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Abstract Let λKv be the complete multigraph with v vertices and G a finite simple graph. A

G-design (G-packing design, G-covering design) of λKv, denoted by (v, G, λ)-GD ((v, G, λ)-PD,

(v, G, λ)-CD), is a pair (X,B) where X is the vertex set of Kv and B is a collection of subgraphs

of Kv, called blocks, such that each block is isomorphic to G and any two distinct vertices in Kv

are joined in exactly (at most, at least) λ blocks of B. A packing (covering) design is said to be

maximum (minimum) if no other such packing (covering) design has more (fewer) blocks. In this

paper, a simple graph G with 6 vertices and 7 edges is discussed, and the maximum G-PD(v)

and the minimum G-CD(v) are constructed for all orders v.
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1. Introduction

A complete multigraph of order v and index λ, denoted by λKv, is a graph with v vertices,

where any two distinct vertices x and y are joined by λ edges {x, y}. Let G be a finite simple

graph. A G-design (G-packing design, G-covering design) of λKv, denoted by G-GDλ(v) (G-

PDλ(v), G-CDλ(v)), is a pair (X,B) where X is the vertex set of Kv and B is a collection of

subgraphs of Kv, called blocks, such that each block is isomorphic to G and any two distinct

vertices in Kv are joined in exactly (at most, at least) λ blocks of B. The necessary conditions

for the existence of a G-GDλ(v) are v ≥ |V (G)| and
{

λv(v − 1) ≡ 0 (mod 2|E(G)|)

λ(v − 1) ≡ 0 (mod d)
(*)

where V (G) and E(G) denote the sets of vertices and edges of G respectively, and d is the

greatest common divisor of the degrees of all vertices in G. A G-PDλ(v) (G-CDλ(v)) is called

maximum (minimum) if no other such packing (covering) has more (fewer) blocks. The number

of blocks in a maximum packing (minimum covering), denoted by p(v, G, λ) (c(v, G, λ)), is called

Received date: 2006-10-29; Accepted date: 2007-03-23

Foundation item: the National Natural Science Foundation of China (No. 10671055).



800 DU Y K and KANG Q D

the packing (covering) number. It is well known that

p(v, G, λ) ≤

⌊

λv(v − 1)

2|E(G)|

⌋

≤

⌈

λv(v − 1)

2|E(G)|

⌉

≤ c(v, G, λ). (**)

A G-PDλ(v) (G-CDλ(v)) is called optimal and denoted by G-OPDλ(v) (G-OCDλ(v)) if the left

(right) equality in (∗∗) holds.

The leave Lλ(D) of a packing D is a subgraph of λKv and its edges are the supplement of D

in λKv. The number of edges in Lλ(D) is denoted by |Lλ(D)|. Especially, when D is maximum,

|Lλ(D)| is called leave-number and is denoted by lλ(v). Similarly, the excess Rλ(D) of a covering

D is a subgraph of λKv and its edges are the supplement of λKv in D. When D is minimum,

|Rλ(D)| is called excess-number and denoted by rλ(v).

Let X =
⋃t

i=1 Xi be the vertex set of Kn1,n2,...,nt
, a complete multipartite graph consisting

of t parts with size n1, n2, . . . , nt respectively, where the sets Xi (1 ≤ i ≤ t) are disjoint. Denote

v =
∑t

i=1 ni and G = {X1, X2, . . . , Xt}. For any given graph G, if the edges of λKn1,n2,...,nt
,

a t-partite graph with replication λ, can be decomposed into sub-graphs A, each of which is

isomorphic to G and is called block, then the system (X,G,A) is called a holey G-design with

index λ, denoted by G-HDλ(T ), where T = n1
1n

1
2 · · ·n

1
t is the type of the holey G-design.

Usually, the type is denoted by exponential form, for example, the type nk1

1 nk2

2 · · ·nkm

m denotes

k1 occurrences of n1, k2 occurrences of n2, etc. A G-HDλ(1v−ww1) is called an incomplete

G-design, denoted by G-IDλ(v, w).

There is a quite long time to the reseach of the graph packing and covering designs, which

involved the simple graphs with less vertices and less edges[1]−[4], and some special graphs[5].

But there is a few conclusions for the simple graphs with more than five vertices. In this paper,

we will discuss the maximum packing and the minimum covering of the folowing graph G with

six vertices and seven edges for λ = 1. For convenience, as a block in a design, the graph may

be denoted by (a, b, c, d, e, f) according to the following vertex-labels.

