Packings and Coverings of a Graph with 6 Vertices and 7 Edges

DU Yan Ke^1 , KANG Qing De^2

 $(1. \ Department \ of \ Basic \ Courses, \ Ordnance \ Engineering \ College, \ Hebei \ 050003, \ China;$

2. Institute of Mathematics, Hebei Normal University, Hebei 050016, China)

(E-mail: dyk39@sohu.com)

Abstract Let λK_v be the complete multigraph with v vertices and G a finite simple graph. A G-design (G-packing design, G-covering design) of λK_v , denoted by (v, G, λ) -GD $((v, G, \lambda)$ -PD, (v, G, λ) -CD), is a pair (X, \mathcal{B}) where X is the vertex set of K_v and \mathcal{B} is a collection of subgraphs of K_v , called blocks, such that each block is isomorphic to G and any two distinct vertices in K_v are joined in exactly (at most, at least) λ blocks of \mathcal{B} . A packing (covering) design is said to be maximum (minimum) if no other such packing (covering) design has more (fewer) blocks. In this paper, a simple graph G with 6 vertices and 7 edges is discussed, and the maximum G-PD(v) and the minimum G-CD(v) are constructed for all orders v.

Keywords G-design; G-packing design; G-covering design.

Document code A MR(2000) Subject Classification 05B40 Chinese Library Classification 0157.2

1. Introduction

A complete multigraph of order v and index λ , denoted by λK_v , is a graph with v vertices, where any two distinct vertices x and y are joined by λ edges $\{x, y\}$. Let G be a finite simple graph. A G-design (G-packing design, G-covering design) of λK_v , denoted by G- $GD_{\lambda}(v)$ (G- $PD_{\lambda}(v)$, G- $CD_{\lambda}(v)$), is a pair (X, \mathcal{B}) where X is the vertex set of K_v and \mathcal{B} is a collection of subgraphs of K_v , called blocks, such that each block is isomorphic to G and any two distinct vertices in K_v are joined in exactly (at most, at least) λ blocks of \mathcal{B} . The necessary conditions for the existence of a G- $GD_{\lambda}(v)$ are $v \geq |V(G)|$ and

$$\begin{cases} \lambda v(v-1) \equiv 0 \pmod{2|E(G)|} \\ \lambda(v-1) \equiv 0 \pmod{d} \end{cases}$$
(*)

where V(G) and E(G) denote the sets of vertices and edges of G respectively, and d is the greatest common divisor of the degrees of all vertices in G. A G- $PD_{\lambda}(v)$ (G- $CD_{\lambda}(v)$) is called maximum (minimum) if no other such packing (covering) has more (fewer) blocks. The number of blocks in a maximum packing (minimum covering), denoted by $p(v, G, \lambda)$ ($c(v, G, \lambda)$), is called

Received date: 2006-10-29; Accepted date: 2007-03-23

Foundation item: the National Natural Science Foundation of China (No. 10671055).

the packing (covering) number. It is well known that

$$p(v, G, \lambda) \le \left\lfloor \frac{\lambda v(v-1)}{2|E(G)|} \right\rfloor \le \left\lceil \frac{\lambda v(v-1)}{2|E(G)|} \right\rceil \le c(v, G, \lambda).$$
(**)

A G- $PD_{\lambda}(v)$ (G- $CD_{\lambda}(v)$) is called optimal and denoted by G- $OPD_{\lambda}(v)$ (G- $OCD_{\lambda}(v)$) if the left (right) equality in (**) holds.

The leave $L_{\lambda}(\mathcal{D})$ of a packing \mathcal{D} is a subgraph of λK_v and its edges are the supplement of \mathcal{D} in λK_v . The number of edges in $L_{\lambda}(\mathcal{D})$ is denoted by $|L_{\lambda}(\mathcal{D})|$. Especially, when \mathcal{D} is maximum, $|L_{\lambda}(\mathcal{D})|$ is called leave-number and is denoted by $l_{\lambda}(v)$. Similarly, the excess $R_{\lambda}(\mathcal{D})$ of a covering D is a subgraph of λK_v and its edges are the supplement of λK_v in \mathcal{D} . When \mathcal{D} is minimum, $|R_{\lambda}(\mathcal{D})|$ is called excess-number and denoted by $r_{\lambda}(v)$.

Let $X = \bigcup_{i=1}^{t} X_i$ be the vertex set of K_{n_1,n_2,\ldots,n_t} , a complete multipartite graph consisting of t parts with size n_1, n_2, \ldots, n_t respectively, where the sets X_i $(1 \le i \le t)$ are disjoint. Denote $v = \sum_{i=1}^{t} n_i$ and $\mathcal{G} = \{X_1, X_2, \ldots, X_t\}$. For any given graph G, if the edges of $\lambda K_{n_1,n_2,\ldots,n_t}$, a t-partite graph with replication λ , can be decomposed into sub-graphs \mathcal{A} , each of which is isomorphic to G and is called block, then the system $(X, \mathcal{G}, \mathcal{A})$ is called a holey G-design with index λ , denoted by G- $HD_{\lambda}(T)$, where $T = n_1^1 n_2^1 \cdots n_t^1$ is the type of the holey G-design. Usually, the type is denoted by exponential form, for example, the type $n_1^{k_1} n_2^{k_2} \cdots n_m^{k_m}$ denotes k_1 occurrences of n_1 , k_2 occurrences of n_2 , etc. A G- $HD_{\lambda}(1^{v-w}w^1)$ is called an incomplete G-design, denoted by G- $ID_{\lambda}(v, w)$.

