ℵ-Products of Relative Flat Modules

ZHAO Ren Yu¹, LIU Zhong Kui²

- (1. College of Economics and Management, Northwest Normal University, Gansu 730070, China;
- 2. Department of Mathematics, Northwest Normal University, Gansu 730070, China)

(E-mail: renyuzhao026@sohu.com)

Abstract Let M be a right R-module and \aleph an infinite cardinal number. A right R-module N is called \aleph -M-coherent if for any $0 \le A < B \le N$, such that $B/A \hookrightarrow mR$ for some $m \in M$, if B/A is finitely generated, then B/A is \aleph -fp. A ring R is called \aleph -M-coherent if R_R is \aleph -M-coherent. It is proved under some additional conditions that the \aleph -product of any family of M-flat left R-modules is M-flat if and only if R is \aleph -M-coherent. We also give some characterizations of \aleph -M-coherent modules and rings.

Keywords \aleph -M-coherent module; \aleph -M-coherent ring; M-flat module.

Document code A MR(2000) Subject Classification 16E10; 16P70 Chinese Library Classification O153.3

1. Introduction

The concept of \aleph -products of modules was introduced by Dauns in [1] and has been studied by many authors (see, for example, [1, 2, 4, 5]).

Given right R-module M, so-called M-flat left R-modules were introduced in [3], which are flat relative to short exact sequences in the subcategory $\sigma[M]$ subgenerated by M, and where they also characterized the rings in which the direct products of M-flat modules remain M-flat. In this paper, following the direction of Dauns^[1,2], Loustaunau^[4] and Oyonarte^[5], we characterize those rings for which \aleph -products of M-flat R-modules are M-flat, they will be called \aleph -M-coherent rings. These results generalize some results of Dauns^[3] on direct products.

2. Preliminaries

We use |X| to denote the cardinality of a set X. If I is a set and $\{M_i \mid i \in I\}$ is a family of right R-modules. Let $x = (x_i)_{i \in I} \in \prod_{i \in I} M_i$. We define the support of x, denoted by $\operatorname{supp}(x)$, as $\operatorname{supp}(x) = \{i \in I \mid x_i \neq 0\}$. For an infinite cardinal number \aleph , define the \aleph -product of the M_i 's as

$$\prod\nolimits_{i \in I}^{\aleph} M_i = \{x \in \prod_{i \in I} M_i \mid |\operatorname{supp}(x)| < \aleph\}.$$

Received date: 2006-10-12; Accepted date: 2007-03-23

Foundation item: the National Natural Science Foundation of China (No. 10171082).

Clearly one may view the direct sum and the direct product of a family of modules as two special cases of the same object, namely, the \(\cents_{-}\)-product of a family of modules.

Let \aleph be an infinite cardinal number and A a right R-module. Following Loustaunau^[4], A is said to be \aleph -finitely generated, denoted by \aleph -fg, if every subset S of A, with $|S| < \aleph$, is contained in a finitely generated submodule of A. For example, every right R-module is \aleph_0 -fg, and every finitely generated module is \aleph -fg for all $\aleph \geq \aleph_0$. If $\aleph > |A|$ and A is \aleph -fg, then A is finitely generated. If $0 \to A \to B \to C \to 0$ is an exact sequence with A and C \aleph -fg, then B is \aleph -fg. If $f: A \to B$ is an epimorphism with A \aleph -fg, then so is B. The following result appeared in [4, Lemma 1.2].

Lemma 2.1 Let \aleph be an infinite cardinal number and A a right R-module. Then the following statements are equivalent:

- (1) A is \aleph -fg.
- (2) If $\{L_i \mid i \in I\}$ is any family of left R-modules and if $\alpha_A : A \otimes_R \prod_{i \in I}^{\aleph} L_i \longrightarrow \prod_{i \in I}^{\aleph} (A \otimes_R L_i)$ is defined via $\alpha_A[a \otimes (x_i)_{i \in I}] = (a \otimes x_i)_{i \in I}$, then α_A is an epimorphism.
- (3) If I is any index set and if $\alpha_A : A \otimes_R \prod_{i \in I}^{\aleph} R \longrightarrow \prod_{i \in I}^{\aleph} A$ is defined via $\alpha_A[a \otimes (r_i)_{i \in I}] = (ar_i)_{i \in I}$, then α_A is an epimorphism.

