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Abstract In this paper, to make an analogy to the classical Schur inequalities, we establish sev-

eral ordering inequalities of Schur type with a parameter. As applications, some generalizations

of Schur type with parameter are obtained.
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1. Introduction

Let x, y, z ∈ R+, α ∈ R. Then
∑

xα(x − y)(x − z) ≥ 0. (1)

This is the famous Schur inequality. The ternary fundamental Schur forms were established

in [1, 2] to generalize the Schur inequality. We denote ternary fundamental symmetric forms as

σ1 = x1 + x2 + x3, σ2 = x1x2 + x2x3 + x3x1, σ3 = x1x2x3.

Then ternary fundamental Schur forms (which are formally different from the original forms in

[1, 2]) are

f
(m)
0,1 =

∑
xm−2

1 (x1 − x2)(x1 − x3) (m ≥ 2),

f
(m)
0,2 =

∑
xm−3

1 (x2 + x3)(x1 − x2)(x1 − x3) (m ≥ 3),

f
(m)
0,j = σm−2j

1 σj−3
2

∑
x2

1(x2 − x3)
2(x1 − x2)(x1 − x3) (3 ≤ j ≤ [

m

2
]),

f
(m)

0,[ m+2
2 ]

=
∑

(x2x3)
2m−5+(−1)m

4 (x2 + x3)
1−(−1)m

2 (x1 − x2)(x1 − x3) (m ≥ 4),

f
(m)
i,k = σi

3f
(m−3i)
0,k (5 ≤ 3i + 2 ≤ m, 1 ≤ k ≤ [

m − 3i + 2

2
]),

where
∑

denotes the cyclic sum for the variables (x1, x2, x3).

There are two fundamental lemmas which are already proved in [1, 2]:
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Lemma 1[1,2] Let x1, x2, x3 ≥ 0. Then

f
(n)
i,j ≥ 0. (2)

Lemma 2[1,2] Let f(x1, x2, x3) be a ternary symmetric form with degree n satisfying f(1, 1, 1) =

0. Then f can be uniquely written in the form of linear combination of {f (n)
i,j }.

A lot of difficult inequalities have been proved in [1, 2] by utilizing these two lemmas. We

will extend the fundamental Schur formal inequalities farther in order to prove the inequalities

with broader types.

2. Main results

Considering the inequality involving parameter u:

y1(x1 − ux2)(x1 − ux3) + y2(x2 − ux1)(x2 − ux3) + y3(x3 − ux1)(x3 − ux2) ≥ 0. (3)

Let ak, yk , xk ∈ R+, k = 1, 2, 3. Then we have the following

Theorem 1 Let u ≤ 1. If the sequence Y = [y1, y2, y3] and the sequence X = [x1, x2, x3]

are similarly ordered, namely, yi ≥ yj ≥ yk, xi ≥ xj ≥ xk (where (i, j, k) is a permutation of

(1, 2, 3)), then

S1(Y, X, u) =y1(x1 − ux2)(x1 − ux3) + y2(x2 − ux3)(x2 − ux1)+

y3(x3 − ux1)(x3 − ux2) ≥ 0, (4)

S2(Y, X, u) =
y1(x1 − ux2)(x1 − ux3)

x1
+

y2(x2 − ux3)(x2 − ux1)

x2
+

y3(x3 − ux1)(x3 − ux2)

x3
≥ 0, (5)

S3(Y, X, u) =y1(x2 + x3)(x1 − ux2)(x1 − ux3) + y2(x1 + x3)(x2 − ux3)×
(x2 − ux1) + y3(x1 + x2)(x3 − ux1)(x3 − ux2) ≥ 0, (6)

S4(Y, X, u) =
y1(x1 − ux2)(x1 − ux3)

x2 + x3
+

y2(x2 − ux3)(x2 − ux1)

x1 + x3
+

y3(x3 − ux1)(x3 − ux2)

x1 + x2
≥ 0, (7)

where equalities hold when u = 1, x1 = x2 = x3.