There is a quite long time to the research of the graph packing and covering designs, which involved the simple graphs with less vertices and less $edges^{[1]-[4]}$, and some special graphs^[5]. But there is a few conclusions for the simple graphs with more than five vertices. In this paper, we will discuss the maximum packing and the minimum covering of the following graph G with six vertices and seven edges for $\lambda = 1$. For convenience, as a block in a design, the graph may be denoted by (a, b, c, d, e, f) according to the following vertex-labels.

Lemma 1.1^[6] There exists a G- $GD_{\lambda}(v)$ if and only if $v \ge 6$ and $\lambda = 1, v \equiv 1, 7 \mod 14$; $\lambda = 2, v \equiv 0, 8 \mod 14$; $\lambda = 7, v \equiv 3, 5, 9, 11, 13 \mod 14$; $\lambda = 14, v \equiv 0 \mod 2$.

2. Recursive method

In what follows, the element (x, i) in $Z_m \times Z_n$ may be denoted by x_i briefly. And $x_i + y_j = (x + y)_{i+j}$, $\infty + x = \infty$, $\infty + x_i = \infty$, $\infty_l + x_i = \infty_{l+i}$. For the block B = (x, y, z, u, v, w), B + t = (x + t, y + t, z + t, u + t, v + t, w + t). In $Z_m \times Z_n$, a block mod (m, n) means that the first coordinate is mod m and the second is mod n, while mod (m, -) means that the first coordinate is mod m and the second does not change. For $i, j, k \in Z$, i < j and $i \equiv j \pmod{k}$,

define $[i, j]_k = \{x : i \le x \le j, x \equiv i \pmod{k}\}.$

What's more, the symbols C_n , P_n and St(n) denote the cycle with n vertices, the path with n vertices, and the star with n terminal vertices, respectively. The disjoint union of graphs G and H is denoted by $G \bigcup H$. Specially, the disjoint union of n graphs G is denoted by nG. And, \triangle_2 means two C_3 with one common vertex.

Our recursive constructions use the following standard "Filling in Holes" method.

Lemma 2.1^[6] For given graph G and positive integers h, w, m, λ , if there exist a G- $HD_{\lambda}(h^m)$, a G- $ID_{\lambda}(h+w,w)$ and a G- $OPD_{\lambda}(s)$ (G- $OCD_{\lambda}(s)$), where s = w or h + w, then there exists a G- $OPD_{\lambda}(mh+w)$ (G- $OCD_{\lambda}(mh+w)$) too.

Lemma 2.2 There exists no G-OPD(v) and $p(v, G, 1) \leq \lfloor \frac{\binom{v}{2} - \frac{v}{2}}{7} \rfloor$ for even v. There exists no G-OPD(v) for $v \equiv 9, 13 \pmod{14}$. The leave of a G-OPD(v) must be C_3 for $v \equiv 3, 5 \pmod{14}$, or one among $\{C_6, 2C_3, \Delta_2\}$ for $v \equiv 11 \pmod{14}$.

Proof For even v, since the degree of any vertex in G is even, each vertex in K_v must appear in the leave, so the leave-number $l \geq \frac{v}{2}$. However, for any OPD, the leave-number $l \leq 6$. It is impossible that $l \geq \frac{v}{2}$ for v > 12. But, for the remaining even orders v = 6, 8, 10 and 12, the leave-numbers of corresponding OPD are 1,0,3 and 3. Thus, there exists no G-OPD(v) and $p(v, G, 1) \leq \lfloor \frac{\binom{v}{2} - \frac{v}{2}}{7} \rfloor$.

For odd v, the degree of any vertex in the leave must be even. If a G-OPD(v) exists, the leave-number will be the following three cases.

l = 1 for $v \equiv 9,13 \mod 14$, so there exists no G-OPD(v) since the leave must be P_2 ;

l = 3 for $v \equiv 3, 5 \mod 14$, so the leave can only be $St(3), 3P_2, P_4, P_2 \bigcup P_3$ or C_3 , but the first four graphs cannot become a leave;

l = 6 for $v \equiv 11 \mod 14$. Let the number of 2°-vertices, 4°-vertices and 6°-vertices be a, band c, respectively. Then 2a+4b+6c = 12. The solutions are (a, b, c) = (0, 0, 2), (1, 1, 1), (3, 0, 1),(0, 3, 0), (2, 2, 0), (4, 1, 0) and (6, 0, 0). Obviously, the first five solutions have no corresponding graphs, while the graphs satisfying the last two solutions are C_6 , $2C_3$ and Δ_2 .

Since there is no G-GD(14) by Lemma 1.1, a new recursive construction is presented below. First, define two auxiliary designs for even w:

G-IPD(14+w,w) is a $G-HD(2^7w^1)$;

G-ICD(14+w,w) is a union of a G-ID(14+w,w) and $7P_2$ on the 14-set.

In the view of PD and CD, the first one is with the leave $K_w \bigcup 7P_2$, and the second one is with the leave K_w and the excess $7P_2$.

Lemma 2.3 For t > 0 and even $w \ge 0$, if there exist a G- $HD(14^t)$, a G-IPD(14 + w, w) (G-ICD(14+w, w)) and a maximum G-PD(w) (minimum G-CD(w)), then there exists a maximum G-PD(14t + w) (minimum G-CD(14t + w)).