�
��

b c

dae

f

Lemma 1.1
[6] There exists a G-GDλ(v) if and only if v ≥ 6 and λ = 1, v ≡ 1, 7 mod 14;

λ = 2, v ≡ 0, 8 mod 14; λ = 7, v ≡ 3, 5, 9, 11, 13 mod 14; λ = 14, v ≡ 0 mod 2.

2. Recursive method

In what follows, the element (x, i) in Zm × Zn may be denoted by xi briefly. And xi + yj =

(x + y)i+j , ∞ + x = ∞, ∞ + xi = ∞, ∞l + xi = ∞l+i. For the block B = (x, y, z, u, v, w),

B + t = (x + t, y + t, z + t, u + t, v + t, w + t). In Zm × Zn, a block mod (m, n) means that

the first coordinate is mod m and the second is mod n, while mod (m,−) means that the first

coordinate is mod m and the second does not change. For i, j, k ∈ Z, i < j and i ≡ j (mod k),
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define [i, j]k = {x : i ≤ x ≤ j, x ≡ i (mod k)}.

What’s more, the symbols Cn, Pn and St(n) denote the cycle with n vertices, the path with

n vertices, and the star with n terminal vertices, respectively. The disjoint union of graphs G

and H is denoted by G
⋃

H . Specially, the disjoint union of n graphs G is denoted by nG. And,

△2 means two C3 with one common vertex.

Our recursive constructions use the following standard “Filling in Holes” method.

Lemma 2.1
[6] For given graph G and positive integers h, w, m, λ, if there exist a G-HDλ(hm),

a G-IDλ(h + w, w) and a G-OPDλ(s) (G-OCDλ(s)), where s = w or h + w, then there exists a

G-OPDλ(mh + w) (G-OCDλ(mh + w)) too.

Lemma 2.2 There exists no G-OPD(v) and p(v, G, 1) ≤ ⌊
(v

2)−
v

2

7 ⌋ for even v. There exists no

G-OPD(v) for v ≡ 9, 13 (mod 14). The leave of a G-OPD(v) must be C3 for v ≡ 3, 5 ( mod 14),

or one among {C6, 2C3,△2} for v ≡ 11 ( mod 14).

Proof For even v, since the degree of any vertex in G is even, each vertex in Kv must appear

in the leave, so the leave-number l ≥ v
2 . However, for any OPD, the leave-number l ≤ 6. It is

impossible that l ≥ v
2 for v > 12. But, for the remaining even orders v = 6, 8, 10 and 12, the

leave-numbers of corresponding OPD are 1, 0, 3 and 3. Thus, there exists no G-OPD(v) and

p(v, G, 1) ≤ ⌊
(v

2)−
v

2

7 ⌋.

For odd v, the degree of any vertex in the leave must be even. If a G-OPD(v) exists, the

leave-number will be the following three cases.

l = 1 for v ≡ 9, 13 mod 14, so there exists no G-OPD(v) since the leave must be P2;

l = 3 for v ≡ 3, 5 mod 14, so the leave can only be St(3), 3P2, P4, P2

⋃

P3 or C3, but the first

four graphs cannot become a leave;

l = 6 for v ≡ 11 mod 14. Let the number of 2◦-vertices, 4◦-vertices and 6◦-vertices be a, b

and c, respectively. Then 2a+4b+6c = 12. The solutions are (a, b, c) = (0, 0, 2), (1, 1, 1), (3, 0, 1),

(0, 3, 0), (2, 2, 0), (4, 1, 0) and (6, 0, 0). Obviously, the first five solutions have no corresponding

graphs, while the graphs satisfying the last two solutions are C6, 2C3 and △2.

Since there is no G-GD(14) by Lemma 1.1, a new recursive construction is presented below.

First, define two auxiliary designs for even w:

G-IPD(14 + w, w) is a G-HD(27w1);

G-ICD(14 + w, w) is a union of a G-ID(14 + w, w) and 7P2 on the 14-set.

In the view of PD and CD, the first one is with the leave Kw

⋃

7P2, and the second one is with

the leave Kw and the excess 7P2.

Lemma 2.3 For t > 0 and even w ≥ 0, if there exist a G-HD(14t), a G-IPD(14 + w, w) (G-

ICD(14+w, w)) and a maximum G-PD(w) (minimum G-CD(w)), then there exists a maximum

G-PD(14t + w) (minimum G-CD(14t + w)).