Let \aleph be an infinite cardinal number and A a finitely generated right R-module. Following Loustaunau^[4], A is said to be \aleph -finitely presented, denoted by \aleph -fp, if there exists an exact sequence $0 \to K \to F \to A \to 0$ with F free of \aleph -fg and K \aleph -fg.

For example, every finitely generated right R-module is \aleph_0 -fp, and every finitely presented right R-module is \aleph -fp. The following result appeared in [4, Lemma 1.4].

Lemma 2.2 Let \aleph be an infinite cardinal number and A a finitely generated right R-module. Then the following statements are equivalent:

- (1) A is \aleph -fp.
- (2) α_A in Lemma 2.1 (2) is an isomorphism.
- (3) α_A in Lemma 2.1 (3) is an isomorphism.

Lemma 2.3 Let C be a finitely generated right R-module. Then C is \aleph -fp if and only if for every exact sequence $0 \to A \to B \to C \to 0$ in mod-R, if B is \aleph -fg, then A is \aleph -fg.

Proof \Rightarrow) Since C is \aleph -fp, there exists an exact sequence $0 \to K \to F \to C \to 0$ with F free of \aleph -fg and K \aleph -fg. We get a commutative diagram

where λ is obtained by mapping the basis element $e_i \in F$ to an element $x_i \in B$ such that $\beta(x_i) = \nu(e_i)$. Then $\beta \lambda \mu = \nu \mu = 0$, so $\text{Im}\lambda \mu \subseteq \text{Ker}\beta = \text{Im}\alpha$, and therefore $\lambda \mu$ can be factored over α by means of a homomorphism $\kappa : K \to A$. Thus by the Kernel Cokernel Lemma, we have $A/\text{Im}\kappa \cong B/\text{Im}\lambda$.

The module $B/\mathrm{Im}\lambda$ is \aleph -fg since B is \aleph -fg. So is then also the module $A/\mathrm{Im}\kappa$. Also $\mathrm{Im}\kappa$ is \aleph -fg since K is \aleph -fg. Then, by the exact sequence $0 \to \mathrm{Im}\kappa \to A \to A/\mathrm{Im}\kappa \to 0$, we have A is \aleph -fg.

 \Leftarrow) Since C is finitely generated, there exists an exact sequence $0 \to \operatorname{Ker} \alpha \to F \xrightarrow{\alpha} C \to 0$ with F free and finitely generated. Then $\operatorname{Ker} \alpha$ is \aleph -fg. Therefore, C is \aleph -fp.

Lemma 2.4 For any exact sequence $0 \to A \to B \to C \to 0$ of right R-modules, the following hold:

- (1) Let B, C be finitely generated. If A is \aleph -fg and B is \aleph -fp, then C is \aleph -fp.
- (2) Let A, B, C be finitely generated. If A, C is \aleph -fp, then B is \aleph -fp.

Proof By analogy with the proof of [6, 25.1], the results follow from Lemma 2.3.

3. Main results

Throughout, M will be an arbitrary but fixed right R-module. For $K \leq N \in \text{Mod-}R$ and $x \in N$, set $x^{\perp} = \{r \in R \mid xr = 0\}$ and let $x^{-1}K = (x+K)^{\perp} = \{r \in R \mid xr \in K\}$. Following [6], a left R-module F is M-flat if for any submodule $0 \leq K < M$, the sequence $0 \to K \otimes_R F \to M \otimes_R F$ is monic. Following [3], a left R-module F is called $\sigma[M]$ -flat if for any monomorphism $0 \to X \to Y$ in $\sigma[M]$ (with $X, Y \in \sigma[M]$), $0 \to X \otimes_R F \to Y \otimes_R F$ is exact, where $\sigma[M]$ is the full subcategory of Mod-R subgenerated by the given right R-module M. It is also shown in [3] that $\sigma[M]$ -flat is equivalent to the simpler definition M-flat as the above. The following is a characterization of the property that a left R-module F is M-flat which was given in [3].