Proof Let $X = (Z_{14} \times Z_t) \bigcup W$, where W is another w-set. Denote G- $HD(14^t) = (Z_{14} \times Z_t, \mathcal{A})$, G- $IPD(14 + w, w) = ((Z_{14} \times \{i\}) \bigcup W, \mathcal{B}_i)$, or G-ICD(14 + w, w), $i \in Z_t$. And, \mathcal{C} is a maximum G-PD(w) or minimum G-CD(w) on the set W. Define $\Omega = \mathcal{A} \bigcup (\bigcup_{i=0}^{t-1} \mathcal{B}_i) \bigcup \mathcal{C}$. Then (X, Ω) is a maximum G-PD(14+w) (minimum G-CD(14+w)). In fact, denote v = 14t + w. Then

$$|\mathcal{A}| = \frac{\binom{t}{2}14^2}{7} = 14t^2 - 14t, \ |\mathcal{B}_i| = \frac{\binom{14+w}{2} - \binom{w}{2} - 7}{7} = 12 + 2w, \ |\mathcal{C}| = \lfloor \frac{\binom{w}{2} - \frac{w}{2}}{7} \rfloor = \lfloor \frac{w(w-2)}{14} \rfloor.$$

But by Lemma 2.2

But, by Lemma 2.2,

$$p(v, G, 1) \le \lfloor \frac{\binom{v}{2} - \frac{v}{2}}{7} \rfloor = 14t^2 + (2w - 2)t + \lfloor \frac{w(w - 2)}{14} \rfloor.$$

Therefore, $|\mathcal{A}| + t|\mathcal{B}_i| + |\mathcal{C}| = 14t^2 + (2w-2)t + \lfloor \frac{w(w-2)}{14} \rfloor = p(v, G, 1)$. Furthermore, there is no excess edge in Ω , so the lemma holds for PD.

As for CD, $|\mathcal{B}_i| = \frac{\binom{14+w}{2} - \binom{w}{2} + 7}{7} = 14 + 2w$, $|\mathcal{C}| = \lceil \frac{\binom{w}{2} - \frac{w}{2}}{7} \rceil = \lceil \frac{w^2}{14} \rceil$, $c(v, G, 1) \ge \lceil \frac{\binom{v}{2} + \frac{v}{2}}{7} \rceil = 14t^2 + 2wt + \lceil \frac{w^2}{14} \rceil$, so $c(v, G, 1) = 14t^2 + 2wt + \lceil \frac{w^2}{14} \rceil$.

By the recursive constructions in Lemmas 2.1 and 2.3, our task in §3 and §4 is to construct $G-HD(14^t)$ and those small designs listed in the following Table.

v(mod14)	ID(14+w,w)	IPD(14+w,w), ICD(14+w,w)	$\max PD, \min CD$
0		w = 0	0,28
2		w = 2	2,30
3	w = 3		3, 31
4		w = 4	4, 32
5	w = 5		5(19), 33
6		w = 6	6, 34
8		w = 8	8,36
9	w = 9		9,37
10		w = 10	10, 38
11	w = 11		11, 39
12		w = 12	12,40
13	w = 13		13, 41

Table 2.1 The desired designs for the main results

3. HD, ID and IPD (ICD)

Lemma 3.1^[6] There exists a G- $HD(14^t)$ for $t \ge 3$.

Lemma 3.2 There exists a G-ID(14 + w, w) for w = 3, 5, 9, 11, 13, no one for any even w.

Proof Take the vertex set $(Z_7 \times Z_2) \bigcup \{x_1, \ldots, x_w\}$, where $\{x_1, \ldots, x_w\}$ is the hole.

 $\underline{w = 3:} (0_0, x_1, 0_1, x_2, 4_1, 6_1), (0_1, 2_0, x_3, 3_1, 1_1, 0_0), \mod (7, -);$ $(0_0, 2_1, 6_0, 5_0, 3_1, 1_0), (1_0, 6_0, 1_1, 5_0, 4_1, 2_0), (2_0, 0_0, 6_0, 4_0, 5_1, 3_0),$ $(3_0, 6_0, 2_0, 5_0, 6_1, 4_0), (4_0, 0_0, 3_0, 1_0, 0_1, 5_0).$

 $\underline{w=5:} (0_0, 3_0, x_1, 3_1, 1_1, 2_1), (0_1, 0_0, x_2, 2_1, x_4, 3_0), (0_1, 3_1, x_3, 1_0, x_5, 2_0) \mod (7, -);$

