$,

$$
\left(0_{0}, 9_{1}, 1_{0}, 11_{1}, 6_{1}, 7_{1}\right) \quad \bmod (12,-) .
$$

Lemma 3.4 There exists a $G-I C D(14+w, w)$ for $w \in[0,12]_{2}$.
Proof Take the vertex set Z_{14} for $w=0$ or $\left(Z_{7} \times Z_{2}\right) \bigcup\left\{x_{1}, \ldots, x_{w}\right\}$ for $w>0$.
$\underline{w=0:}(0,4,11,5,1,3) \quad \bmod 14$.
$\underline{w=2:}\left(0_{1}, 4_{0}, x_{1}, 1_{1}, 0_{0}, 2_{0}\right),\left(6_{1}, 6_{0}, x_{2}, 3_{1}, 0_{0}, 4_{1}\right) \bmod (7,-) ;$
$\left(6_{0}, 3_{0}, 4_{0}, 5_{0}, 0_{0}, 1_{1}\right),\left(1_{0}, 5_{0}, 6_{1}, 4_{0}, 0_{0}, 2_{1}\right),\left(2_{0}, 6_{0}, 0_{1}, 5_{0}, 1_{0}, 3_{1}\right),\left(3_{0}, 0_{0}, 4_{0}, 5_{1}, 2_{0}, 4_{1}\right)$.
$\underline{w=4:} \quad\left(0_{0}, 3_{0}, x_{3}, 2_{1}, 0_{1}, x_{4}\right),\left(0_{1}, 2_{0}, 5_{1}, 1_{0}, 1_{1}, 3_{1}\right) \bmod (7,-) ;$
$\left(2_{0}, 4_{0}, x_{1}, 3_{1}, 2_{1}, x_{2}\right)+i_{0} \quad i=0,1,3,4 ;$
$\left(0_{0}, 2_{0}, 3_{0}, 1_{0}, 0_{1}, x_{2}\right),\left(6_{0}, x_{1}, 1_{1}, 0_{0}, 4_{0}, 5_{0}\right),\left(1_{0}, 2_{0}, x_{1}, 2_{1}, 1_{1}, x_{2}\right),\left(4_{0}, 3_{0}, x_{1}, 5_{1}, 4_{1}, x_{2}\right)$.
$\underline{w=6:}\left(0_{1}, 1_{0}, x_{1}, 1_{1}, 0_{0}, x_{2}\right),\left(5_{1}, 1_{0}, x_{3}, 3_{1}, 0_{0}, x_{4}\right),\left(1_{1}, 1_{0}, x_{5}, 4_{1}, 0_{0}, x_{6}\right) \bmod (7,-) ;$
$\left(0_{0}, 5_{0}, 6_{0}, 2_{1}, 1_{0}, 3_{1}\right),\left(1_{0}, 5_{0}, 1_{1}, 6_{0}, 2_{0}, 4_{1}\right),\left(2_{0}, 4_{0}, 6_{0}, 0_{0}, 3_{0}, 5_{1}\right)$,

```
    (30, 50, 2, , 60, 40, 61), (40, 10, 30, 000, 50, 0 ).
w=8:}(\mp@subsup{0}{0}{},\mp@subsup{3}{0}{},\mp@subsup{x}{1}{},\mp@subsup{1}{1}{},\mp@subsup{0}{1}{},\mp@subsup{x}{2}{}),(\mp@subsup{3}{1}{},\mp@subsup{0}{0}{},\mp@subsup{x}{3}{},\mp@subsup{2}{1}{},\mp@subsup{1}{0}{},\mp@subsup{x}{4}{}),(51,\mp@subsup{0}{0}{},\mp@subsup{x}{5}{},\mp@subsup{3}{1}{},\mp@subsup{1}{0}{\prime},\mp@subsup{x}{6}{})
```



```
w=10:}(\mp@subsup{0}{0}{},\mp@subsup{x}{1}{},\mp@subsup{1}{1}{},\mp@subsup{x}{2}{},\mp@subsup{0}{1}{},\mp@subsup{x}{3}{}),(\mp@subsup{0}{0}{},\mp@subsup{x}{4}{},\mp@subsup{1}{1}{},\mp@subsup{x}{5}{},\mp@subsup{0}{1}{},\mp@subsup{x}{6}{}),(\mp@subsup{4}{1}{},\mp@subsup{2}{0}{},\mp@subsup{x}{7}{},\mp@subsup{2}{1}{},\mp@subsup{0}{0}{},\mp@subsup{x}{8}{})
```



```
w=12:}(\mp@subsup{0}{0}{},\mp@subsup{x}{1}{},\mp@subsup{1}{1}{},\mp@subsup{x}{2}{},\mp@subsup{0}{1}{},\mp@subsup{x}{3}{}),(\mp@subsup{0}{0}{},\mp@subsup{x}{4}{},\mp@subsup{1}{1}{},\mp@subsup{x}{5}{},\mp@subsup{0}{1}{},\mp@subsup{x}{6}{}),(\mp@subsup{2}{1}{},\mp@subsup{1}{0}{},\mp@subsup{x}{7}{},\mp@subsup{1}{1}{},\mp@subsup{0}{0}{},\mp@subsup{x}{8}{})
    (41, 10, x9, 2, , 00, x 10),(6, , 10, x 11, 3, , 0 , , x12 ) mod (7,-);
```


