Hilbert Coefficients of Filtrations with Almost Maximal Depth

ZHU Guang Jun, GU Yan, TANG Zhong Ming (Department of Mathematics, Soochow University, Jiangsu 215006, China) (E-mail: zhuguangjun@suda.edu.cn)

Abstract Let \mathcal{F} be a Hilbert filtration with respect to a Cohen-Macaulay R-module M. When $G(\mathcal{F}, M)$ and $F_K(\mathcal{F}, M)$ have almost maximal depths, we show that the length $\lambda(KI_nM/KJI_{n-1}M)$ and the reduction number $r_J^K(\mathcal{F}, M)$ are independent of J. Lower bounds for the first and second Hilbert coefficients are obtained.

Keywords Hilbert coefficients; fiber cones; depth.

Document code A MR(2000) Subject Classification 13D40; 13H15; 13C14 Chinese Library Classification O153.3

1. Introduction

Let (R, \mathfrak{m}) be a Noetherian local ring with infinite residue field. We say that $\mathcal{F} = \{I_n\}_{n\geq 0}$ is a filtration if $I_0 = R \supseteq I_1 \supseteq I_2 \supseteq \cdots$ is a chain of ideals of R such that $I_1 \neq R$ and $I_m I_n \subseteq I_{m+n}$ for all m, n. For any filtration $\mathcal{F} = \{I_n\}_{n\geq 0}$, let $R(\mathcal{F}) = \bigoplus_{n\geq 0} I_n$ and $G(\mathcal{F}) = \bigoplus_{n\geq 0} I_n/I_{n+1}$ be the Rees ring and associated graded ring of \mathcal{F} . If \mathcal{F} is an I_1 -adic filtration, we write $R(I_1)$ and $G(I_1)$ for $R(\mathcal{F})$ and $G(\mathcal{F})$, respectively. Further, let M be a finitely generated R-module. We say that \mathcal{F} is a Hilbert filtration with respect to M if $\lambda(M/I_1M) < \infty$ and $I_1I_nM = I_{n+1}M$ for large n. Hilbert \mathcal{F} -filtration with respect to M satisfies $\bigcap_{n\geq 0} I_nM = 0$.

Throughout the paper, let (R, \mathfrak{m}) be a commutative Noetherian local ring with infinite residue field, M a finitely generated Cohen-Macaulay R-module of dimension d > 0 and \mathcal{F} a Hilbert filtration with respect to M. Let K be an \mathfrak{m} -primary ideal of R such that $I_{n+1} \subseteq KI_n$ for all $n \geq 0$.

Let $F_K(\mathcal{F}) = \bigoplus_{n\geq 0} I_n/KI_n$ be the fiber cone of \mathcal{F} with respect to K, and $G(\mathcal{F}, M) = \bigoplus_{n\geq 0} I_n M/I_{n+1}M$, $F_K(\mathcal{F}, M) = \bigoplus_{n\geq 0} I_n M/KI_n M$. Then $G(\mathcal{F}, M)$ is a finitely generated $G(\mathcal{F})$ -module and $F_K(\mathcal{F}, M)$ is a finitely generated $F_K(\mathcal{F})$ -module.

Let $H_K(\mathcal{F}, M, n) = \lambda(M/KI_nM)$ be the Hilbert-Samuel function of \mathcal{F} with respect to M and K, and $P_K(\mathcal{F}, M, n)$ the corresponding polynomial. Then

$$P_K(\mathcal{F}, M, n) = g_0(\mathcal{F}, M) \binom{n + d - 1}{d} - g_1(\mathcal{F}, M) \binom{n + d - 2}{d - 1} + \dots + (-1)^d g_d(\mathcal{F}, M).$$

Received date: 2006-10-10; Accepted date: 2007-05-24

Foundation item: the National Natural Science Foundation of China (No. 10771152).

In this paper, we will discuss the properties of Hilbert coefficients $g_i(\mathcal{F}, M)$ and related problems under the assumption that $G(\mathcal{F}, M)$ and $F_K(\mathcal{F}, M)$ have almost maximal depths, i.e., depth $G(\mathcal{F}, M) \geq d - 1$ and depth $F_K(\mathcal{F}, M) \geq d - 1$.

When (R, \mathfrak{m}) is Cohen-Macaulay of dimension d > 0, I is an \mathfrak{m} -primary ideal such that depth $G(I) \geq d-1$ and J is any minimal reduction of I, Corso, Polini and Pinto^[2] ([5, Corollary 2.6]) showed that $\lambda(I^n/JI^{n-1})$ is independent of J for all $n \geq 1$. To generalize this result, we suppose that depth $G(\mathcal{F}, M) \geq d-1$ and depth $F_K(\mathcal{F}, M) \geq d-1$. Let J be a minimal reduction of \mathcal{F} with respect to M. We will show that $\lambda(KI_nM/KJI_{n-1}M)$ does not depend on J for all $n \geq 1$.

Under the above assumptions on R and depth of G(I), reduction numbers have also nice properties. It is proved in [5] that $r_J(I)$ is independent of J. Furthermore, Marley^[10] showed that r(I) = n(I) + d, where n(I) is the postulation number of I. We can also generalize these results to the filtration case. Assume that depth $G(\mathcal{F}, M) \geq d - 1$ and depth $F_K(\mathcal{F}, M) \geq d - 1$, and let J be a minimal reduction of \mathcal{F} with respect to M. We will show that the K-reduction number $r_J^K(\mathcal{F}, M)$ is independent of J and $r^K(\mathcal{F}, M) = n^K(\mathcal{F}, M) + d$.