Proof Let X = (Z14×Zt)
⋃

W , where W is another w-set. Denote G-HD(14t) = (Z14×Zt,A),

G-IPD(14+w, w) = ((Z14 ×{i})
⋃

W,Bi), or G-ICD(14+w, w), i ∈ Zt. And, C is a maximum
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G-PD(w) or minimum G-CD(w) on the set W . Define Ω = A
⋃

(
⋃t−1

i=0 Bi)
⋃

C. Then (X, Ω) is

a maximum G-PD(14 + w) (minimum G-CD(14 + w)). In fact, denote v = 14t + w. Then

|A| =

(

t
2

)

142

7
= 14t2− 14t, |Bi| =

(

14+w
2

)

−
(

w
2

)

− 7

7
= 12+2w, |C| = ⌊

(

w
2

)

− w
2

7
⌋ = ⌊

w(w − 2)

14
⌋.

But, by Lemma 2.2,

p(v, G, 1) ≤ ⌊

(

v
2

)

− v
2

7
⌋ = 14t2 + (2w − 2)t + ⌊

w(w − 2)

14
⌋.

Therefore, |A|+ t|Bi|+ |C| = 14t2 + (2w − 2)t + ⌊w(w−2)
14 ⌋ = p(v, G, 1). Furthermore, there is no

excess edge in Ω, so the lemma holds for PD.

As for CD, |Bi| =
(14+w

2 )−(w

2)+7

7 = 14 + 2w, |C| = ⌈
(w

2)−
w

2

7 ⌉ = ⌈w2

14 ⌉, c(v, G, 1) ≥ ⌈
(v

2)+
v

2

7 ⌉ =

14t2 + 2wt + ⌈w2

14 ⌉, so c(v, G, 1) = 14t2 + 2wt + ⌈w2

14 ⌉.

By the recursive constructions in Lemmas 2.1 and 2.3, our task in §3 and §4 is to construct

G-HD(14t) and those small designs listed in the following Table.

v(mod14) ID(14 + w, w) IPD(14 + w, w), ICD(14 + w, w) maxPD,minCD

0 w = 0 0, 28

2 w = 2 2, 30

3 w = 3 3, 31

4 w = 4 4, 32

5 w = 5 5(19), 33

6 w = 6 6, 34

8 w = 8 8, 36

9 w = 9 9, 37

10 w = 10 10, 38

11 w = 11 11, 39

12 w = 12 12, 40

13 w = 13 13, 41

Table 2.1 The desired designs for the main results

3. HD, ID and IPD (ICD)

Lemma 3.1
[6] There exists a G-HD(14t) for t ≥ 3.

Lemma 3.2 There exists a G-ID(14 + w, w) for w = 3, 5, 9, 11, 13, no one for any even w.

Proof Take the vertex set (Z7 × Z2)
⋃

{x1, . . . , xw}, where {x1, . . . , xw} is the hole.

w = 3: (00, x1, 01, x2, 41, 61), (01, 20, x3, 31, 11, 00), mod (7,−);

(00, 21, 60, 50, 31, 10), (10, 60, 11, 50, 41, 20), (20, 00, 60, 40, 51, 30),

(30, 60, 20, 50, 61, 40), (40, 00, 30, 10, 01, 50).

w = 5: (00, 30, x1, 31, 11, 21), (01, 00, x2, 21, x4, 30), (01, 31, x3, 10, x5, 20) mod (7,−);
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(00, 10, 30, 20, 60, 50), (40, 20, 10, 60, 30, 50).

w = 9: (00, x5, 21, x1, 01, 11), (00, x6, 01, x2, 21, 41), (00, x7, 01, x3, 31, 61),

(00, x8, 01, x4, x9, 51) mod (7,−);

(30, 00, 10, 20, 40, 50), (60, 40, 00, 20, 10, 30), (50, 20, 40, 10, 60, 00).

w = 11: (00, 10, x1, 11, x6, 01), (00, 20, x2, 31, x7, 21), (00, 30, x3, 51, x8, 41),

(01, x9, 00, x4, 11, 31), (00, x10, 01, x5, x11, 61). mod (7,−).

w = 13: (00, x2, 11, x1, x3, 01), (00, x5, 01, x4, x6, 31), (00, x8, 01, x7, x9, 51),

(00, x11, 01, x10, 20, 61), (01, x13, 00, x12, 11, 31) mod (7,−);

(60, 50, 40, 30, 11, 00), (10, 40, 61, 50, 21, 00), (20, 50, 01, 60, 31, 10), (30, 51, 40, 00, 41, 20).