4. Packings and coverings

Theorem 4.1 There exists a $(v, G, 1)-O P D$ for $v \equiv 3,5,11(\bmod 14)$ and $v \geq 6$. But, $p(14 t+$ $w, G, 1)=14 t^{2}+(2 w-1) t+\left\lfloor\frac{w(w-1)}{14}\right\rfloor-1$ for $w=9,13$ and $t \geq 0$.

Proof By Table 2.1, the $O P D$ s for desired small orders are constructed as follows.

$$
\begin{gathered}
\frac{G-O P D(31)}{}\left(Z_{7} \times Z_{4}\right) \bigcup\left\{x_{1}, x_{2}, x_{3}\right\}, \\
\left.\left(0_{2}, 3_{0}, x_{0}, x_{3}, 5_{1}, 2_{3}, 2_{0}\right),\left(0_{0}, 1_{2}, x_{3}, 3_{3}\right),\left(0_{1}, 3_{2}, x_{3}\right), x_{1}, 0_{3}, 0_{0}, 2_{3}\right),\left(1_{3}, 4_{0}, x_{2}, 3_{1}, 0_{2}, 0_{1}\right),\left(0_{0}, 3_{2}, x_{2}, 1_{3}, 1_{1}, 2_{2}\right), \\
\left(0_{1}, 3_{0}, 6_{1}, 1_{0}, 3_{1}, 1_{1}\right),\left(0_{2}, 3_{1}, 6_{3}, 1_{0}, 3_{2}, 1_{2}\right),\left(0_{3}, 3_{2}, 6_{3}, 1_{2}, 3_{3}, 1_{3}\right) \quad \bmod (7,-) ; \\
\left(0_{0}, 3_{0}, 2_{0}, 1_{0}, 6_{0}, 2_{0}\right),\left(4_{0}, 6_{0}, 1_{0}, 3_{0}, 2_{0}, 5_{0}\right),\left(5_{0}, 1_{0}, 4_{0}, 0_{0}, 3_{0}, 6_{0}\right) .
\end{gathered}
$$

$$
\underline{G-O P D(19)} \quad Z_{16} \bigcup\left\{x_{1}, x_{2}, x_{3}\right\}, \quad(0,4,11,5,3,1) \quad \bmod 16 ;
$$

$$
\left(x_{2}, 4, x_{1}, 12,0,8\right)+i,\left(x_{3}, 4, x_{1}, 12,0,8\right)+i+4,0 \leq i \leq 3
$$

$$
\underline{G-O P D(33)}\left(Z_{15} \times Z_{2}\right) \bigcup\left\{x_{1}, x_{2}, x_{3}\right\}, \quad\left(0_{0}, 7_{0}, x_{1}, 3_{1}, 6_{0}, 7_{1}\right),\left(0_{0}, 5_{0}, x_{2}, 4_{1}, 0_{1}, 6_{1}\right)
$$

$$
\left(0_{0}, 12_{1}, 2_{0}, 13_{1}, 1_{0}, 3_{0}\right),\left(0_{0}, 4_{0}, x_{3}, 5_{1}, 2_{1}, 9_{1}\right),\left(0_{1}, 1_{0}, 9_{1}, 4_{1}, 1_{1}, 3_{1}\right), \quad \bmod (15,-)
$$