In Section 5, we will give lower bounds for $g_1(\mathcal{F}, M)$ and $g_2(\mathcal{F}, M)$. Our results are the following

$$g_1(\mathcal{F}, M) \ge \sum_{n \ge 1} \lambda(KI_nM + JM/JM) - \lambda(M/KM)$$

 $g_2(\mathcal{F}, M) \ge \sum_{n \ge 1} n\lambda(KI_{n+1}M + JM/JM) + \lambda(M/\bigcup_{k \ge 1} (KI_kM + J_{d-2}M) : I_1^k).$

The above formula for the lower bound of $g_1(\mathcal{F}, M)$ generalize the formula for $g_1(\mathcal{F}, R)$ obtained by Jayanthan and Verma^[7]. One simply puts M = R, then

$$g_1(\mathcal{F}, R) \ge \sum_{n \ge 1} \lambda(KI_n + J/J) - \lambda(R/K).$$

2. Preliminaries

Let $H(\mathcal{F}, M, n) = \lambda(M/I_n M)$ be the Hilbert-Samuel function of \mathcal{F} with respect to M and $P(\mathcal{F}, M, n)$ the corresponding polynomial. We have that

$$P(\mathcal{F}, M, n) = e_0(\mathcal{F}, M) \binom{n + d - 1}{d} - e_1(\mathcal{F}, M) \binom{n + d - 2}{d - 1} + \dots + (-1)^d e_d(\mathcal{F}, M).$$

Then $g_0(\mathcal{F}, M) = e_0(\mathcal{F}, M)$.

An ideal $J \subseteq I_1$ is said to be a reduction of \mathcal{F} with respect to M if there exists an integer r > 0 such that $I_{n+1}M = JI_nM$ for all $n \ge r$. By [9, Lemma 1], there exist $x_1, \ldots, x_d \in I_1$ such that (x_1, \ldots, x_d) is a minimal reduction of \mathcal{F} with respect to M. Then, since M is Cohen-Macaulay, we have that $e_0(\mathcal{F}, M) = \lambda(M/(x_1, \ldots, x_d)M)$.

Let J be a minimal reduction of \mathcal{F} with respect to M. The K-reduction number $r_J^K(\mathcal{F}, M)$ of \mathcal{F} with respect to M and J is defined by

$$r_J^K(\mathcal{F}, M) = \min\{n \mid KI_{m+1}M = KJI_mM \text{ for all } m \ge n\},\$$

and the K-reduction number $r^K(\mathcal{F}, M)$ of \mathcal{F} with respect to M is defined as

$$r^K(\mathcal{F}, M) = \min\{r_J^K(\mathcal{F}, M) \mid J \text{ is a minimal reduction of } \mathcal{F} \text{ with respect to } M\}.$$

Set $n^K(\mathcal{F}, M) = \min\{n \mid P_K(\mathcal{F}, M, k) = H_K(\mathcal{F}, M, k) \text{ for all } k > n\}$, which we call as the K-postulation number of \mathcal{F} with respect to M. Note that, as $P_K(\mathcal{F}, M, n)$ is a polynomial of degree d, $n^K(\mathcal{F}, M) \ge -d$.

Let $x \in I_1 \setminus I_2$ and x^* the initial form of x in $G(\mathcal{F})$. x^* is said to be superficial for $G(\mathcal{F}, M)$ if there exists an integer c > 0 such that $(I_{n+1}M : x) \cap I_cM = I_nM$ for all n > c. Similarly, for any $x \in I_1 \setminus KI_1$, let x^0 be the initial form of x in $F_K(\mathcal{F})$, x^0 is said to be superficial for $F_K(\mathcal{F}, M)$ if there exists an integer c > 0 such that $(KI_{n+1}M : x) \cap I_cM = KI_nM$ for all n > c. Superficial sequences are defined inductively.

Suppose that x^0 is superficial for $F_K(\mathcal{F}, M)$. Let "—" denote images modulo (x). Thus, $\overline{\mathcal{F}} = \mathcal{F}/(x) = \{I_n + (x)/(x)\}_{n \geq 0}, \ \overline{J} = J/(x), \ \overline{K} = K/(x), \ \overline{M} = M/xM$. Since

$$H_{\overline{K}}(\overline{\mathcal{F}}, \overline{M}, n+1) = H_K(\mathcal{F}, M, n+1) - H_K(\mathcal{F}, M, n) + \lambda((KI_{n+1}M : x)/KI_nM),$$

it follows that

$$g_i(\overline{\mathcal{F}}, \overline{M}) = g_i(\mathcal{F}, M), i = 0, 1, \dots, d - 1.$$

The following lemma can be shown by similar arguments in [7] (cf. [3]).

Lemma 2.1 Let J be a minimal reduction of \mathcal{F} with respect to M. Then there exist $x_1, \ldots, x_d \in I_1 \setminus KI_1$ such that $J = (x_1, \ldots, x_d), x_1^*, \ldots, x_d^*$ is a superficial sequence for $G(\mathcal{F}, M)$ and x_1^0, \ldots, x_d^0 is a superficial sequence for $F_K(\mathcal{F}, M)$.