 $(0_0, 1_0, 3_0, 2_0, 6_0, 5_0), (4_0, 2_0, 1_0, 6_0, 3_0, 5_0).$

$$\begin{split} \underline{w = 9:} & (0_0, x_5, 2_1, x_1, 0_1, 1_1), (0_0, x_6, 0_1, x_2, 2_1, 4_1), (0_0, x_7, 0_1, x_3, 3_1, 6_1), \\ & (0_0, x_8, 0_1, x_4, x_9, 5_1) & \text{mod } (7, -); \\ & (3_0, 0_0, 1_0, 2_0, 4_0, 5_0), (6_0, 4_0, 0_2, 2_1, 0_3, 0), (5_0, 2_0, 4_0, 1_0, 6_0, 0_0). \\ \\ \underline{w = 11:} & (0_0, 1_0, x_1, 1_1, x_6, 0_1), (0_0, 2_0, x_2, 3_1, x_7, 2_1), (0_0, 3_0, x_3, 5_1, x_8, 4_1), \\ & (0_1, x_9, 0_0, x_4, 1_1, 3_1), (0_0, x_{10}, 0_1, x_5, x_{11}, 6_1). & \text{mod } (7, -). \\ \\ \\ \underline{w = 13:} & (0_0, x_2, 1_1, x_1, x_3, 0_1), (0_0, x_5, 0_1, x_4, x_6, 3_1), (0_0, x_8, 0_1, x_7, x_9, 5_1), \\ & (0_0, x_{11}, 0_1, x_{10}, 2_0, 6_1), & (0_1, x_{13}, 0_0, x_{12}, 1_1, 3_1) & \text{mod } (7, -); \\ & (6_0, 5_0, 4_0, 3_0, 1_1, 0_0), (1_0, 4_0, 6_1, 5_0, 2_1, 0_0), (2_0, 5_0, 0_1, 6_0, 3_1, 1_0), (3_0, 5_1, 4_0, 0_0, 4_1, 2_0). \\ \\ \\ \text{If } G - ID(14 + w, w) \text{ exists for even } w, \text{ take the vertex set } Z_{14} \bigcup \{x_1, \ldots, x_w\}, \text{ then the degree} \end{split}$$

13 + w of any vetex in Z_{14} is odd. It is a contrary since the degree of any vertex in G is even.

Lemma 3.3 There exists a G-IPD(14 + w, w) for $w \in [0, 12]_2$.

Proof Each G-IPD(14 + w, w) is constructed on the given vertex set. <u>w = 0</u>: $Z_{12} \bigcup \{x_1, x_2\}, (0, 4, x_1, 5, 1, 3) + 2i, (0, 4, x_2, 5, 1, 3) + 2i + 1$ $0 \leq i \leq 5.$ <u>w = 2</u>: Z_{16} , $(0, 4, 11, 5, 1, 3) \mod 16$. <u> $w = 4: Z_{14} \bigcup \{a, b, c, d\}, (0, 4, a, 5, 1, 3) + 2i, (0, 4, b, 5, 1, 3) + 2i + 1 \quad 0 \le i \le 6;$ </u> (c, 6, 0, 8, 1, 7), (c, 10, 4, 12, 13, 5), (c, 0, d, 2, 3, 11),(d, 1, 9, 3, 12, 6), (d, 8, 2, 10, 7, 13), (d, 4, c, 9, 5, 11).<u>w = 6</u>; $Z_{14} \bigcup \{x_1, \dots, x_6\}, (0, 3, x_1, 4, 1, 6) + 2i, (0, 3, x_2, 4, 1, 6) + 2i + 1 \quad 0 \le i \le 6;$ $(0, x_4, 7, x_5, x_3, 2) + i \ i = 0, 1, 4, 5; \ (0, x_4, 7, x_5, x_6, 2) + i \ i = 2, 3, 6;$ $(x_6, 7, 9, 11, 0, 12), (x_6, 10, x_3, 9, 1, 13), (x_3, 12, 10, 8, 11, 13).$ <u> $w = 8: (Z_7 \times Z_2) \bigcup \{x_1, \dots, x_8\}, (0_0, x_1, 3_1, 6_1, x_2, 5_1), (0_0, x_3, 1_1, 3_1, x_4, 4_1),$ </u> $(0_0, x_5, 0_1, 1_1, x_6, 2_1), (0_0, x_7, 0_1, x_8, 1_0, 3_0) \mod (7, -).$ <u>w = 10:</u> $Z_{14} \bigcup \{x_1, \dots, x_{10}\}, (0, x_3, 7, x_5, x_1, 1) + 2i, (0, x_4, 7, x_6, x_2, 1) + 2i + 1,$ $(0, x_7, 7, x_9, 2, 5) + i, (0, x_8, 7, x_{10}, 2, 5) + i + 7 \quad 0 \le i \le 6;$ $(6, 0, 4, 12, 2, 10) + i, (8, 0, 10, 4, 2, 12) + i \quad i = 0, 1.$ <u>w = 12:</u> $(Z_{12} \times Z_2) \bigcup \{x_1, x_2\}, (4_1, 2_0, x_1, 2_1, 0_0, 1_1), (5_1, 2_0, x_2, 1_1, 0_0, 0_1),$ $(0_0, 9_1, 1_0, 11_1, 6_1, 7_1) \mod (12, -).$

Lemma 3.4 There exists a G-ICD(14 + w, w) for $w \in [0, 12]_2$.

Proof Take the vertex set Z_{14} for w = 0 or $(Z_7 \times Z_2) \bigcup \{x_1, \ldots, x_w\}$ for w > 0.