Lemma 3.1 For a right R-module M and a left R-module F, the following are equivalent:

- (1) F is M-flat.
- (2) For any finitely generated L/m^{\perp} , where $m \in M$ and $m^{\perp} \leq L \leq R$, $0 \to L/m^{\perp} \otimes_R F \to R/m^{\perp} \otimes_R F$ is exact.

Following [4], a right R-module N is called \aleph -coherent if N is finitely generated and every finitely generated submodule of N is \aleph -fp.

Following [3], a right R-module N is called M-coherent if for any $0 \le A < B \le N$ such that $B/A \hookrightarrow mR$ for some $m \in M$, if B/A is finitely generated, then B/A is finitely presented. A ring R is called right \aleph -coherent (resp. M-coherent) if R_R is \aleph -coherent (resp. M-coherent).

Definition 3.2 A right R-module N is called \aleph -M-coherent if for any $0 \le A < B \le N$ such that $B/A \hookrightarrow mR$ for some $m \in M$, if B/A is finitely generated, then B/A is \aleph -fp.

Define the ring R to be \aleph -M-coherent if R_R is \aleph -M-coherent. An equivalent definition is that R is \aleph -M-coherent if for any $m \in M$ and $m^{\perp} \subseteq L \subseteq R$ such that L/m^{\perp} is finitely generated, it is also \aleph -fp.

Remarks (1) Every ring is \aleph_0 -M-coherent.

(2) If a ring is M-coherent, then it is \aleph -M-coherent for all infinite cardinal number \aleph .

(3) If $\aleph \leq \aleph'$, then \aleph' -M-coherent implies \aleph -M-coherent.

Proposition 3.3 For any right R-module M, R is \aleph -M-coherent if and only if for any $m \in M$, mR is an \aleph -coherent right R-module.

Proof Every submodule of $mR \cong R/m^{\perp}$ is isomorphic to L/m^{\perp} for some $m^{\perp} \leq L \leq R$.

Thus R is \aleph -M-coherent immediately translates into the logically equivalent statement that mR is \aleph -coherent.

The following proposition clarifies the connection between \aleph -coherent and \aleph -M-coherent rings.

Proposition 3.4 (1) Let R be an right \aleph -coherent ring. If for every $m \in M$, m^{\perp} is finitely generated, then R is \aleph -M-coherent.

- (2) Let R be an \aleph -M-coherent ring. If there exists an $m_0 \in M$ such that $m_0^{\perp} = 0$, then R is right \aleph -coherent.
 - (3) \aleph -R-coherent implies right \aleph -coherent. The converse holds when $\aleph > |R|$.
- (4) If for any $m \in M$, m^{\perp} is finitely generated and \aleph -fp, and for any finitely generated L < R, there exists $m \in M$ with $m^{\perp} \subseteq L$, then R is \aleph -M-coherent if and only if R is right \aleph -coherent.
- **Proof** (1) Suppose that $m \in M$ with $m^{\perp} \subseteq L \leq R$ such that L/m^{\perp} is finitely generated. Since m^{\perp} is finitely generated, then from the exact sequence $0 \to m^{\perp} \to L \to L/m^{\perp} \to 0$ we can get L is finitely generated. Thus L is \aleph -fp since R is a right \aleph -coherent ring. Then by Lemma 2.4 (1), L/m^{\perp} is \aleph -fp. Therefore, R is \aleph -M-coherent.

Conclusion (2) follows immediately.