Proof Suppose that y1 ≥ y2 ≥ y3, x1 ≥ x2 ≥ x3 (otherwise we can do a repermutation to the

sequences Y and X) and let

y1 = a + b + c, y2 = a + b, y3 = a, x1 = x + y + z, x2 = x + y, x3 = x, u = 1 − v

(a, b, c, x, y, z, v ≥ 0).

Thus S1(Y, X, u) transforms into a polynomial in a, b, c

S1(Y, X, u) =[z2 + y2 + zy + (3x2 + 4yx + 2xz + y2 + zy)v2]a + [x(2y + 2x + z)v2+

(xz + 2zy + 2y2 + 2yx)v + z2]b + [x(x + y)v2 + z(y + z)+

(2xz + yx + zy + y2)v]c ≥ 0.
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Removing the denominators, S2(Y, X, u) is also transformed into a polynomial in a, b, c,

denoted as S̃2(Y, X, u):

S̃2(Y, X, u) =[8v2x3y + (6v2 − 6v + 3)zy2x + 3v2x4 + (v − 1)2z2y2 + 4v2x3z+

(8v2 − 2v + 1)y2x2 + (2v2 − 2v + 1)z2x2 + 2(v − 1)2y3z + (v − 1)2y4+

(2v2 − 2v + 1)z2xy + (4v2 − 4v + 2)y3x + (8v2 − 2v + 1)zyx2]a+

[2v2x4 + 3xy2zv + xz2yv + 2v(2 + v)y2x2 + v(1 + 2v)zx3 + 2v(2 + v)×
zyx2 + 2xy3v + (v2 − v + 1)z2x2 + 2v(1 + 2v)x3y)]b + [v(2 + v)y2x2+

2vx3z + v(1 + 2v)x3y + vxy3 + xz2y + z2x2 + (v + 1)zy2x + v2x4+

(1 + 3v)zyx2]c.

And S3(Y, X, u) is transformed into a polynomial in a, b, c.

S3(Y, X, u) =[12v2x2y + (3v2 − 3v + 3)y2z + (2v2 − 2v + 2)z2x + (v2 − v + 1)z2y+

(8v2 − 2v + 2)zyx + 6v2x2z + (2v2 − 2v + 2)y3 + (8v2 − 2v + 2)xy2+

6v2x3]a + [2v(3v + 2)x2y + 2v(3 + v)zyx + vz2y + 3vy2z + 2v(3+

v)xy2 + 4v2x3 + 2vy3 + (v2 − v + 2)z2x + v(3v + 2)x2z]b + [v(3+

v)xy2 + (v + 1)y2z + 2v2x3 + 2z2x + 4vzx2 + (4v + 2)zyx + yz2+

vy3 + v(3v + 2)x2y]c.

The above expressions in every ′[ ]′ can be regarded as the polynomials in x, y, z, whose coeffi-

cients are expressions in v with degree less than 2. Obviously, these expressions are nonnegative.

Then S2(Y, X, u) ≥ 0 and S3(Y, X, u) ≥ 0.

4) It is clear that after removing the denominators, S4(Y, X, u) transforms into a polynomial

in a, b, c and then S4(Y, X, u) ≥ 0.

Thus Theorem 1 is verified.

Remark During the proof, we use the order ‘expand’ and ‘collect’ in Maplesoft.

Theorem 2 Let u ≥ 1. If the sequence Y = [y1, y2, y3] and the sequence X = [x1, x2, x3]

are oppositely ordered, namely, yi ≥ yj ≥ yk, xi ≤ xj ≤ xk, where (i, j, k) is a permutation of

(1, 2, 3), then

S1(Y, X, u) =y1(x1 − ux2)(x1 − ux3) + y2(x2 − ux3)(x2 − ux1)+

y3(x3 − ux1)(x3 − ux2) ≥ 0, (8)

S2(Y, X, u) =
y1(x1 − ux2)(x1 − ux3)

x1
+

y2(x2 − ux3)(x2 − ux1)

x2
+

y3(x3 − ux1)(x3 − ux2)

x3
≥ 0, (9)

S3(Y, X, u) =y1(x2 + x3)(x1 − ux2)(x1 − ux3) + y2(x1 + x3)(x2 − ux3)×
(x2 − ux1) + y3(x1 + x2)(x3 − ux1)(x3 − ux2) ≥ 0, (10)
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S4(Y, X, u) =
y1(x1 − ux2)(x1 − ux3)

x2 + x3
+

y2(x2 − ux3)(x2 − ux1)

x1 + x3
+

y3(x3 − ux1)(x3 − ux2)

x1 + x2
≥ 0, (11)

where equalities hold when u = 1, x1 = x2 = x3.