- $\underline{w = 0}: (0, 4, 11, 5, 1, 3) \mod 14.$
- $\underline{w = 2:} \quad (0_1, 4_0, x_1, 1_1, 0_0, 2_0), (6_1, 6_0, x_2, 3_1, 0_0, 4_1) \mod (7, -); \\ (6_0, 3_0, 4_0, 5_0, 0_0, 1_1), (1_0, 5_0, 6_1, 4_0, 0_0, 2_1), (2_0, 6_0, 0_1, 5_0, 1_0, 3_1), (3_0, 0_0, 4_0, 5_1, 2_0, 4_1).$
- $\begin{array}{l} \underline{w=4:} & (0_0,3_0,x_3,2_1,0_1,x_4), (0_1,2_0,5_1,1_0,1_1,3_1) \mod (7,-); \\ & (2_0,4_0,x_1,3_1,2_1,x_2)+i_0 \quad i=0,1,3,4; \\ & (0_0,2_0,3_0,1_0,0_1,x_2), (6_0,x_1,1_1,0_0,4_0,5_0), (1_0,2_0,x_1,2_1,1_1,x_2), (4_0,3_0,x_1,5_1,4_1,x_2). \end{array}$
- $\underline{w = 6:} \quad (0_1, 1_0, x_1, 1_1, 0_0, x_2), (5_1, 1_0, x_3, 3_1, 0_0, x_4), (1_1, 1_0, x_5, 4_1, 0_0, x_6) \mod (7, -); \\ (0_0, 5_0, 6_0, 2_1, 1_0, 3_1), (1_0, 5_0, 1_1, 6_0, 2_0, 4_1), (2_0, 4_0, 6_0, 0_0, 3_0, 5_1),$

 $(3_0, 5_0, 2_0, 6_0, 4_0, 6_1), (4_0, 1_0, 3_0, 0_0, 5_0, 0_1).$

- $\underline{w = 8:} \quad (0_0, 3_0, x_1, 1_1, 0_1, x_2), (3_1, 0_0, x_3, 2_1, 1_0, x_4), (5_1, 0_0, x_5, 3_1, 1_0, x_6), \\ (6_1, 0_0, x_7, 3_1, 6_0, x_8) \mod (7, -); \quad (0_0, 6_0, 4_0, 5_0, 1_0, 2_0), (3_0, 5_0, 6_0, 1_0, 2_0, 4_0).$
- $\underline{w = 10}: (0_0, x_1, 1_1, x_2, 0_1, x_3), (0_0, x_4, 1_1, x_5, 0_1, x_6), (4_1, 2_0, x_7, 2_1, 0_0, x_8), \\ (6_1, 1_0, x_9, 3_1, 0_0, x_{10}) \mod (7, -); (0_0, 3_1, 2_1, 1_1, 2_0, 6_0), (2_0, 5_1, 4_1, 3_1, 1_0, 3_0), \\ (4_0, 0_1, 6_1, 5_1, 5_0, 2_0), (6_0, 5_0, 1_1, 0_1, 4_0, 3_0), (5_0, 1_0, 4_0, 0_0, 3_0, 6_1), (1_0, 0_0, 3_0, 4_1, 6_0, 2_1).$
- $\underline{w = 12:} (0_0, x_1, 1_1, x_2, 0_1, x_3), (0_0, x_4, 1_1, x_5, 0_1, x_6), (2_1, 1_0, x_7, 1_1, 0_0, x_8),$ $(4_1, 1_0, x_9, 2_1, 0_0, x_{10}), (6_1, 1_0, x_{11}, 3_1, 0_0, x_{12}) \mod (7, -);$ $(3_0, 0_0, 1_0, 2_0, 4_0, 5_0), (6_0, 4_0, 0_0, 2_0, 1_0, 3_0), (5_0, 2_0, 4_0, 1_0, 6_0, 0_0).$

4. Packings and coverings

Theorem 4.1 There exists a (v, G, 1)-OPD for $v \equiv 3, 5, 11 \pmod{14}$ and $v \ge 6$. But, $p(14t + w, G, 1) = 14t^2 + (2w - 1)t + \lfloor \frac{w(w-1)}{14} \rfloor - 1$ for w = 9, 13 and $t \ge 0$.