- (3) Let R be right \aleph -coherent. Suppose that $a \in R$ with $a^{\perp} \subseteq L \subseteq R$ such that L/a^{\perp} is finitely generated. Since R is right \aleph -coherent, a^{\perp} is \aleph -fg by [4, Theorem 1.7]. Thus a^{\perp} is finitely generated since $|a^{\perp}| \leq |R| < \aleph$. Thus by the exact sequence $0 \to a^{\perp} \to L \to L/a^{\perp} \to 0$, L is finitely generated. Thus L is \aleph -fp since R is right \aleph -coherent. Thus L/a^{\perp} is \aleph -fp by Lemma 2.4 (1). The other direction follows immediately by (2).
- (4) Suppose that R is \aleph -M-coherent. Let L < R be finitely generated. Then there exists $m \in M$ such that $m^{\perp} \subseteq L$ with m^{\perp} finitely generated and \aleph -fp. Then L/m^{\perp} is finitely generated. Thus L/m^{\perp} is \aleph -fp. Then by the exact sequence $0 \to m^{\perp} \to L \to L/m^{\perp} \to 0$ and Lemma 2.4 (2), we can get L is \aleph -fp.

The other direction follows from (1).

Dauns's Theorem 2.6 in [3] is the special case $\aleph > |R|$ of the following much more general Theorem.

Theorem 3.5 Let M be a right R-module, assume that all m^{\perp} for $m \in M$ are \aleph -fg. Then the following are equivalent:

- (1) The \aleph -product of any family of M-flat left R-module is M-flat.
- (2) The \aleph -product of any family of copies of R is M-flat as a left R-module.

(3) R is \aleph -M-coherent.

Proof (1) \Rightarrow (2) Since R as a left R-module is flat, R is trivially M-flat for all modules M, and now $\prod_{i \in I}^{\aleph} R$ is M-flat for any index set I by (1).

(2) \Rightarrow (3) Let $m \in M$, $m^{\perp} \subseteq L \leq R$ such that L/m^{\perp} is finitely generated. By (2) and Lemma 3.1, we have the following commutative diagram for any index set I:

where $\alpha_{L/m^{\perp}}$ and $\alpha_{R/m^{\perp}}$ are as in Lemma 2.1. Since m^{\perp} is \aleph -fg, by the exact sequence $0 \longrightarrow m^{\perp} \longrightarrow R \longrightarrow R/m^{\perp} \longrightarrow 0$ and Lemma 2.4 (1), we have R/m^{\perp} is \aleph -fp. Thus $\alpha_{R/m^{\perp}}$ is monic by Lemma 2.2. Hence $\alpha_{L/m^{\perp}}$ is monic. Since L/m^{\perp} is finitely generated, $\alpha_{L/m^{\perp}}$ is epic by Lemma 2.1. Hence $\alpha_{L/m^{\perp}}$ is an isomorphism. Thus L/m^{\perp} is \aleph -fp by Lemma 2.2.

 $(3) \Rightarrow (1)$ Let $\{L_i \mid i \in I\}$ be a family of M-flat left R-modules. Let $m \in M$, $m^{\perp} \subseteq L \leq R$ such that L/m^{\perp} is finitely generated. Then by (3) and Lemma 2.2, the map $\alpha_{L/m^{\perp}} : L/m^{\perp} \otimes_R \prod_{i \in I}^{\aleph} L_i \to \prod_{i \in I}^{\aleph} (L/m^{\perp} \otimes_R L_i)$ is monic. Also, for each $i \in I$, L_i is M-flat, so that the map $L/m^{\perp} \otimes_R L_i \to R/m^{\perp} \otimes_R L_i$ is monoic. Thus from the following commutative diagram:

$$\begin{array}{ccccc} L/m^{\perp} \otimes_R \prod_{i \in I}^\aleph L_i & \xrightarrow{f} & R/m^{\perp} \otimes_R \prod_{i \in I}^\aleph L_i \\ & & & \downarrow \alpha_{L/m^{\perp}} & & \downarrow \alpha_{R/m^{\perp}} \\ 0 & \longrightarrow & \prod_{i \in I}^\aleph (L/m^{\perp} \otimes_R L_i) & \xrightarrow{g} & \prod_{i \in I}^\aleph (R/m^{\perp} \otimes_R L_i) \end{array}$$

we can get f is monic. Thus $\prod_{i\in I}^{\aleph} L_i$ is M-flat by Lemma 3.1.