If G-ID(14 + w, w) exists for even w, take the vertex set Z14

⋃

{x1, . . . , xw}, then the degree

13 + w of any vetex in Z14 is odd. It is a contrary since the degree of any vertex in G is even.

Lemma 3.3 There exists a G-IPD(14 + w, w) for w ∈ [0, 12]2.

Proof Each G-IPD(14 + w, w) is constructed on the given vertex set.

w = 0 : Z12

⋃

{x1, x2}, (0, 4, x1, 5, 1, 3) + 2i, (0, 4, x2, 5, 1, 3) + 2i + 1 0 ≤ i ≤ 5.

w = 2 : Z16, (0, 4, 11, 5, 1, 3) mod 16.

w = 4 : Z14

⋃

{a, b, c, d}, (0, 4, a, 5, 1, 3) + 2i, (0, 4, b, 5, 1, 3) + 2i + 1 0 ≤ i ≤ 6;

(c, 6, 0, 8, 1, 7), (c, 10, 4, 12, 13, 5), (c, 0, d, 2, 3, 11),

(d, 1, 9, 3, 12, 6), (d, 8, 2, 10, 7, 13), (d, 4, c, 9, 5, 11).

w = 6 : Z14

⋃

{x1, . . . , x6}, (0, 3, x1, 4, 1, 6) + 2i, (0, 3, x2, 4, 1, 6) + 2i + 1 0 ≤ i ≤ 6;

(0, x4, 7, x5, x3, 2) + i i = 0, 1, 4, 5; (0, x4, 7, x5, x6, 2) + i i = 2, 3, 6;

(x6, 7, 9, 11, 0, 12), (x6, 10, x3, 9, 1, 13), (x3, 12, 10, 8, 11, 13).

w = 8 : (Z7 × Z2)
⋃

{x1, . . . , x8}, (00, x1, 31, 61, x2, 51), (00, x3, 11, 31, x4, 41),

(00, x5, 01, 11, x6, 21), (00, x7, 01, x8, 10, 30) mod (7,−).

w = 10 : Z14

⋃

{x1, . . . , x10}, (0, x3, 7, x5, x1, 1) + 2i, (0, x4, 7, x6, x2, 1) + 2i + 1,

(0, x7, 7, x9, 2, 5) + i, (0, x8, 7, x10, 2, 5) + i + 7 0 ≤ i ≤ 6;

(6, 0, 4, 12, 2, 10) + i, (8, 0, 10, 4, 2, 12)+ i i = 0, 1.

w = 12 : (Z12 × Z2)
⋃

{x1, x2}, (41, 20, x1, 21, 00, 11), (51, 20, x2, 11, 00, 01),

(00, 91, 10, 111, 61, 71) mod (12,−).

Lemma 3.4 There exists a G-ICD(14 + w, w) for w ∈ [0, 12]2.

Proof Take the vertex set Z14 for w = 0 or (Z7 × Z2)
⋃

{x1, . . . , xw} for w > 0.

w = 0 : (0, 4, 11, 5, 1, 3) mod 14.

w = 2 : (01, 40, x1, 11, 00, 20), (61, 60, x2, 31, 00, 41) mod (7,−);

(60, 30, 40, 50, 00, 11), (10, 50, 61, 40, 00, 21), (20, 60, 01, 50, 10, 31), (30, 00, 40, 51, 20, 41).

w = 4 : (00, 30, x3, 21, 01, x4), (01, 20, 51, 10, 11, 31) mod (7,−);

(20, 40, x1, 31, 21, x2) + i0 i = 0, 1, 3, 4;

(00, 20, 30, 10, 01, x2), (60, x1, 11, 00, 40, 50), (10, 20, x1, 21, 11, x2), (40, 30, x1, 51, 41, x2).

w = 6 : (01, 10, x1, 11, 00, x2), (51, 10, x3, 31, 00, x4), (11, 10, x5, 41, 00, x6) mod (7,−);