Proof By Table 2.1, the *OPD*s for desired small orders are constructed as follows. *G*-*OPD*(31) $(Z_7 \times Z_4) \bigcup \{x_1, x_2, x_3\},\$ $(0_2, 0_0, x_3, 5_1, 2_3, 2_0), (0_0, 1_2, x_3, 3_3, 2_1, 6_3),$ $(0_1, 3_0, 6_1, 1_0, 3_1, 1_1), (0_2, 3_1, 6_3, 1_0, 3_2, 1_2), (0_3, 3_2, 6_3, 1_2, 3_3, 1_3) \mod (7, -);$ $(0_0, 3_0, 2_0, 1_0, 6_0, 2_0), (4_0, 6_0, 1_0, 3_0, 2_0, 5_0), (5_0, 1_0, 4_0, 0_0, 3_0, 6_0).$ G- $OPD(19) Z_{16} \bigcup \{x_1, x_2, x_3\},\$ $(0, 4, 11, 5, 3, 1) \mod 16;$ $(x_2, 4, x_1, 12, 0, 8) + i, (x_3, 4, x_1, 12, 0, 8) + i + 4, 0 \le i \le 3.$ $G - OPD(33) \quad (Z_{15} \times Z_2) \bigcup \{x_1, x_2, x_3\}, \qquad (0_0, 7_0, x_1, 3_1, 6_0, 7_1), (0_0, 5_0, x_2, 4_1, 0_1, 6_1), (0_0, 7_0, x_1, 3_1, 6_0, 7_1), (0_0, 7_0, x_2, 4_1, 0_1, 6_1), (0_0, 7_0, 3_1, 3_1, 6_0, 7_1), (0_0, 7_0, 3_1, 3_1, 6_0, 7_1), (0_0, 7_0, 3_1, 3_1, 6_0, 7_1), (0_0, 7_0, 3_1, 3_1, 6_0, 7_1), (0_0, 7_0, 3_1, 3_1, 6_0, 7_1), (0_0, 7_0, 3_1, 3_1, 6_0, 7_1), (0_0, 7_0, 3_1, 3_1, 6_0, 7_1), (0_0, 7_0, 3_1, 3_1, 6_0, 7_1), (0_0, 7_0, 3_1, 3_1, 6_0, 7_1), (0_0, 7_0, 3_1, 3_1, 6_0, 7_1), (0_0, 7_0, 3_1, 3_1, 6_0, 7_1), (0_0, 7_0, 3_1, 3_1, 6_0, 7_1), (0_0, 7_0, 3_1, 3_1, 6_0, 7_1), (0_0, 7_0, 3_1, 3_1, 6_0, 7_1), (0_0, 5_0, 3_1, 3_1, 6_0, 7_1), (0_0, 5_0, 3_1, 3_1, 6_0, 7_1), (0_0, 5_0, 3_1, 3_1, 6_0, 7_1), (0_0, 5_0, 3_1, 3_1, 6_0, 7_1), (0_0, 5_0, 3_1, 3_1, 6_0, 7_1), (0_0, 5_0, 3_1, 3_1, 6_0, 7_1), (0_0, 5_0, 3_1, 3_1, 6_0, 7_1), (0_0, 5_0, 3_1, 3_1, 6_0, 7_1), (0_0, 5_0, 3_1, 5_1, 5_1), (0_0, 5_0, 3_1, 5_1), (0_0, 5_0, 5_1), (0_0, 5_0, 5_1), (0_0, 5_0, 5_1), (0_0, 5_0, 5_1), (0_0, 5_0, 5_1), (0_0, 5_0, 5_1), (0_0, 5_0, 5_1), (0_0, 5_0, 5_1), (0_0, 5_0, 5_1), (0_0, 5_0, 5_1), (0_0, 5$ $(0_0, 12_1, 2_0, 13_1, 1_0, 3_0), (0_0, 4_0, x_3, 5_1, 2_1, 9_1), (0_1, 1_0, 9_1, 4_1, 1_1, 3_1), \mod (15, -).$ *G*-*OPD*(11) $Z_7 \bigcup \{x_0, x_1, x_2, x_3\}, (x_i, 1, 0, 2, 3, 6) + i \ 0 \le i \le 3;$ $(0, 5, x_1, 6, x_3, 3), (1, x_1, x_0, x_3, 4, 6), (5, 2, x_2, 6, 4, x_0).$ *G-OPD*(39) $Z_{35} \bigcup \{x_1, \ldots, x_4\}, (0, 13, 2, 14, 1, 3), (0, 8, 1, 10, 20, 4) \mod 35;$ $(0, 5, x_3, 6, 17, x_1) + 2i, (0, 5, x_4, 6, 17, x_2) + 2i + 17, 0 \le i \le 8;$ $(0, 5, x_4, 6, 17, x_1) + 2i + 1, (0, 5, x_3, 6, 17, x_2) + 2i + 18, 0 \le i \le 7;$ $(x_1, x_4, 5, 34, x_2, x_3).$ By Lemma 2.2, there exists no G-OPD(v) for $v \equiv 9,13 \mod 14$. In the following, we give the maximum G-PD(v)s for desired small orders v. p(9, G, 1) = 4 Z_9 , (0, 7, 4, 5, 3, 1), (1, 7, 5, 8, 2, 4), (2, 7, 8, 0, 5, 3), (6, 7, 3, 8, 1, 5).

 $\overline{p(37,G,1)} = 94 \quad Z_{31} \bigcup \{x_1, \dots, x_6\}, \quad (0,5,11,4,1,3), (0,11,23,10,17,8) \mod 31;$

 $(x_1, 15, x_5, 0, 22, 7) + i, (x_2, 15, x_5, 0, 22, 7) + i + 7, (x_4, 15, x_6, 0, 22, 7) + i + 21 \quad 0 \le i \le 6; \\ (x_3, 15, x_6, 0, 22, 7) + i + 15 \quad 0 \le i \le 5; \\ (x_5, x_6, x_3, x_2, x_4, x_1),$

 $\begin{array}{l} (x_3, 29, x_5, 14, 5, 21), (x_6, 12, x_3, 13, x_1, 29), (x_2, 5, 20, x_4, 6, 21), (x_4, x_3, 28, x_6, 4, 19).\\ \underline{p(13, G, 1) = 10} \\ \underline{p(41, G, 1) = 116} \\ (Z_5 \times Z_2) \bigcup \{x_1, x_2, x_3\}, (0, 20, x_1, 1_1, 0_1, x_2), (0_1, 3_0, x_3, 2_1, 1_0, 2_0) \mod (5, -).\\ \underline{p(41, G, 1) = 116} \\ Z_{39} \bigcup \{x_1, x_2\}, (0, 23, 13, 6, 5, 4), (0, 12, 1, 14, 17, 19) \mod 39;\\ (0, 8, x_1, 9, 15, 18) + 2i, (0, 8, x_2, 9, 15, 18) + 2i + 1 \quad 0 \le i \le 18. \end{array}$

Theorem 4.2 There exists a G-OCD(v) for $v \equiv 3, 5, 9, 13 \pmod{14}$. But, $c(14t + 11, G, 1) = 14t^2 + 21t + 9$ for $t \ge 0$.