Proposition 3.6 For an R-module M, assume that all m^{\perp} are finitely generated for $m \in M$, and that there exists an element $0 \neq m_0 \in M$ such that $m_0^{\perp} \subseteq m^{\perp}$ for all $m \in M$. If R/m_0^{\perp} is an \aleph -coherent right R-module, then R is a \aleph -M-coherent ring.

Proof Let $m \in M$, with $m^{\perp} \subseteq L \leq R$ such that L/m^{\perp} is finitely generated. Since m^{\perp} is finitely generated, from the exact sequence $0 \longrightarrow m^{\perp} \longrightarrow L \longrightarrow L/m^{\perp} \longrightarrow 0$ it follows that L, and hence L/m_0^{\perp} are finitely generated. Hence L/m_0^{\perp} is \aleph -fp since R/m_0^{\perp} is an \aleph -coherent right R-module. But then Lemma 2.4 (1) and the exact sequence $0 \longrightarrow m^{\perp}/m_0^{\perp} \longrightarrow L/m_0^{\perp} \longrightarrow L/m^{\perp} \longrightarrow 0$ show that L/m^{\perp} is \aleph -fp.

Hence R is \aleph -M-coherent.

Now we give some characterizations of \aleph -M-coherent modules and obtain a generalization of Dauns's Theorem 2.10 in [3].

Theorem 3.7 For a ring R and right R-modules M and N, the following are equivalent:

- (1) N is \aleph -M-coherent.
- (2) For any $m \in M$, $x \in N$, $0 \le A \le B \le N$ such that $(B + xR)/A \hookrightarrow mR$ and such that B/A is finitely generated, it follows that $x^{-1}B$ is \aleph -fg.
 - (3) For any $m \in M$, $x \in N$, and $0 \le A \le N$ such that $(A + xR)/A \hookrightarrow mR$, it follows

that $x^{-1}A$ is \aleph -fg. And for any $m \in M$, $0 \le A < B \le N$, and $0 \le A < C \le N$ such that $B/A \hookrightarrow mR$, $C/A \hookrightarrow mR$, and also B/A, C/A are finitely generated, it follows that $(B \cap C)/A$ is \aleph -fg.

- **Proof** (1) \Rightarrow (2) Let $m \in M$, $x \in N$, $0 \le A \le B \le N$, $(B+xR)/A \hookrightarrow mR$ and B/A is finitely generated. Then (B+xR)/A is finitely generated. Hence, by (1), (B+xR)/A is \aleph -fp. Then by the exact sequence $0 \longrightarrow B/A \longrightarrow (B+xR)/A \longrightarrow R/x^{-1}B \longrightarrow 0$ and Lemma 2.4 (1), $R/x^{-1}B$ is \aleph -fp. Therefore by the exact sequence $0 \longrightarrow x^{-1}B \longrightarrow R \longrightarrow R/x^{-1}B \longrightarrow 0$ and Lemma 2.3, $x^{-1}B$ is \aleph -fg.
- (2) \Rightarrow (1) Let $0 \le A < B \le N$, $m \in M$, $B/A \hookrightarrow mR$, and also B/A is finitely generated, we will show that B/A is \aleph -fp. Suppose that B/A is n-generated, we use induction on n to show that B/A is \aleph -fp. Let n=1. Then there exists $x \in N$ such that $B/A \simeq (A+xR)/A \simeq R/x^{-1}A$. By (2) and the exact sequence $0 \longrightarrow x^{-1}A \longrightarrow R \longrightarrow R/x^{-1}A \longrightarrow 0$ it follows that $R/x^{-1}A$ is \aleph -fp. Thus B/A is \aleph -fp. Let n>1 and assume that every n-1 generated submodule of mR is \aleph -fp. Since B/A is n-generated, there exist $A \le C \le N$ and $x \in N$ such that $B/A \simeq (C+xR)/A$ with C/A being n-1 generated. By induction, C/A is \aleph -fp, while by hypothesis (2), $R/x^{-1}C$ is \aleph -fp. Now, by the exact sequence $0 \longrightarrow C/A \longrightarrow (C+xR)/A \longrightarrow R/x^{-1}C \longrightarrow 0$ and Lemma 2.4 (2), (C+xR)/A is \aleph -fp.
- (1) \Rightarrow (3) Let $m \in M$, $x \in N$, $0 \le A \le N$ such that $(A + xR)/A \hookrightarrow mR$. By (1), (A + xR)/A is \aleph -fp. Hence, $x^{-1}A$ is \aleph -fg. Let $0 \le A < B \le N$, $0 \le A < C \le N$, $m \in M$ such that $B/A \hookrightarrow mR$, $C/A \hookrightarrow mR$ and also B/A, C/A are finitely generated. Now, considering the exact sequence