Furthermore, if depth $G(\mathcal{F}, M) \geq k$ and depth $F_K(\mathcal{F}, M) \geq k$ for an integer k > 0, then one may choose the above x_1, \ldots, x_d such that x_1^*, \ldots, x_k^* is a regular $G(\mathcal{F}, M)$ -sequence and x_1^0, \ldots, x_k^0 is a regular $F_K(\mathcal{F}, M)$ -sequence. In this case, for all $n \geq 0$,

$$(KI_{n+1}M + (x_1, \dots, x_{i-1})M) : x_i = KI_nM + (x_1, \dots, x_{i-1})M, \ i = 1, 2, \dots, k.$$

The same arguments as in [8, Lemma 3.8] and [10, Lemma 1] can be applied to get the following

Proposition 2.2 Let $J=(x_1,\ldots,x_d)$ be a minimal reduction of \mathcal{F} with respect to M with generators chosen as in Lemma 2.1. Suppose that x_1^* is $G(\mathcal{F},M)$ -regular and x_1^0 is $F_K(\mathcal{F},M)$ -regular. Let "-" denote images modulo (x_1) . Then $r_{\overline{J}}^{\overline{K}}(\overline{\mathcal{F}},\overline{M})=r_J^K(\mathcal{F},M)$ and $n^{\overline{K}}(\overline{\mathcal{F}},\overline{M})=n^K(\mathcal{F},M)+1$.

The Hilbert coefficients $g_i(\mathcal{F}, M)$ can be calculated by Hilbert series. Write

$$P_K(\mathcal{F}, M, n) = g'_0(\mathcal{F}, M) \binom{n+d}{d} - g'_1(\mathcal{F}, M) \binom{n+d-1}{d-1} + \dots + (-1)^d g'_d(\mathcal{F}, M).$$

Then $g'_0(\mathcal{F}, M) = g_0(\mathcal{F}, M)$ and $g'_i(\mathcal{F}, M) = g_i(\mathcal{F}, M) + g_{i-1}(\mathcal{F}, M)$, i = 1, ..., d. Let $H_{\mathcal{F}}(M, t) = \sum_{n \geq 0} H_K(\mathcal{F}, M, n) t^n$ be the Hilbert series of \mathcal{F} with respect to M and K. Then there exists a unique polynomial $f(t) \in \mathbb{Z}[t]$ such that $H_{\mathcal{F}}(M, t) = \frac{f(t)}{(1-t)^{d+1}}$. Then $g'_i(\mathcal{F}, M) = \frac{f^{(i)}(1)}{i!}$, i = 0, 1, ..., d, [1, Chapt. 4].

Using the same arguments as in [4, Proposition 1.5], we have

Proposition 2.3 Let $J = (x_1, ..., x_d)$ be a minimal reduction of \mathcal{F} with respect to M with x_1^* being superficial for $G(\mathcal{F}, M)$ and x_1^0 being superficial for $F_K(\mathcal{F}, M)$. Let "—" denote images modulo (x_1) . Then

$$g_d(\mathcal{F}, M) = g_d(\overline{\mathcal{F}}, \overline{M}) - \sum_{n>0} (-1)^d \lambda((KI_{n+1}M : x_1)/KI_nM).$$

Furthermore, if x_1^* is $G(\mathcal{F}, M)$ -regular and x_1^0 is $F_K(\mathcal{F}, M)$ -regular, then

$$\sum_{n>0} H_{\overline{K}}(\overline{\mathcal{F}}, \overline{M}, n)t^n = (1-t)\sum_{n>0} H_K(\mathcal{F}, M, n)t^n.$$

3. Independence of lengths

In this section, we prove the independence of the length $\lambda(KI_nM/KJI_{n-1}M)$ on J. We need a lemma.

Lemma 3.1 Suppose that depth $G(\mathcal{F}, M) \geq d-1$ and depth $F_K(\mathcal{F}, M) \geq d-1$. Let J be a minimal reduction of \mathcal{F} with respect to M and $r = r_J^K(\mathcal{F}, M)$. Then

$$\sum_{n \geq 0} H_K(\mathcal{F}, M, n) t^n = \frac{\lambda(\frac{M}{KM}) + [\lambda(\frac{KM}{JM}) - \lambda(\frac{KI_1M}{KJM})]t + \sum_{n=2}^{r+1} [\lambda(\frac{KI_{n-1}M}{KJI_{n-2}M}) - \lambda(\frac{KI_nM}{KJI_{n-1}M})]t^n}{(1-t)^{d+1}}.$$

Proof Choose generators x_1, \ldots, x_d for J as in Lemma 2.1. Let "—" denote images modulo (x_1, \ldots, x_{d-1}) . Then from Proposition 2.3, we have

$$\sum_{n>0} H_K(\mathcal{F}, M, n) t^n = \frac{\sum_{n\geq 0} H_{\overline{K}}(\mathcal{F}, M, n) t^n}{(1-t)^{d-1}}.$$

It is clear that $\lambda(M/KM) = \lambda(\overline{M}/\overline{KM})$, $\lambda(KM/JM) = \lambda(\overline{KM}/\overline{JM})$. For all $n \geq 0$, by Lemma 2.1,

$$(KI_{n+1}M + (x_1, \dots, x_{i-1})M) : x_i = KI_nM + (x_1, \dots, x_{i-1})M, i = 1, 2, \dots, d-1,$$

it follows that

$$KI_{n+1}M \cap (x_1, \dots, x_i)M \subseteq KJI_nM, i = 1, 2, \dots, d-1.$$

Hence

$$\lambda(KI_nM/KJI_{n-1}M) = \lambda(\overline{KI}_n\overline{M}/\overline{KJI}_{n-1}\overline{M}), n = 1, 2, \dots$$