Proof By Table 2.1, the OCDs for desired small orders are constructed as follows.

(1) For v = 3, 31, 19, 33, the leave $L(\mathcal{B})$ of G-OPD(v) is a subgraph of G, so we can obtain the G-OCD(v) by adding a block containing this $L(\mathcal{B})$.

(2) For v = 9, 37, 13, 41, the leave $L(\mathcal{B})$ of the maximum (v, G, 1)-PD can be covered by two G, so we can obtain the (v, G, 1)-OCD by adding two blocks containing this $L(\mathcal{B})$.

(3) Suppose a G-OCD(14t + 11) exists for $t \ge 0$. Then the excess must be $P_2 = \{a, b\}$, and the sum of degree of a in the OCD is 14t + 11, an odd number. It is impossible since the degree of each vertex in G is even. Thus, there exists no G-OCD(14t + 11). While for v = 11, 39, the leave of G-OPD(v) can be covered by two G, so $c(14t + 11, G, 1) = 14t^2 + 21t + 9$.

Theorem 4.3 $p(14t+w,G,1) = 14t^2 + (2w-2)t + \lfloor \frac{w(w-2)}{14} \rfloor$ for $t \ge 0$ and $w \in [0,12]_2$.

Proof By Lemma 2.3, we only need to construct those maximum *PDs* listed in Table 2.1. p(v, G, 1) = 0 for v = 0, 2, 4. $p(28, G, 1) = 52 \quad (Z_{13} \times Z_2) \bigcup \{x_1, x_2\}, \quad (0_0, 6_0, x_1, 4_1, 0_1, 6_1), (0_0, 5_0, x_2, 5_1, 2_1, 7_1),$ $(0_1, 4_1, 1_0, 5_0, 3_1, 1_1), (0_1, 4_0, 6_0, 3_0, 2_0, 1_0) \mod (13, -).$ $p(30, G, 1) = 60 \quad Z_{15} \times Z_2, \quad (0_0, 14_1, 7_1, 4_0, 7_0, 6_0), (0_0, 10_1, 8_1, 11_1, 12_1, 13_1),$ $(0_0, 2_1, 2_0, 8_1, 3_0, 5_0), (0_0, 5_1, 1_1, 7_1, 4_1, 9_1) \mod (15, -).$ p(32, G, 1) = 68 Z_{32} , (0, 8, 16, 24, 3, 1) + i, (4, 0, 5, 11, 20, 12) + i $0 \le i \le 3$; $(0, 12, 26, 11, 19, 9) \mod 32; (4, 9, 15, 8, 7, 5) + i \quad 0 \le i \le 27.$ $p(6, G, 1) = 1 \quad Z_6, \quad (0, 1, 2, 3, 4, 5).$ $p(34, G, 1) = 77 \quad (Z_{11} \times Z_3) \bigcup \{x\}, \quad (0_0, 4_0, 3_1, 5_0, 1_0, 3_0) \mod (11, 3);$ $(0_0, 7_1, 1_0, 9_2, 8_1, 10_2), (0_0, 4_1, 1_0, 4_2, 5_1, 6_2),$ $(0_1, 5_2, 2_1, 8_2, 0_0, 7_2), (5_2, 5_0, x, 5_1, 0_0, 1_1) \mod (11, -).$ p(8,G,1) = 3 $Z_7 \bigcup \{x\}, (0,5,4,x,3,1) + i \quad i = 0,1,2.$ $p(36, G, 1) = 87 \quad Z_{12} \times Z_3, \quad (0_0, 6_0, 8_0, 10_0, 1_0, 2_0), (4_0, 5_0, 7_0, 6_0, 3_0, 2_0), (9_0, 3_0, 1_0, 11_0, 8_0, 7_0);$ $(0_0, 1_1, 9_0, 4_0, 3_0, 0_1), (5_2, 4_0, 4_2, 2_0, 0_2, 3_2), (0_2, 2_0, 10_2, 1_0, 1_2, 5_1), (6_2, 0_0, 7_2, 2_0, 10_2, 0_1),$ $(0_1, 3_1, 4_2, 4_1, 11_2, 2_1), (0_0, 5_1, 2_0, 8_1, 10_1, 11_1), (2_1, 5_2, 3_1, 7_2, 0_0, 7_1) \mod (12, -).$ p(10, G, 1) = 5 $Z_5 \times Z_2$, $(0_0, 3_1, 5_1, 1_0, 2_1, 1_1) \mod (5, -)$. $p(38, G, 1) = 97 \quad Z_{32} \bigcup \{x_1, \dots, x_6\} \quad (x_1, x_2, x_3, x_4, x_5, x_6);$ $(0, 13, x_5, 15, 8, 18) + 4i + k$, $(0, 13, x_6, 15, 8, 18) + 4i + 2 + k \ 0 \le i \le 7, k = 0, 1$; $(0, 6, x_1, 7, 1, 3) + 2i, (0, 6, x_2, 7, 1, 3) + 2i + 1,$ $(0, 11, x_3, 12, 4, 9) + 2i, (0, 11, x_4, 12, 4, 9) + 2i + 1 \quad 0 \le i \le 15.$ p(12, G, 1) = 8 $Z_4 \times Z_3$, $(0_0, 1_1, 1_0, 3_1, 0_2, 1_2), (3_2, 2_1, 2_2, 0_1, 1_0, 0_0) \mod (4, -).$ $p(40, G, 1) = 108 \quad Z_{36} \bigcup \{x_1, \dots, x_4\}, \quad (0, 15, 1, 17, 6, 13) \mod 36;$ $(0, 11, x_1, 12, 1, 3) + 2i, (0, 11, x_2, 12, 1, 3) + 2i + 1, 0 \le i \le 17;$ $(0, 8, x_3, 10, 4, 9) + 4i + k$, $(0, 8, x_4, 10, 4, 9) + 4i + 2 + k$ $0 \le i \le 8$, k = 0, 1. **Theorem 4.4** $c(14t+w,G,1) = 14t^2 + 2wt + \lceil \frac{w^2}{14} \rceil$ for $t \ge 0$ and $w \in [0,12]_2$.