$$0 \to (B \cap C)/A \xrightarrow{f} B/A \oplus C/A \xrightarrow{g} (B+C)/A \to 0$$

where $f: \overline{d} \mapsto (\overline{d}, -\overline{d}), g: (\overline{b}, \overline{c}) \mapsto \overline{b} + \overline{c}$. Since B/A, C/A are finitely generated, $B/A \oplus C/A$ is finitely generated. Thus (B+C)/A is finitely generated. By (1), (B+C)/A is \aleph -fp. Thus $(B \cap C)/A$ is \aleph -fg by Lemma 2.3.

(3) \Rightarrow (1) Let $0 \le A < B \le N$, $m \in M$, $B/A \hookrightarrow mR$, with B/A finitely generated. We will show that B/A is \aleph -fp. Assume that B/A is n-generated. We use induction on n to show that B/A is \aleph -fp. Let n=1, then there exists $x \in N$ such that $B/A \simeq (A+xR)/A \simeq R/x^{-1}A$. By (3), $R/x^{-1}A$ is \aleph -fp. Let n>1 and assume that every n-1 generated submodule of mR is \aleph -fp. Since B/A is n-generated, there exist $A < C \le N$ and $x \in N$ such that $B/A \simeq (C+xR)/A$ with C/A being n-1 generated. By induction, C/A is \aleph -fp. By (3), $(C \cap (A+xR))/A$ is \aleph -fg. Then by the exact sequence

$$0 \longrightarrow (C \cap (A + xR))/A \longrightarrow C/A \oplus (A + xR)/A \longrightarrow (C + xR)/A \longrightarrow 0$$

and Lemma 2.4 (1), (C + xR)/A is \(\cdot\)-fp. Thus B/A is \(\cdot\)-fp. Hence (1) holds.

Corollary 3.8 For a right R-module M and a ring R, the following are equivalent:

- (1) R is \aleph -M-coherent.
- (2) For any $m \in M$, $A \leq R$ with $m^{\perp} \leq A$, and any $b \in R$, if A/m^{\perp} is finitely generated, then $b^{-1}A$ is \aleph -fg.

(3) For any $m \in M$ and $b \in R$, $b^{-1}m^{\perp}$ is \aleph -fg; and for any $m^{\perp} \leq A \leq R$, $m^{\perp} \leq B \leq R$ such that A/m^{\perp} and B/m^{\perp} are finitely generated, $(A \cap B)/m^{\perp}$ is \aleph -fg.

References

- [1] DAUNS J. Uniform dimensions and subdirect products [J]. Pacific J. Math., 1987, 126(1): 1–19.
- [2] DAUNS J. Subdirect products of injectives [J]. Comm. Algebra, 1989, 17(1): 179–196.
- [3] DAUNS J. Relative flatness and coherence [J]. Comm. Algebra, 2006, 34(1): 303-312.
- [4] LOUSTAUNAU P. Large subdirect products of projective modules [J]. Comm. Algebra, 1989, 17(1): 197–215.
- [5] OYONARTE L, TORRECILLAS B. Large subdirect products of flat modules [J]. Comm. Algebra, 1996, 24(4): 1389-1407.
- [6] WISBAUER R. Foundations of Module and Ring Theory [M]. Philadelphia: Gordon and Breach Science Publishers, 1991.