Proof Suppose that y1 ≥ y2 ≥ y3, x1 ≤ x2 ≤ x3 (otherwise the orders of sequences Y, X can be

repermuted). Let

y1 = a + b + c, y2 = a + b, y3 = a, x3 = x + y + z, x2 = x + y, x1 = x, u = 1 + v

(a, b, c, x, y, z, v ≥ 0).

And by removing the denominators, S1(Y, X, u), S2(Y, X, u) and S3(Y, X, u) transform into

polynomials in a, b, c. Analogously, we can easily have S1(Y, X, u) ≥ 0, S2(Y, X, u) ≥ 0,

S3(Y, X, u) ≥ 0. The most difficult part is to prove S4(Y, X, u) ≥ 0. By reducing the frac-

tions to a common denominator and removing the denominators in S4(Y, X, u), we get a new

expression denoted as S̃4(Y, X, u):

S̃4(Y, X, u) =[(29v2 − 4v + 4)zx2y + (v − 1)2y4 + (15v2 − 9v + 6)zxy2 + 32v2x3y+

16v2x3z + (29v2 − 4v + 4)y2x2 + 2(v − 1)2zy3 + (5v2 − 7v + 10)z2xy+

12v2x4 + (10v2 − 6v + 4)xy3 + z2((z − vy/2 − xv)2 + 5(y − 3vy/10)2+

(2x − xv)2 + 30(vy/10− vx/6)2 + 13v2x2/6 + 4zx + 4zy)]a + (y+

2x) · [4v2x3 + (1 + v2)y3 + v(2v + 1)y2z + v(2 + 9v)x2y + 2v(v + 1)xz2+

(6v2 + 2v + 2)y2x + 2v(2 + 3v)x2z + 2v(4v + 3)xyz + v(v + 1)z2y]b+

[(y + 2x)(2x + y + z)(y + vy + xv)(xv + vy + vz + y + z)]c.

It is clear that S4(Y, X, u) ≥ 0.

Thus Theorem 2 is verified.

It is obvious that Theorems 1 and 2 are the generalizations of Schur inequality (1). We call

them Schur formal ordering inequalities involving parameter.

When the sequence Y = [y1, y2, y3] and the sequence X = [x1, x2, x3] are similarly ordered,

the sequence A = [y2 + y3, y3 + y1, y1 + y2] and the sequence X = [x1, x2, x3] are oppositely

ordered. When the sequence Y = [y1, y2, y3] and the sequence X = [x1, x2, x3] are oppositely

ordered, the sequence A = [y2+y3, y3+y1, y1+y2] and the sequence X = [x1, x2, x3] are similarly

ordered. Then we have

Corollary If u ≤ 1, and the sequence Y = [y1, y2, y3] and the sequence X = [x1, x2, x3] have

the reverse order, or if u ≥ 1, and the sequence Y = [y1, y2, y3] and the sequence X = [x1, x2, x3]

are similarly ordered, then

C1(Y, X, u) =(y2 + y3)(x1 − ux2)(x1 − ux3) + (y1 + y3)(x2 − ux3)(x2 − ux1)+

(y1 + y2)(x3 − ux1)(x3 − ux2) ≥ 0, (12)
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C2(Y, X, u) =
(y2 + y3)(x1 − ux2)(x1 − ux3)

x1
+

(y1 + y3)(x2 − ux3)(x2 − ux1)

x2
+

(y1 + y2)(x3 − ux1)(x3 − ux2)

x3
≥ 0, (13)