Proof By Lemma 2.3, we only need to construct those minimum CDs listed in Table 2.1.

(1) For t = 0, by the proof of Theorem 3.1, it is obvious that the leave of the maximum G-PD(w), where $w \in [0, 12]_2$, can be covered by $\lceil \frac{w^2}{14} \rceil - \lfloor \frac{w(w-2)}{14} \rfloor$ blocks.

(2) For t = 2, when w = 2, 4, 10, it is easy to see that the leave of the maximum G-PD(28+w) can be covered by $\lceil \frac{w^2}{14} \rceil - \lfloor \frac{w(w-2)}{14} \rfloor + 4$ blocks, so we only need to consider the cases for w = 0, 6, 8, 12.

$$\begin{array}{l} \underline{c(28,G,1)=56} & Z_7 \times Z_4, & (0_0,5_1,2_0,6_1,1_0,3_0), (0_0,5_2,2_0,6_2,1_1,2_1), \\ & (0_2,5_3,2_2,6_3,1_1,3_1), (0_2,0_3,5_1,5_0,2_1,6_1), (0_2,2_3,1_2,0_0,2_2,3_2), \\ & (0_0,5_3,2_0,6_3,0_3,2_3), (0_1,2_2,2_1,3_2,0_3,1_3), (1_3,3_1,6_3,2_1,0_0,4_3) \mod (7,-). \\ \hline \\ \underline{c(34,G,1)=83} & (Z_{16} \times Z_2) \bigcup \{x_1,x_2\}, & (0_0,10_1,2_0,11_1,6_0,7_0), (0_0,x_1,0_1,x_2,3_0,5_0), \\ & (4_1,1_0,8_1,2_0,0_0,4_0), (0_1,15_0,4_1,8_1,6_1,7_1), (0_1,2_0,14_1,1_0,3_1,5_1) \mod (16,-); \\ & (2_0,4_0,12_0,10_0,0_0,8_0), (3_0,5_0,13_0,11_0,1_0,9_0), (7_0,x_1,x_2,15_0,6_0,14_0). \\ \hline \\ \underline{c(36,G,1)=93} & Z_{18} \times Z_2, & (0_0,2_1,16_0,1_1,2_0,5_0) \mod (18,2); \\ & (0_0,8_1,2_0,6_0,7_0,8_0), (0_1,6_0,16_1,5_0,7_1,8_1), (0_0,7_1,11_1,5_1,0_1,9_1) \mod (18,-); \\ & (3_0,6_0,15_0,12_0,0_0,9_0)+i_0 \quad i=0,1,2. \\ \hline \\ \underline{c(40,G,1)=115} & Z_{38} \bigcup \{x_1,x_2\}, & (0,15,2,14,4,7), (0,19,2,18,5,6) \mod 38; \\ & (0,8,19,9,2,x_1)+4i+k, (0,8,19,9,2,x_2)+4i+2+k & 0 \le i \le 8, k=0,1; \\ & (36,6,17,7,0,x_1), (37,7,18,8,1,x_2), (x_1,2,0,x_2,37,1). \\ \hline \end{array}$$

References

- [1] GE Gennian. Existence of holey LSSOM of type 2^n with application to G_7 -packings of K_v [J]. J. Statist. Plann. Inference, 2001, **94**(2): 211–218.
- [2] ZHANG Shucheng, YIN Jianxing. Packing of K_v with certain graphs of five vertices [J]. J. Statist. Plann. Inference, 2002, 106(1-2): 387–408.
- [3] KANG Qingde, WANG Zhiqin. Optimal packings and coverings of λK_v with graph $K_5 P_5$ [J]. Bull. Inst. Combin. Appl., 2004, **41**: 22–41.
- [4] KANG Qingde, WANG Zhiqin. Maximum K_{2,3}-packing designs and minimum K_{2,3}-covering designs of λK_v
 [J]. J. Math. Res. Exposition, 2005, 25(1): 1–16.
- [5] KANG Qingde, ZHANG Yanfang, ZUO Huijuan. Packings and coverings of λK_v by k-circuits with one chord
 [J]. Discrete Math., 2004, 279(1-3): 287–315.
- [6] KANG Qingde, DU Yanke, TIAN Zihong. Decomposition of λK_v into some graph with six vertices and seven edges [J]. J. Statist. Plann. Inference, 2006, **136**(4): 1394–1409.