Thus, we may assume that d = 1 and it is enough to show that

$$\sum_{n \geq 0} H_K(\mathcal{F}, M, n) t^n = \frac{\lambda(\frac{M}{KM}) + [\lambda(\frac{KM}{x_1M}) - \lambda(\frac{KI_1M}{x_1KM})]t + \sum_{n=2}^{r+1} [\lambda(\frac{KI_{n-1}M}{x_1KI_{n-2}M}) - \lambda(\frac{KI_nM}{x_1KI_{n-1}M})]t^n}{(1-t)^2}.$$

Set

$$\sum_{n>0} H_K(\mathcal{F}, M, n) t^n = \frac{\sum\limits_{n\geq 0} a_n t^n}{(1-t)^2}.$$

Then, we get that

$$a_0 = \lambda(M/KM)$$

 $a_1 = \lambda(M/KI_1M) - 2\lambda(M/KM)$
 $a_n = \lambda(M/KI_nM) - 2\lambda(M/KI_{n-1}M) + \lambda(M/KI_{n-2}M), \quad n = 2, 3, ...,$

and, $a_n = 0$ for $n \gg 0$. Let $n \geq 2$. Note that

$$\lambda(M/KI_nM) - 2\lambda(M/KI_{n-1}M) + \lambda(M/KI_{n-2}M) = \lambda(\frac{KI_{n-1}M}{KI_nM}) - \lambda(\frac{KI_{n-2}M}{KI_{n-1}M}).$$

Thus

$$a_n = \lambda(KI_{n-1}M/KI_nM) - \lambda(KI_{n-2}M/KI_{n-1}M), n = 2, 3, \dots$$

Since x_1 is M-regular and

$$\lambda(KM/KI_1M) + \lambda(KI_1M/x_1KM) = \lambda(KM/x_1M) + \lambda(x_1M/x_1KM),$$

we have that

$$a_1 = \lambda(KM/KI_1M) - \lambda(M/KM)$$
$$= \lambda(KM/KI_1M) - \lambda(x_1M/x_1KM)$$
$$= \lambda(KM/x_1M) - \lambda(KI_1M/x_1KM).$$

Similarly, for $n \geq 2$, since

$$\lambda(KI_{n-1}M/KI_nM) + \lambda(KI_nM/x_1KI_{n-1}M)$$

= $\lambda(KI_{n-1}M/x_1KI_{n-2}M) + \lambda(x_1KI_{n-2}M/x_1KI_{n-1}M),$

it follows that

$$a_n = \lambda(KI_{n-1}M/KI_nM) - \lambda(x_1KI_{n-2}M/x_1KI_{n-1}M)$$

= $\lambda(KI_{n-1}M/x_1KI_{n-2}M) - \lambda(KI_nM/x_1KI_{n-1}M).$

As $KI_nM = x_1KI_{n-1}M$ for all $n \ge r+1$, we see that $a_n = 0$ for all n > r+1. The result follows.

Theorem 3.2 Suppose that depth $G(\mathcal{F}, M) \geq d-1$ and depth $F_K(\mathcal{F}, M) \geq d-1$. Let J be a minimal reduction of \mathcal{F} with respect to M. Then $\lambda(KI_nM/KJI_{n-1}M)$ does not depend on J for all $n \geq 0$.

Proof Let $r = r_J^K(\mathcal{F}, M)$. Then, from Lemma 3.1, we have

$$\sum_{n \geq 0} H_K(\mathcal{F}, M, n) t^n = \frac{\lambda(\frac{M}{KM}) + [\lambda(\frac{KM}{JM}) - \lambda(\frac{KI_1M}{KJM})]t + \sum_{n=2}^{r+1} [\lambda(\frac{KI_{n-1}M}{KJI_{n-2}M}) - \lambda(\frac{KI_nM}{KJI_{n-1}M})]t^n}{(1-t)^{d+1}}.$$

Denote the right side as $\frac{\sum_{n=0}^{r+1} a_n t^n}{(1-t)^{d+1}}$. Since $\sum_{n\geq 0} H_K(\mathcal{F}, M, n) t^n = \sum_{n\geq 0} \lambda(M/KI_nM) t^n$ is a series with coefficients independent of J, we see that a_n is independent of J.

Note that $\lambda(M/JM) = e_0(\mathcal{F}, M)$ is independent of J. Then $\lambda(KM/JM) = \lambda(M/JM) - \lambda(M/KM)$ is also independent of J. It follows that $\lambda(KI_1M/KJM) = \lambda(KM/JM) - a_1$ and $\lambda(KM/KJM) = \lambda(M/KI_1M) - e(\mathcal{F}, M) - a_1$ are independent of J. Inductively, suppose that $\lambda(KI_nM/KJI_{n-1}M)$ does not depend on J. Then

$$\lambda(KI_{n+1}M/KJI_nM) = \lambda(KI_nM/KJI_{n-1}M) - a_{n+1}$$

is also independent of J. The proof is completed.

4. Independence of reduction numbers

We first show that $r_J^K(\mathcal{F}, M)$ is independent of J.

Theorem 4.1 Assume that depth $G(\mathcal{F}, M) \geq d-1$ and depth $F_K(\mathcal{F}, M) \geq d-1$. Let J be a minimal reduction of \mathcal{F} with respect to M. Then $r_J^K(\mathcal{F}, M)$ is independent of J.