$\underline{G-O P D(11)} \quad Z_{7} \bigcup\left\{x_{0}, x_{1}, x_{2}, x_{3}\right\}, \quad\left(x_{i}, 1,0,2,3,6\right)+i \quad 0 \leq i \leq 3 ;$

$$
\left(0,5, x_{1}, 6, x_{3}, 3\right),\left(1, x_{1}, x_{0}, x_{3}, 4,6\right),\left(5,2, x_{2}, 6,4, x_{0}\right)
$$

$\underline{G-O P D(39)} \quad Z_{35} \bigcup\left\{x_{1}, \ldots, x_{4}\right\}, \quad(0,13,2,14,1,3),(0,8,1,10,20,4) \bmod 35$;
$\left(0,5, x_{3}, 6,17, x_{1}\right)+2 i,\left(0,5, x_{4}, 6,17, x_{2}\right)+2 i+17 \quad 0 \leq i \leq 8 ;$
$\left(0,5, x_{4}, 6,17, x_{1}\right)+2 i+1, \quad\left(0,5, x_{3}, 6,17, x_{2}\right)+2 i+18 \quad 0 \leq i \leq 7 ;$
$\left(x_{1}, x_{4}, 5,34, x_{2}, x_{3}\right)$.
By Lemma 2.2, there exists no $G-O P D(v)$ for $v \equiv 9,13 \bmod 14$. In the following, we give the maximum $G-P D(v)$ s for desired small orders v.

```
p(9,G,1)=4 Z Z9, (0,7,4, 5, 3, 1), (1,7,5, 8, 2,4),(2,7,8,0,5,3), (6,7,3,8,1, 5).
p(37,G,1)=94}\mp@subsup{Z}{31}{}\bigcup{\mp@subsup{x}{1}{},\ldots,\mp@subsup{x}{6}{}},\quad(0,5,11,4,1,3),(0,11,23,10,17,8)\operatorname{mod}31
    (x, 15, \mp@subsup{x}{5}{},0,22,7)+i, ( (x2,15, \mp@subsup{x}{5}{},0,22,7)+i+7, ( (x4,15, \mp@subsup{x}{6}{},0,22,7)+i+21 0\leqi\leq6;
    (x, (x, 15, \mp@subsup{x}{6}{},0,22,7)+i+15 0 \leqi\leq5; (x ( 
    (x},29,\mp@subsup{x}{5}{},14,5,21),(\mp@subsup{x}{6}{},12,\mp@subsup{x}{3}{},13,\mp@subsup{x}{1}{},29),(\mp@subsup{x}{2}{},5,20,\mp@subsup{x}{4}{},6,21),(\mp@subsup{x}{4}{},\mp@subsup{x}{3}{},28,\mp@subsup{x}{6}{},4,19)
p(13,G,1)=10}(\mp@subsup{Z}{5}{}\times\mp@subsup{Z}{2}{})\bigcup{\mp@subsup{x}{1}{},\mp@subsup{x}{2}{},\mp@subsup{x}{3}{}},(\mp@subsup{0}{0}{},\mp@subsup{2}{0}{},\mp@subsup{x}{1}{},\mp@subsup{1}{1}{},\mp@subsup{0}{1}{},\mp@subsup{x}{2}{}),(\mp@subsup{0}{1}{},\mp@subsup{3}{0}{},\mp@subsup{x}{3}{},\mp@subsup{2}{1}{},\mp@subsup{1}{0}{},\mp@subsup{2}{0}{})\operatorname{mod}(5,-)
p(41,G,1)=116}\mp@subsup{Z}{39}{}\bigcup{\mp@subsup{x}{1}{},\mp@subsup{x}{2}{}},\quad(0,23,13,6,5,4),(0,12,1,14,17,19)\operatorname{mod}39
    (0, 8, x , 9, 15,18)+2i, (0, 8, x2, 9, 15,18)+2i+1 0 \leqi\leq18.
```

Theorem 4.2 There exists a $G-O C D(v)$ for $v \equiv 3,5,9,13(\bmod 14)$. But, $c(14 t+11, G, 1)=$ $14 t^{2}+21 t+9$ for $t \geq 0$.