(00, 50, 60, 21, 10, 31), (10, 50, 11, 60, 20, 41), (20, 40, 60, 00, 30, 51),
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(30, 50, 20, 60, 40, 61), (40, 10, 30, 00, 50, 01).

w = 8 : (00, 30, x1, 11, 01, x2), (31, 00, x3, 21, 10, x4), (51, 00, x5, 31, 10, x6),

(61, 00, x7, 31, 60, x8) mod (7,−); (00, 60, 40, 50, 10, 20), (30, 50, 60, 10, 20, 40).

w = 10 : (00, x1, 11, x2, 01, x3), (00, x4, 11, x5, 01, x6), (41, 20, x7, 21, 00, x8),

(61, 10, x9, 31, 00, x10) mod (7,−); (00, 31, 21, 11, 20, 60), (20, 51, 41, 31, 10, 30),

(40, 01, 61, 51, 50, 20), (60, 50, 11, 01, 40, 30), (50, 10, 40, 00, 30, 61), (10, 00, 30, 41, 60, 21).

w = 12 : (00, x1, 11, x2, 01, x3), (00, x4, 11, x5, 01, x6), (21, 10, x7, 11, 00, x8),

(41, 10, x9, 21, 00, x10), (61, 10, x11, 31, 00, x12) mod (7,−);

(30, 00, 10, 20, 40, 50), (60, 40, 00, 20, 10, 30), (50, 20, 40, 10, 60, 00).

4. Packings and coverings

Theorem 4.1 There exists a (v, G, 1)-OPD for v ≡ 3, 5, 11 (mod 14) and v ≥ 6. But, p(14t +

w, G, 1) = 14t2 + (2w − 1)t + ⌊w(w−1)
14 ⌋ − 1 for w = 9, 13 and t ≥ 0.

Proof By Table 2.1, the OPDs for desired small orders are constructed as follows.

G-OPD(31) (Z7 × Z4)
⋃

{x1, x2, x3}, (02, 00, x3, 51, 23, 20), (00, 12, x3, 33, 21, 63),

(02, 30, x1, 21, 03, 11), (01, 32, x1, 03, 00, 23), (13, 40, x2, 31, 02, 01), (00, 32, x2, 13, 11, 22),

(01, 30, 61, 10, 31, 11), (02, 31, 63, 10, 32, 12), (03, 32, 63, 12, 33, 13) mod (7,−);

(00, 30, 20, 10, 60, 20), (40, 60, 10, 30, 20, 50), (50, 10, 40, 00, 30, 60).

G-OPD(19) Z16

⋃

{x1, x2, x3}, (0, 4, 11, 5, 3, 1) mod 16;

(x2, 4, x1, 12, 0, 8) + i, (x3, 4, x1, 12, 0, 8) + i + 4, 0 ≤ i ≤ 3.

G-OPD(33) (Z15 × Z2)
⋃

{x1, x2, x3}, (00, 70, x1, 31, 60, 71), (00, 50, x2, 41, 01, 61),

(00, 121, 20, 131, 10, 30), (00, 40, x3, 51, 21, 91), (01, 10, 91, 41, 11, 31), mod (15,−).

G-OPD(11) Z7

⋃

{x0, x1, x2, x3}, (xi, 1, 0, 2, 3, 6) + i 0 ≤ i ≤ 3;

(0, 5, x1, 6, x3, 3), (1, x1, x0, x3, 4, 6), (5, 2, x2, 6, 4, x0).

G-OPD(39) Z35

⋃

{x1, . . . , x4}, (0, 13, 2, 14, 1, 3), (0, 8, 1, 10, 20, 4) mod 35;

(0, 5, x3, 6, 17, x1) + 2i, (0, 5, x4, 6, 17, x2) + 2i + 17 0 ≤ i ≤ 8;

(0, 5, x4, 6, 17, x1) + 2i + 1, (0, 5, x3, 6, 17, x2) + 2i + 18 0 ≤ i ≤ 7;

(x1, x4, 5, 34, x2, x3).