C3(Y, X, u) =(y2 + y3)(x2 + x3)(x1 − ux2)(x1 − ux3) + (y1 + y3)(x1 + x3)(x2−
ux3) · (x2 − ux1) + (y1 + y2)(x1 + x2)(x3 − ux1)(x3 − ux2) ≥ 0, (14)

C4(Y, X, u) =
(y2 + y3)(x1 − ux2)(x1 − ux3)

x2 + x3
+

(y1 + y3)(x2 − ux3)(x2 − ux1)

x1 + x3
+

(y1 + y2)(x3 − ux1)(x3 − ux2)

x1 + x2
≥ 0, (15)

where equalities hold when u = 1, x1 = x2 = x3.

Theorem 3[3] Let u = 1. If x1 ≥ x2 ≥ x3, and
√

y1 +
√

y3 ≥ √
y2, then

S1(Y, X, 1) =y1(x1 − x2)(x1 − x3) + y2(x2 − x3)(x2 − x1)+

y3(x3 − x1)(x3 − x2) ≥ 0, (16)

S2(Y, X, 1) =
y1(x1 − x2)(x1 − x3)

x1
+

y2(x2 − x3)(x2 − x1)

x2

y3(x3 − x2)(x3 − x1)

x3
≥ 0, (17)

S4(Y, X, 1) =
y1(x1 − x2)(x1 − x3)

x2 + x3
+

y2(x2 − x3)(x2 − x1)

x1 + x3
+

y3(x3 − x1)(x3 − x2)

x1 + x2
≥ 0, (18)

where equalities hold when x1 = x2 = x3.

Proof Let

y1 = a2, y3 = c2, y2 = (a + c)2 − b, x1 = x + y + z, x2 = x + y, x3 = x, (a, b, c, x, y, z ≥ 0).

Substituting y1, y3, y2, x1, x2, x3 into S1(Y, X, 1), S2(Y, X, 1), S4(Y, X, 1) gives

S1(Y, X, 1) = (az − cy)2 + byz ≥ 0;

S2(Y, X, 1) =
(axz − y2c − xyc − ycz)2 + (zyx2 + (yz2 + zy2)x)b

x1x2x3
≥ 0;

S4(Y, X, 1) =
[z(z + 2x + 2y)a − y(y + 2x)c]2 + zy(y + 2x)(z + 2x + 2y)b

(x1 + x2)(x2 + x3)(x3 + x1)
≥ 0.

The proof is completed.

3. Applications

In this section, we utilize the results in Section 2 to construct a series of beautiful inequalities.

Proposition 1 If u = 1, k ∈ R, or u < 1, k ≥ −1, or u > 1, k ≤ 0, then
∑

xk(x − uy)(x − uz) ≥ 0. (19)
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The equality holds when u = 1, x = y = z.

Proof When u = 1, k ∈ R, (19) is Schur inequality (1). And when k ≥ 0, [xk, yk, zk] and

[x, y, z] have the same order. Otherwise, when k ≤ 0, [xk, yk, zk] and [x, y, z] are oppositely

ordered. Then according to (4), (8) in Theorems 1 and 2, (19) holds when u < 1, k ≥ −1 or

u > 1, k ≤ 0.

The proofs of the following propositions are all similar to the one of Proposition 1, and will

be omitted.

Proposition 2 If u = 1, k ∈ R, or u < 1, k ≥ 1,or u > 1, k ≤ 0, then
∑

ykzk(x − uy)(x − uz) ≥ 0. (20)

Proposition 3 If u = 1, k ∈ R, or u < 1, k ≥ 0, or u > 1, k ≤ 0, then
∑

xk(y + z)(x − uy)(x − uz) ≥ 0. (21)

Proposition 4 If u = 1, k ∈ R, or u < 1, k ≤ 0, or u > 1, k ≥ 0, then
∑

ykzk(x + y)(x − uy)(x − uz) ≥ 0. (22)

Proposition 5 If u = 1, k ∈ R, or u < 1, k ≤ 0, or u > 1, k ≥ 0, then
∑

(yk + zk)(x − uy)(x − uz) ≥ 0. (23)
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