Proof By Table 2.1, the $O C D$ s for desired small orders are constructed as follows.
(1) For $v=3,31,19,33$, the leave $L(\mathcal{B})$ of G - $O P D(v)$ is a subgraph of G, so we can obtain the $G-O C D(v)$ by adding a block containing this $L(\mathcal{B})$.
(2) For $v=9,37,13,41$, the leave $L(\mathcal{B})$ of the maximum $(v, G, 1)-P D$ can be covered by two G, so we can obtain the $(v, G, 1)-O C D$ by adding two blocks containing this $L(\mathcal{B})$.
(3) Suppose a $G-O C D(14 t+11)$ exists for $t \geq 0$. Then the excess must be $P_{2}=\{a, b\}$, and the sum of degree of a in the $O C D$ is $14 t+11$, an odd number. It is impossible since the degree of each vertex in G is even. Thus, there exists no $G-O C D(14 t+11)$. While for $v=11,39$, the leave of G - $O P D(v)$ can be covered by two G, so $c(14 t+11, G, 1)=14 t^{2}+21 t+9$.

Theorem $4.3 p(14 t+w, G, 1)=14 t^{2}+(2 w-2) t+\left\lfloor\frac{w(w-2)}{14}\right\rfloor$ for $t \geq 0$ and $w \in[0,12]_{2}$.
Proof By Lemma 2.3, we only need to construct those maximum $P D$ s listed in Table 2.1. $\underline{p(v, G, 1)=0} \quad$ for $v=0,2,4$.
$\underline{p(28, G, 1)=52}\left(Z_{13} \times Z_{2}\right) \bigcup\left\{x_{1}, x_{2}\right\}, \quad\left(0_{0}, 6_{0}, x_{1}, 4_{1}, 0_{1}, 6_{1}\right),\left(0_{0}, 5_{0}, x_{2}, 5_{1}, 2_{1}, 7_{1}\right)$,
$\left(0_{1}, 4_{1}, 1_{0}, 5_{0}, 3_{1}, 1_{1}\right),\left(0_{1}, 4_{0}, 6_{0}, 3_{0}, 2_{0}, 1_{0}\right) \bmod (13,-)$.
$\underline{p(30, G, 1)=60} \quad Z_{15} \times Z_{2}, \quad\left(0_{0}, 14_{1}, 7_{1}, 4_{0}, 7_{0}, 6_{0}\right),\left(0_{0}, 10_{1}, 8_{1}, 11_{1}, 12_{1}, 13_{1}\right)$, $\left(0_{0}, 2_{1}, 2_{0}, 8_{1}, 3_{0}, 5_{0}\right),\left(0_{0}, 5_{1}, 1_{1}, 7_{1}, 4_{1}, 9_{1}\right) \bmod (15,-)$.
$\underline{p(32, G, 1)=68} \quad Z_{32}, \quad(0,8,16,24,3,1)+i,(4,0,5,11,20,12)+i \quad 0 \leq i \leq 3 ;$ $(0,12,26,11,19,9) \bmod 32 ; \quad(4,9,15,8,7,5)+i \quad 0 \leq i \leq 27$.
$\underline{p(6, G, 1)=1} \quad Z_{6}, \quad(0,1,2,3,4,5)$.
$\underline{p(34, G, 1)=77} \quad\left(Z_{11} \times Z_{3}\right) \bigcup\{x\}, \quad\left(0_{0}, 4_{0}, 3_{1}, 5_{0}, 1_{0}, 3_{0}\right) \bmod (11,3) ;$