Proof If d > 1, then, by Lemma 2.1, we may choose x_1, \ldots, x_d such that $J = (x_1, \ldots, x_d)$, x_1^*, \ldots, x_{d-1}^* is $G(\mathcal{F}, M)$ -regular and x_1^0, \ldots, x_{d-1}^0 is $F_K(\mathcal{F}, M)$ -regular. Then $r_J^K(\mathcal{F}, M) = r_J^K(\overline{\mathcal{F}}, \overline{\mathcal{M}})$ by Proposition 2.2, where "—" denote images modulo (x_1, \ldots, x_{d-1}) . Hence we may assume that d = 1.

Suppose that d=1. Let $J_1=(x)$ and $J_2=(y)$ be two minimal reductions of \mathcal{F} with respect to M. Set $r_1=r_{J_1}^K(\mathcal{F},M)$ and $r_2=r_{J_2}^K(\mathcal{F},M)$. If $r_1\neq r_2$, say $r_1>r_2$, then

$$yKI_{r_1}M = KI_{r_1+1}M = xKI_{r_1}M = xyKI_{r_1-1}M.$$

It follows that $KI_{r_1}M = xKI_{r_1-1}M$, which contradicts the minimality of r_1 . Hence $r_1 = r_2$. Further, we calculate the reduction number.

Theorem 4.2 Assume that depth $G(\mathcal{F}, M) \geq d - 1$ and depth $F_K(\mathcal{F}, M) \geq d - 1$. Then $r^K(\mathcal{F}, M) = n^K(\mathcal{F}, M) + d$.

Proof Let J be a minimal reduction of \mathcal{F} with respect to M. We want to show that $r_J^K(\mathcal{F}, M) = n^K(\mathcal{F}, M) + d$.

If d>1, then, by Lemma 2.1, we may choose x_1,\ldots,x_d such that $J=(x_1,\ldots,x_d)$, x_1^*,\ldots,x_{d-1}^* is $G(\mathcal{F},M)$ -regular and x_1^0,\ldots,x_{d-1}^0 is $F_K(\mathcal{F},M)$ -regular. Then $r_J^K(\mathcal{F},M)=r_J^K(\overline{\mathcal{F}},\overline{\mathcal{M}})$ and $n^K(\mathcal{F},M)=n_J^K(\overline{\mathcal{F}},\overline{\mathcal{M}})+d-1$ by Proposition 2.2, where "—" denote images modulo (x_1,\ldots,x_{d-1}) . Hence we may assume that d=1. Let $r=r^K(\mathcal{F},M)$.

If $n^K(\mathcal{F}, M) = -1$, then $P_K(\mathcal{F}, M, 0) = H_K(\mathcal{F}, M, 0)$. But $P_K(\mathcal{F}, M, 0) = -g_1(\mathcal{F}, M)$ and $H_K(\mathcal{F}, M, 0) = \lambda(M/KM)$. Note that

$$g_1(\mathcal{F}, M) = \sum_{n=1}^r \lambda(KI_n M / xKI_{n-1} M) - \lambda(M / KM).$$

It follows that

$$\sum_{n=1}^{r} \lambda(KI_n M / x KI_{n-1} M) = 0,$$

hence, $KI_nM = xKI_{n-1}M$ holds for all $n \ge 1$. Thus $r_I^K(\mathcal{F}, M) = 0$.

Now assume $n^K(\mathcal{F}, M) \geq 0$. Since $KI_{n+1}M = xKI_nM$ for all $n \geq r$, we have that $KI_nM = x^{n-r}KI_rM$ for all $n \geq r$. Thus

$$H_K(\mathcal{F}, M, n) = \lambda(M/KI_nM) = \lambda(M/x^{n-r}M) + \lambda(x^{n-r}M/x^{n-r}KI_rM)$$
$$= (n-r)\lambda(M/xM) + \lambda(M/KI_rM), \text{ for all } n \ge r.$$

On the other hand, since

$$g_1(\mathcal{F}, M) = \sum_{n=1}^r \lambda(KI_n M/xKI_{n-1}M) - \lambda(M/KM)$$

= $\lambda(KI_r M/xKI_{r-1}M) + \lambda(xKI_{r-1}M/x^2KI_{r-2}M) +$
 $\cdots + \lambda(x^{r-1}KI_1M/x^rKM) - \lambda(M/KM)$
= $\lambda(KI_r M/x^rKM) - \lambda(M/KM)$,

we get that, for all $n \geq r$,

$$P_{K}(\mathcal{F}, M, n) = ng_{0}(\mathcal{F}, M) - g_{1}(\mathcal{F}, M)$$

$$= n\lambda(M/xM) - \lambda(KI_{r}M/x^{r}KM) + \lambda(M/KM)$$

$$= (n - r)\lambda(M/xM) + r\lambda(M/xM) - \lambda(KI_{r}M/x^{r}KM) + \lambda(M/KM)$$

$$= (n - r)\lambda(M/xM) + \lambda(M/x^{r}M) - \lambda(KI_{r}M/x^{r}KM) + \lambda(x^{r}M/x^{r}KM)$$

$$= (n - r)\lambda(M/xM) + \lambda(M/KI_{r}M)$$

$$= H_{K}(\mathcal{F}, M, n).$$

Therefore $n^K(\mathcal{F}, M) \leq r - 1$.