By Lemma 2.2, there exists no G-OPD(v) for v ≡ 9, 13 mod 14. In the following, we give

the maximum G-PD(v)s for desired small orders v.

p(9, G, 1) = 4 Z9, (0, 7, 4, 5, 3, 1), (1, 7, 5, 8, 2, 4), (2, 7, 8, 0, 5, 3), (6, 7, 3, 8, 1, 5).

p(37, G, 1) = 94 Z31

⋃

{x1, . . . , x6}, (0, 5, 11, 4, 1, 3), (0, 11, 23, 10, 17, 8) mod 31;

(x1, 15, x5, 0, 22, 7) + i, (x2, 15, x5, 0, 22, 7) + i + 7, (x4, 15, x6, 0, 22, 7) + i + 21 0 ≤ i ≤ 6;

(x3, 15, x6, 0, 22, 7) + i + 15 0 ≤ i ≤ 5; (x5, x6, x3, x2, x4, x1),

(x3, 29, x5, 14, 5, 21), (x6, 12, x3, 13, x1, 29), (x2, 5, 20, x4, 6, 21), (x4, x3, 28, x6, 4, 19).

p(13, G, 1) = 10 (Z5×Z2)
⋃

{x1, x2, x3}, (00, 20, x1, 11, 01, x2), (01, 30, x3, 21, 10, 20) mod (5,−).

p(41, G, 1) = 116 Z39

⋃

{x1, x2}, (0, 23, 13, 6, 5, 4), (0, 12, 1, 14, 17, 19) mod 39;

(0, 8, x1, 9, 15, 18) + 2i, (0, 8, x2, 9, 15, 18) + 2i + 1 0 ≤ i ≤ 18.
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Theorem 4.2 There exists a G-OCD(v) for v ≡ 3, 5, 9, 13 (mod 14). But, c(14t + 11, G, 1) =

14t2 + 21t + 9 for t ≥ 0.

Proof By Table 2.1, the OCDs for desired small orders are constructed as follows.

(1) For v = 3, 31, 19, 33, the leave L(B) of G-OPD(v) is a subgraph of G, so we can obtain

the G-OCD(v) by adding a block containing this L(B).

(2) For v = 9, 37, 13, 41, the leave L(B) of the maximum (v, G, 1)-PD can be covered by two

G, so we can obtain the (v, G, 1)-OCD by adding two blocks containing this L(B).

(3) Suppose a G-OCD(14t + 11) exists for t ≥ 0. Then the excess must be P2 = {a, b}, and

the sum of degree of a in the OCD is 14t + 11, an odd number. It is impossible since the degree

of each vertex in G is even. Thus, there exists no G-OCD(14t + 11). While for v = 11, 39, the

leave of G-OPD(v) can be covered by two G, so c(14t + 11, G, 1) = 14t2 + 21t + 9.

Theorem 4.3 p(14t + w, G, 1) = 14t2 + (2w − 2)t + ⌊w(w−2)
14 ⌋ for t ≥ 0 and w ∈ [0, 12]2.

Proof By Lemma 2.3, we only need to construct those maximum PDs listed in Table 2.1.

p(v, G, 1) = 0 for v = 0, 2, 4.

p(28, G, 1) = 52 (Z13 × Z2)
⋃

{x1, x2}, (00, 60, x1, 41, 01, 61), (00, 50, x2, 51, 21, 71),

(01, 41, 10, 50, 31, 11), (01, 40, 60, 30, 20, 10) mod (13,−).

p(30, G, 1) = 60 Z15 × Z2, (00, 141, 71, 40, 70, 60), (00, 101, 81, 111, 121, 131),

(00, 21, 20, 81, 30, 50), (00, 51, 11, 71, 41, 91) mod (15,−).

p(32, G, 1) = 68 Z32, (0, 8, 16, 24, 3, 1) + i, (4, 0, 5, 11, 20, 12)+ i 0 ≤ i ≤ 3;

(0, 12, 26, 11, 19, 9) mod 32; (4, 9, 15, 8, 7, 5) + i 0 ≤ i ≤ 27.

p(6, G, 1) = 1 Z6, (0, 1, 2, 3, 4, 5).

p(34, G, 1) = 77 (Z11 × Z3)
⋃

{x}, (00, 40, 31, 50, 10, 30) mod (11, 3);

(00, 71, 10, 92, 81, 102), (00, 41, 10, 42, 51, 62),

(01, 52, 21, 82, 00, 72), (52, 50, x, 51, 00, 11) mod (11,−).

p(8, G, 1) = 3 Z7

⋃

{x}, (0, 5, 4, x, 3, 1) + i i = 0, 1, 2.

p(36, G, 1) = 87 Z12 × Z3, (00, 60, 80, 100, 10, 20), (40, 50, 70, 60, 30, 20), (90, 30, 10, 110, 80, 70);