$\left(0_{0}, 7_{1}, 1_{0}, 9_{2}, 8_{1}, 10_{2}\right),\left(0_{0}, 4_{1}, 1_{0}, 4_{2}, 5_{1}, 6_{2}\right)$,
$\left(0_{1}, 5_{2}, 2_{1}, 8_{2}, 0_{0}, 7_{2}\right),\left(5_{2}, 5_{0}, x, 5_{1}, 0_{0}, 1_{1}\right) \bmod (11,-)$.
$\underline{p(8, G, 1)=3} \quad Z_{7} \bigcup\{x\}, \quad(0,5,4, x, 3,1)+i \quad i=0,1,2$.
$\underline{p(36, G, 1)=87} Z_{12} \times Z_{3}, \quad\left(0_{0}, 6_{0}, 8_{0}, 10_{0}, 1_{0}, 2_{0}\right),\left(4_{0}, 5_{0}, 7_{0}, 6_{0}, 3_{0}, 2_{0}\right),\left(9_{0}, 3_{0}, 1_{0}, 11_{0}, 8_{0}, 7_{0}\right)$;
$\left(0_{0}, 1_{1}, 9_{0}, 4_{0}, 3_{0}, 0_{1}\right),\left(5_{2}, 4_{0}, 4_{2}, 2_{0}, 0_{2}, 3_{2}\right),\left(0_{2}, 2_{0}, 10_{2}, 1_{0}, 1_{2}, 5_{1}\right),\left(6_{2}, 0_{0}, 7_{2}, 2_{0}, 10_{2}, 0_{1}\right)$,
$\left(0_{1}, 3_{1}, 4_{2}, 4_{1}, 11_{2}, 2_{1}\right),\left(0_{0}, 5_{1}, 2_{0}, 8_{1}, 10_{1}, 11_{1}\right),\left(2_{1}, 5_{2}, 3_{1}, 7_{2}, 0_{0}, 7_{1}\right) \bmod (12,-)$.
$\underline{p(10, G, 1)=5} \quad Z_{5} \times Z_{2}, \quad\left(0_{0}, 3_{1}, 5_{1}, 1_{0}, 2_{1}, 1_{1}\right) \bmod (5,-)$.
$\underline{p(38, G, 1)=97} \quad Z_{32} \bigcup\left\{x_{1}, \ldots, x_{6}\right\} \quad\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}\right)$;
$\left(0,13, x_{5}, 15,8,18\right)+4 i+k,\left(0,13, x_{6}, 15,8,18\right)+4 i+2+k 0 \leq i \leq 7, k=0,1 ;$
$\left(0,6, x_{1}, 7,1,3\right)+2 i,\left(0,6, x_{2}, 7,1,3\right)+2 i+1$,
$\left(0,11, x_{3}, 12,4,9\right)+2 i,\left(0,11, x_{4}, 12,4,9\right)+2 i+1 \quad 0 \leq i \leq 15$.
$\underline{p(12, G, 1)=8} \quad Z_{4} \times Z_{3}, \quad\left(0_{0}, 1_{1}, 1_{0}, 3_{1}, 0_{2}, 1_{2}\right),\left(3_{2}, 2_{1}, 2_{2}, 0_{1}, 1_{0}, 0_{0}\right) \bmod (4,-)$.
$\underline{p(40, G, 1)=108} \quad Z_{36} \bigcup\left\{x_{1}, \cdots x_{4}\right\}, \quad(0,15,1,17,6,13) \bmod 36 ;$
$\left(0,11, x_{1}, 12,1,3\right)+2 i,\left(0,11, x_{2}, 12,1,3\right)+2 i+1 \quad 0 \leq i \leq 17 ;$
$\left(0,8, x_{3}, 10,4,9\right)+4 i+k,\left(0,8, x_{4}, 10,4,9\right)+4 i+2+k \quad 0 \leq i \leq 8, k=0,1$.
Theorem 4.4 $c(14 t+w, G, 1)=14 t^{2}+2 w t+\left\lceil\frac{w^{2}}{14}\right\rceil$ for $t \geq 0$ and $w \in[0,12]_{2}$.