It remains to show that $r \leq n^K(\mathcal{F}, M) + 1$. For all $n \geq n^K(\mathcal{F}, M) + 1$, from $P_K(\mathcal{F}, M, n) = H_K(\mathcal{F}, M, n)$, i.e., $\lambda(M/KI_nM) = n\lambda(M/xM) - g_1(\mathcal{F}, M)$, we obtain $g_1(\mathcal{F}, M) = -\lambda(M/KI_nM) + \lambda(M/x^nM)$. It follows that, for all $n \geq n^K(\mathcal{F}, M) + 1$,

$$\lambda(M/KI_{n+1}M) = (n+1)\lambda(M/xM) - g_1(\mathcal{F}, M)$$

$$= \lambda(M/x^{n+1}M) + \lambda(M/KI_nM) - \lambda(M/x^nM)$$

$$= \lambda(x^nM/x^{n+1}M) + \lambda(M/KI_nM)$$

$$= \lambda(M/xM) + \lambda(xM/xKI_nM)$$

$$= \lambda(M/xKI_nM).$$

Thus $KI_{n+1}M = xKI_nM$ for all $n \geq n^K(\mathcal{F}, M) + 1$. Hence $r \leq n^K(\mathcal{F}, M) + 1$ as required. \square

5. Lower bounds for $g_1(\mathcal{F}, M)$ and $g_2(\mathcal{F}, M)$

In this section, we will give lower bounds of the Hilbert coefficients $g_1(\mathcal{F}, M)$ and $g_2(\mathcal{F}, M)$.

Let us first give a lower bound for $g_1(\mathcal{F}, M)$.

Proposition 5.1 Let J be a minimal reduction of \mathcal{F} with respect to M. Then

$$g_1(\mathcal{F}, M) \ge \sum_{n \ge 1} \lambda(KI_nM + JM/JM) - \lambda(M/KM).$$

Proof Choose x_1, \ldots, x_d as in Lemma 2.1 such that $J = (x_1, \ldots, x_d)$. Let "—" denote images modulo (x_1, \ldots, x_{d-1}) . Then $\overline{KI}_{n+1}\overline{M} + \overline{JM}/\overline{JM} \cong KI_{n+1}M + JM/JM$, $M/KM \cong \overline{M}/\overline{KM}$ and $g_1(\mathcal{F}, M) = g_1(\overline{\mathcal{F}}, \overline{\mathcal{M}})$. Thus we may assume that d = 1. In this case, we have

$$g_1(\mathcal{F}, M) = \sum_{n \ge 1} \lambda(KI_n M / x_1 KI_{n-1} M) - \lambda(M / KM).$$

But $KI_nM + x_1M/x_1M \cong KI_nM/KI_nM \cap x_1M$ is a factor module of $KI_nM/x_1KI_{n-1}M$, we get that $\lambda(KI_nM/x_1KI_{n-1}M) \geq \lambda(KI_nM + x_1M/x_1M)$. Hence

$$g_1(\mathcal{F}, M) \ge \sum_{n>1} \lambda(KI_nM + x_1M/x_1M) - \lambda(M/KM).$$

For the second Hilbert coefficient, we need to generalize the definition of the Ratliff-Rush closure of a filtration introduced in [8].

Definition 5.2 The Ratliff-Rush closure of \mathcal{F} with respect to M and K is defined as $rr_K(\mathcal{F}, M) = \{rr_K(I_n, M)\}_{n\geq 0}$ with $rr_K(I_n, M) = \bigcup_{k>1} (KI_{n+k}M : I_1^k)$.

We will need the following properties of Ratliff-Rush closure, whose proof is similar to that of [8, Proposition 2.3].

Lemma 5.3 $rr_K(I_n, M) = KI_nM$ for $n \gg 0$ and, if J is a minimal reduction of I_1 , then, for all n > 1,

$$rr_K(I_n, M) : J = rr_K(I_{n-1}, M).$$

Theorem 5.4 Suppose that $d \geq 2$. Let J be a minimal reduction of I_1 and x_1, \ldots, x_d as in Lemma 2.1 such that $J = (x_1, \ldots, x_d)$. Set $J_{d-2} = (x_1, \ldots, x_{d-2})$. Then

$$g_2(\mathcal{F},M) \geq \sum_{n \geq 1} n \lambda \left(\frac{KI_{n+1}M + JM}{JM}\right) + \lambda \left(\frac{M}{\bigcup_{k \geq 1} (KI_kM + J_{d-2}M) : I_1^k}\right).$$

Proof Firstly, let us show that J is also a minimal reduction of \mathcal{F} with respect to M. Since \mathcal{F} is Hilbert, there exists some $s \geq 1$ such that $I_1I_nM = I_{n+1}M$ for all $n \geq s$. As J is a minimal reduction of I_1 , we have some $r \geq 1$ such that $I_1^{r+1} = JI_1^r$. Then, for any $n \geq r + s$,

$$I_{n+1}M = I_1^{r+1}I_{n-r}M = JI_1^rI_{n-r}M = JI_nM.$$

Hence, J is a minimal reduction of \mathcal{F} with respect to M.

If d > 2, let "—" denote images modulo J_{d-2} . Then $g_2(\mathcal{F}, M) = g_2(\overline{\mathcal{F}}, \overline{M})$, $\overline{KI}_{n+1}\overline{M} + \overline{JM}/\overline{JM} \cong KI_{n+1}M + JM/JM$ and $\overline{M}/rr_{\overline{K}}(\overline{I}_0, \overline{M}) \cong M/\cup_{k\geq 1} (KI_kM + J_{d-2}M) : I_1^k$. Thus we may assume that d=2 and it is enough to show that

$$g_2(\mathcal{F}, M) \ge \sum_{n \ge 1} n\lambda(\frac{KI_{n+1}M + JM}{JM}) + \lambda(\frac{M}{rr_K(I_0, M)}).$$

Because that $rr_K(I_n, M) = KI_nM$ holds for $n \gg 0$, we can use $\sum_{n\geq 0} \lambda(\frac{M}{rr_K(I_n, M)})t^n$ to calculate $g_1'(\mathcal{F}, M)$ and $g_2'(\mathcal{F}, M)$.