(00, 11, 90, 40, 30, 01), (52, 40, 42, 20, 02, 32), (02, 20, 102, 10, 12, 51), (62, 00, 72, 20, 102, 01),

(01, 31, 42, 41, 112, 21), (00, 51, 20, 81, 101, 111), (21, 52, 31, 72, 00, 71) mod (12,−).

p(10, G, 1) = 5 Z5 × Z2, (00, 31, 51, 10, 21, 11) mod (5,−).

p(38, G, 1) = 97 Z32

⋃

{x1, . . . , x6} (x1, x2, x3, x4, x5, x6);

(0, 13, x5, 15, 8, 18) + 4i + k, (0, 13, x6, 15, 8, 18) + 4i + 2 + k 0 ≤ i ≤ 7, k = 0, 1;

(0, 6, x1, 7, 1, 3) + 2i, (0, 6, x2, 7, 1, 3) + 2i + 1,

(0, 11, x3, 12, 4, 9) + 2i, (0, 11, x4, 12, 4, 9) + 2i + 1 0 ≤ i ≤ 15.

p(12, G, 1) = 8 Z4 × Z3, (00, 11, 10, 31, 02, 12), (32, 21, 22, 01, 10, 00) mod (4,−).

p(40, G, 1) = 108 Z36

⋃

{x1, · · ·x4}, (0, 15, 1, 17, 6, 13) mod 36;

(0, 11, x1, 12, 1, 3) + 2i, (0, 11, x2, 12, 1, 3) + 2i + 1 0 ≤ i ≤ 17;

(0, 8, x3, 10, 4, 9) + 4i + k, (0, 8, x4, 10, 4, 9) + 4i + 2 + k 0 ≤ i ≤ 8, k = 0, 1.

Theorem 4.4 c(14t + w, G, 1) = 14t2 + 2wt + ⌈w2

14 ⌉ for t ≥ 0 and w ∈ [0, 12]2.
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Proof By Lemma 2.3, we only need to construct those minimum CDs listed in Table 2.1.

(1) For t = 0, by the proof of Theorem 3.1, it is obvious that the leave of the maximum

G-PD(w), where w ∈ [0, 12]2, can be covered by ⌈w2

14 ⌉ − ⌊w(w−2)
14 ⌋ blocks.

(2) For t = 2, when w = 2, 4, 10, it is easy to see that the leave of the maximum G-

PD(28+w) can be covered by ⌈w2

14 ⌉−⌊w(w−2)
14 ⌋+4 blocks, so we only need to consider the cases

for w = 0, 6, 8, 12.

c(28, G, 1) = 56 Z7 × Z4, (00, 51, 20, 61, 10, 30), (00, 52, 20, 62, 11, 21),

(02, 53, 22, 63, 11, 31), (02, 03, 51, 50, 21, 61), (02, 23, 12, 00, 22, 32),

(00, 53, 20, 63, 03, 23), (01, 22, 21, 32, 03, 13), (13, 31, 63, 21, 00, 43) mod (7,−).

c(34, G, 1) = 83 (Z16 × Z2)
⋃

{x1, x2}, (00, 101, 20, 111, 60, 70), (00, x1, 01, x2, 30, 50),

(41, 10, 81, 20, 00, 40), (01, 150, 41, 81, 61, 71), (01, 20, 141, 10, 31, 51) mod (16,−);

(20, 40, 120, 100, 00, 80), (30, 50, 130, 110, 10, 90), (70, x1, x2, 150, 60, 140).

c(36, G, 1) = 93 Z18 × Z2, (00, 21, 160, 11, 20, 50) mod (18, 2);

(00, 81, 20, 60, 70, 80), (01, 60, 161, 50, 71, 81), (00, 71, 111, 51, 01, 91) mod (18,−);

(30, 60, 150, 120, 00, 90) + i0 i = 0, 1, 2.

c(40, G, 1) = 115 Z38

⋃

{x1, x2}, (0, 15, 2, 14, 4, 7), (0, 19, 2, 18, 5, 6) mod 38;

(0, 8, 19, 9, 2, x1) + 4i + k, (0, 8, 19, 9, 2, x2) + 4i + 2 + k 0 ≤ i ≤ 8, k = 0, 1;

(36, 6, 17, 7, 0, x1), (37, 7, 18, 8, 1, x2), (x1, 2, 0, x2, 37, 1).
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