Proof By Lemma 2.3, we only need to construct those minimum $C D$ s listed in Table 2.1.
(1) For $t=0$, by the proof of Theorem 3.1, it is obvious that the leave of the maximum G - $P D(w)$, where $w \in[0,12]_{2}$, can be covered by $\left\lceil\frac{w^{2}}{14}\right\rceil-\left\lfloor\frac{w(w-2)}{14}\right\rfloor$ blocks.
(2) For $t=2$, when $w=2,4,10$, it is easy to see that the leave of the maximum G $P D(28+w)$ can be covered by $\left\lceil\frac{w^{2}}{14}\right\rceil-\left\lfloor\frac{w(w-2)}{14}\right\rfloor+4$ blocks, so we only need to consider the cases for $w=0,6,8,12$.

$$
\begin{aligned}
& c(28, G, 1)=56 \quad Z_{7} \times Z_{4}, \quad\left(0_{0}, 5_{1}, 2_{0}, 6_{1}, 1_{0}, 3_{0}\right),\left(0_{0}, 5_{2}, 2_{0}, 6_{2}, 1_{1}, 2_{1}\right) \text {, } \\
& \left(0_{2}, 5_{3}, 2_{2}, 6_{3}, 1_{1}, 3_{1}\right),\left(0_{2}, 0_{3}, 5_{1}, 5_{0}, 2_{1}, 6_{1}\right),\left(0_{2}, 2_{3}, 1_{2}, 0_{0}, 2_{2}, 3_{2}\right), \\
& \left(0_{0}, 5_{3}, 2_{0}, 6_{3}, 0_{3}, 2_{3}\right),\left(0_{1}, 2_{2}, 2_{1}, 3_{2}, 0_{3}, 1_{3}\right),\left(1_{3}, 3_{1}, 6_{3}, 2_{1}, 0_{0}, 4_{3}\right) \bmod (7,-) . \\
& c(34, G, 1)=83 \quad\left(Z_{16} \times Z_{2}\right) \bigcup\left\{x_{1}, x_{2}\right\}, \quad\left(0_{0}, 10_{1}, 2_{0}, 11_{1}, 6_{0}, 7_{0}\right),\left(0_{0}, x_{1}, 0_{1}, x_{2}, 3_{0}, 5_{0}\right), \\
& \left(4_{1}, 1_{0}, 8_{1}, 2_{0}, 0_{0}, 4_{0}\right),\left(0_{1}, 15_{0}, 4_{1}, 8_{1}, 6_{1}, 7_{1}\right),\left(0_{1}, 2_{0}, 14_{1}, 1_{0}, 3_{1}, 5_{1}\right) \bmod (16,-) ; \\
& \left(2_{0}, 4_{0}, 12_{0}, 10_{0}, 0_{0}, 8_{0}\right),\left(3_{0}, 5_{0}, 13_{0}, 11_{0}, 1_{0}, 9_{0}\right),\left(7_{0}, x_{1}, x_{2}, 15_{0}, 6_{0}, 14_{0}\right) \text {. } \\
& \underline{c(36, G, 1)=93 \quad Z_{18} \times Z_{2}, \quad\left(0_{0}, 2_{1}, 16_{0}, 1_{1}, 2_{0}, 5_{0}\right) \bmod (18,2) ; ~} \\
& \left(0_{0}, 8_{1}, 2_{0}, 6_{0}, 7_{0}, 8_{0}\right),\left(0_{1}, 6_{0}, 16_{1}, 5_{0}, 7_{1}, 8_{1}\right),\left(0_{0}, 7_{1}, 11_{1}, 5_{1}, 0_{1}, 9_{1}\right) \bmod (18,-) ; \\
& \left(3_{0}, 6_{0}, 15_{0}, 12_{0}, 0_{0}, 9_{0}\right)+i_{0} \quad i=0,1,2 . \\
& \underline{c(40, G, 1)=115} \quad Z_{38} \bigcup\left\{x_{1}, x_{2}\right\}, \quad(0,15,2,14,4,7),(0,19,2,18,5,6) \bmod 38 ; \\
& \left(0,8,19,9,2, x_{1}\right)+4 i+k,\left(0,8,19,9,2, x_{2}\right)+4 i+2+k \quad 0 \leq i \leq 8, k=0,1 ; \\
& \left(36,6,17,7,0, x_{1}\right),\left(37,7,18,8,1, x_{2}\right),\left(x_{1}, 2,0, x_{2}, 37,1\right) \text {. }
\end{aligned}
$$

References

[1] GE Gennian. Existence of holey LSSOM of type 2^{n} with application to G_{7}-packings of K_{v} [J]. J. Statist. Plann. Inference, 2001, 94(2): 211-218.
[2] ZHANG Shucheng, YIN Jianxing. Packing of K_{v} with certain graphs of five vertices [J]. J. Statist. Plann. Inference, 2002, 106(1-2): 387-408.
[3] KANG Qingde, WANG Zhiqin. Optimal packings and coverings of λK_{v} with graph $K_{5}-P_{5}$ [J]. Bull. Inst. Combin. Appl., 2004, 41: 22-41.
[4] KANG Qingde, WANG Zhiqin. Maximum $K_{2,3}$-packing designs and minimum $K_{2,3}$-covering designs of λK_{v} [J]. J. Math. Res. Exposition, 2005, 25(1): 1-16.
[5] KANG Qingde, ZHANG Yanfang, ZUO Huijuan. Packings and coverings of λK_{v} by k-circuits with one chord [J]. Discrete Math., 2004, 279(1-3): 287-315.
[6] KANG Qingde, DU Yanke, TIAN Zihong. Decomposition of λK_{v} into some graph with six vertices and seven edges [J]. J. Statist. Plann. Inference, 2006, 136(4): 1394-1409.