Consider the exact sequence

$$0 \to \frac{M}{rr_K(I_{n-1},M):J} \overset{\beta}{\to} (\frac{M}{rr_K(I_{n-1},M)})^2 \overset{\alpha}{\to} \frac{JM}{Jrr_K(I_{n-1},M)} \to 0$$

where the map α and β are defined as, $\alpha(\overline{r}, \overline{s}) = \overline{x_1r + x_2s}$ and $\beta(\overline{r}) = (\overline{x_2r}, \overline{-x_1r})$. It follows that for all $n \geq 2$,

$$\begin{split} 2\lambda(\frac{M}{rr_K(I_{n-1},M)}) &= \lambda(\frac{M}{rr_K(I_{n-1},M):J}) + \lambda(\frac{JM}{Jrr_K(I_{n-1},M)}) \\ &= \lambda(\frac{M}{rr_K(I_{n-1},M):J}) + \lambda(\frac{M}{Jrr_K(I_{n-1},M)}) - \lambda(\frac{M}{JM}) \\ &= \lambda(\frac{M}{rr_K(I_{n-1},M):J}) + \lambda(\frac{M}{Jrr_K(I_{n-1},M)}) - e_0(\mathcal{F},M). \end{split}$$

Therefore

$$\begin{split} e_0(\mathcal{F}, M) + 2\lambda & (\frac{M}{rr_K(I_{n-1}, M)}) - \lambda (\frac{M}{rr_K(I_n, M)}) - \lambda (\frac{M}{rr_K(I_{n-2}, M)}) \\ &= \lambda (\frac{M}{Jrr_K(I_{n-1}, M)}) - \lambda (\frac{M}{rr_K(I_n, M)}) + \lambda (\frac{M}{rr_K(I_{n-1}, M) : J}) - \lambda (\frac{M}{rr_K(I_{n-2}, M)}) \\ &= \lambda (\frac{rr_K(I_n, M)}{Jrr_K(I_{n-1}, M)}) - \lambda (\frac{rr_K(I_{n-1}, M) : J}{rr_K(I_{n-2}, M)}) \\ &= \lambda (\frac{rr_K(I_n, M)}{Jrr_K(I_{n-1}, M)}), \end{split}$$

where the last equality holds because of $rr_K(I_n, M) : J = rr_K(I_{n-1}, M)$ for all $n \ge 1$, by Lemma 5.3

Let
$$\sum_{n\geq 0} \lambda(\frac{M}{rr_K(I_n,M)})t^n = \frac{f(t)}{(1-t)^3}$$
. Since
$$\frac{e_0(\mathcal{F},M) - f(t)}{1-t} = \frac{e_0(\mathcal{F},M) - (1-t)^3 \sum_{n\geq 0} \lambda(\frac{M}{rr_K(I_n,M)})t^n}{1-t}$$

$$= \sum_{n\geq 2} [e_0(\mathcal{F},M) + 2\lambda(\frac{M}{rr_K(I_{n-1},M)}) - \lambda(\frac{M}{rr_K(I_n,M)}) - \lambda(\frac{M}{rr_K(I_{n-2},M)})]t^n +$$

$$e_0(\mathcal{F},M)(1+t) - \lambda(\frac{M}{rr_K(I_0,M)})(1-2t) - \lambda(\frac{M}{rr_K(I_1,M)})t$$

$$= \sum_{n\geq 2} \lambda(\frac{rr_K(I_n,M)}{Jrr_K(I_{n-1},M)})t^n + e_0(\mathcal{F},M)(1+t) - \lambda(\frac{M}{rr_K(I_0,M)})(1-2t) -$$

$$\lambda(\frac{M}{rr_K(I_1,M)})t,$$

it follows that

$$f(t) = e_0(\mathcal{F}, M) - (1 - t) \left[\sum_{n \ge 2} \lambda \left(\frac{rr_K(I_n, M)}{Jrr_K(I_{n-1}, M)} \right) t^n + e_0(\mathcal{F}, M) (1 + t) - \lambda \left(\frac{M}{rr_K(I_0, M)} \right) (1 - 2t) - \lambda \left(\frac{M}{rr_K(I_1, M)} \right) t \right].$$

Then

$$f'(t) = \sum_{n \ge 2} \lambda \left(\frac{rr_K(I_n, M)}{Jrr_K(I_{n-1}, M)}\right) t^n + e_0(\mathcal{F}, M)(1+t) - \lambda \left(\frac{M}{rr_K(I_0, M)}\right) (1-2t) - \lambda \left(\frac{M}{rr_K(I_1, M)}\right) t - (1-t) \left[\sum_{n \ge 2} n\lambda \left(\frac{rr_K(I_n, M)}{Jrr_K(I_{n-1}, M)}\right) t^{n-1} + e_0(\mathcal{F}, M) + 2\lambda \left(\frac{M}{rr_K(I_0, M)}\right) - \lambda \left(\frac{M}{rr_K(I_1, M)}\right)\right]$$

and

$$f''(t) = 2\left[\sum_{n\geq 2} n\lambda \left(\frac{rr_K(I_n, M)}{Jrr_K(I_{n-1}, M)}\right)t^{n-1} + e_0(\mathcal{F}, M) + 2\lambda \left(\frac{M}{rr_K(I_0, M)}\right) - \lambda \left(\frac{M}{rr_K(I_1, M)}\right)\right] - (1-t)\sum_{n\geq 2} n(n-1)\lambda \left(\frac{rr_K(I_n, M)}{Jrr_K(I_{n-1}, M)}\right)t^{n-2}.$$

Hence

$$\begin{split} g_{1}^{'}(\mathcal{F},M) &= f^{'}(1) = \sum_{n \geq 2} \lambda(\frac{rr_{K}(I_{n},M)}{Jrr_{K}(I_{n-1},M)}) + 2e_{0}(\mathcal{F},M) + \lambda(\frac{M}{rr_{K}(I_{0},M)}) - \lambda(\frac{M}{rr_{K}(I_{1},M)}) \\ g_{2}^{'}(\mathcal{F},M) &= \frac{f^{''}(1)}{2} = \sum_{n \geq 2} n\lambda(\frac{rr_{K}(I_{n},M)}{Jrr_{K}(I_{n-1},M)}) + e_{0}(\mathcal{F},M) + 2\lambda(\frac{M}{rr_{K}(I_{0},M)}) - \lambda(\frac{M}{rr_{K}(I_{1},M)}). \end{split}$$

Therefore

$$\begin{split} g_2(\mathcal{F}, M) &= g_2'(\mathcal{F}, M) - g_1(\mathcal{F}, M) = g_2'(\mathcal{F}, M) - g_1'(\mathcal{F}, M) + e_0(\mathcal{F}, M) \\ &= \sum_{n \geq 1} n \lambda (\frac{rr_K(I_{n+1}, M)}{Jrr_K(I_n, M)}) + \lambda (\frac{M}{rr_K(I_0, M)}) \\ &= \sum_{n \geq 1} n [\lambda (\frac{rr_K(I_{n+1}, M)}{KI_{n+1}M + Jrr_K(I_n, M)}) + \lambda (\frac{KI_{n+1}M + Jrr_K(I_n, M)}{Jrr_K(I_n, M)})] + \lambda (\frac{M}{rr_K(I_0, M)}) \\ &= \sum_{n \geq 1} n [\lambda (\frac{rr_K(I_{n+1}, M)}{KI_{n+1}M + Jrr_K(I_n, M)}) + \lambda (\frac{KI_{n+1}M}{KI_{n+1}M \cap Jrr_K(I_n, M)})] + \lambda (\frac{M}{rr_K(I_0, M)}) \\ &= \sum_{n \geq 1} n [\lambda (\frac{rr_K(I_{n+1}, M)}{KI_{n+1}M + Jrr_K(I_n, M)}) + \lambda (\frac{KI_{n+1}M}{JM \cap KI_{n+1}M}) + \lambda (\frac{JM \cap KI_{n+1}M}{KI_{n+1}M \cap Jrr_K(I_n, M)})] + \lambda (\frac{M}{rr_K(I_0, M)}) \\ &= \sum_{n \geq 1} n \lambda (\frac{KI_{n+1}M + JM}{JM}) + \lambda (\frac{M}{rr_K(I_0, M)}) + \sum_{n \geq 1} n \lambda (\frac{JM \cap KI_{n+1}M}{KI_{n+1}M + Jrr_K(I_n, M)}) \\ &\geq \sum_{n \geq 1} n \lambda (\frac{KI_{n+1}M + JM}{JM}) + \lambda (\frac{M}{rr_K(I_0, M)}). \end{split}$$

The proof is completed.

References

[1] BRUNS W, HERZOG J. Cohen-Macaulay Rings [M]. Cambridge: Cambridge University Press, 1993.

- [2] CORSO A, POLINI C, PINTO M V. Sally modules and associated graded rings [J]. Comm. Algebra, 1998, 26(8): 2689–2708.
- [3] CORTADELLAS T. Fiber cones with almost maximal depth [J]. Comm. Algebra, 2005, 33(3): 953-963.
- [4] GUERRIERI A, ROSSI M E. Hilbert coefficients of Hilbert filtrations [J]. J. Algebra, 1998, 199(1): 40-61.
- [5] HUCKABA S. Reduction numbers for ideals of higher analytic spread [J]. Math. Proc. Cambridge Philos. Soc., 1987, 102(1): 49–57.
- [6] HUCKABA S. A d-dimensional extension of a lemma of Huneke's and formulas for the Hilbert coefficients
 [J]. Proc. Amer. Math. Soc., 1996, 124(5): 1393-1401.
- [7] JAYANTHAN A V, VERMA J K. Hilbert coefficients and depth of fiber cones [J]. J. Pure Appl. Algebra, 2005, 201(1-3): 97–115.
- [8] JAYANTHAN A V, VERMA J K. Fiber cones of ideals with almost minimal multiplicity [J]. Nagoya Math. J., 2005, 177: 155-179.
- [9] JAYANTHAN A V, SINGH B, VERMA J K. Hilbert coefficients and depths of form rings [J]. Comm. Algebra, 2004, 32(4): 1445–1452.
- [10] MARLEY T. The coefficients of the Hilbert polynomial and the reduction number of an ideal [J]. J. London Math. Soc. (2), 1989, 40(1): 1–8.
- [11] VALABREGA P, VALLA G. Form rings and regular sequences [J]. Nagoya Math. J., 1978, 72: 93-101.