Schur Formal Ordering Inequalities Involving Parameter

CHEN Sheng Li, YAO Yong, XU Jia
(Chengdu Institute of Computer Applications, Chinese Academy of Science, Sichuan 610041, China)
(E-mail: yaoyong@casit.ac.cn)

Abstract

In this paper, to make an analogy to the classical Schur inequalities, we establish several ordering inequalities of Schur type with a parameter. As applications, some generalizations of Schur type with parameter are obtained.

Keywords Schur inequality; fundamental Schur forms; ordering inequality.
Document code A
MR(2000) Subject Classification 26D05
Chinese Library Classification O174.1

1. Introduction

Let $x, y, z \in R^{+}, \alpha \in R$. Then

$$
\begin{equation*}
\sum x^{\alpha}(x-y)(x-z) \geq 0 \tag{1}
\end{equation*}
$$

This is the famous Schur inequality. The ternary fundamental Schur forms were established in $[1,2]$ to generalize the Schur inequality. We denote ternary fundamental symmetric forms as

$$
\sigma_{1}=x_{1}+x_{2}+x_{3}, \sigma_{2}=x_{1} x_{2}+x_{2} x_{3}+x_{3} x_{1}, \sigma_{3}=x_{1} x_{2} x_{3}
$$

Then ternary fundamental Schur forms (which are formally different from the original forms in $[1,2])$ are

$$
\begin{aligned}
f_{0,1}^{(m)} & =\sum x_{1}^{m-2}\left(x_{1}-x_{2}\right)\left(x_{1}-x_{3}\right) \quad(m \geq 2), \\
f_{0,2}^{(m)} & =\sum x_{1}^{m-3}\left(x_{2}+x_{3}\right)\left(x_{1}-x_{2}\right)\left(x_{1}-x_{3}\right) \quad(m \geq 3), \\
f_{0, j}^{(m)} & =\sigma_{1}^{m-2 j} \sigma_{2}^{j-3} \sum x_{1}^{2}\left(x_{2}-x_{3}\right)^{2}\left(x_{1}-x_{2}\right)\left(x_{1}-x_{3}\right) \quad\left(3 \leq j \leq\left[\frac{m}{2}\right]\right), \\
f_{0,\left[\frac{m+2}{2}\right]}^{(m)} & =\sum\left(x_{2} x_{3}\right)^{\frac{2 m-5+(-1)^{m}}{4}}\left(x_{2}+x_{3}\right)^{\frac{1-(-1)^{m}}{2}}\left(x_{1}-x_{2}\right)\left(x_{1}-x_{3}\right) \quad(m \geq 4), \\
f_{i, k}^{(m)} & =\sigma_{3}^{i} f_{0, k}^{(m-3 i)} \quad\left(5 \leq 3 i+2 \leq m, 1 \leq k \leq\left[\frac{m-3 i+2}{2}\right]\right),
\end{aligned}
$$

where \sum denotes the cyclic sum for the variables $\left(x_{1}, x_{2}, x_{3}\right)$.
There are two fundamental lemmas which are already proved in [1, 2]:
Received date: 2006-11-06; Accepted date: 2007-03-23
Foundation item: the 973 Project of China (No. NKBRPC-2004CB318003); the Knowledge Innovation of Chinese Academy of Sciences (No. KJCX2-YW-S02).

Lemma $1^{[1,2]}$ Let $x_{1}, x_{2}, x_{3} \geq 0$. Then

$$
\begin{equation*}
f_{i, j}^{(n)} \geq 0 \tag{2}
\end{equation*}
$$

Lemma $2^{[1,2]}$ Let $f\left(x_{1}, x_{2}, x_{3}\right)$ be a ternary symmetric form with degree n satisfying $f(1,1,1)=$ 0 . Then f can be uniquely written in the form of linear combination of $\left\{f_{i, j}^{(n)}\right\}$.

A lot of difficult inequalities have been proved in [1, 2] by utilizing these two lemmas. We will extend the fundamental Schur formal inequalities farther in order to prove the inequalities with broader types.

2. Main results

Considering the inequality involving parameter u :

$$
\begin{equation*}
y_{1}\left(x_{1}-u x_{2}\right)\left(x_{1}-u x_{3}\right)+y_{2}\left(x_{2}-u x_{1}\right)\left(x_{2}-u x_{3}\right)+y_{3}\left(x_{3}-u x_{1}\right)\left(x_{3}-u x_{2}\right) \geq 0 \tag{3}
\end{equation*}
$$

Let $a_{k}, y_{k}, x_{k} \in R^{+}, k=1,2,3$. Then we have the following
Theorem 1 Let $u \leq 1$. If the sequence $Y=\left[y_{1}, y_{2}, y_{3}\right]$ and the sequence $X=\left[x_{1}, x_{2}, x_{3}\right]$ are similarly ordered, namely, $y_{i} \geq y_{j} \geq y_{k}, x_{i} \geq x_{j} \geq x_{k}$ (where (i, j, k) is a permutation of $(1,2,3))$, then

$$
\begin{align*}
S_{1}(Y, X, u)= & y_{1}\left(x_{1}-u x_{2}\right)\left(x_{1}-u x_{3}\right)+y_{2}\left(x_{2}-u x_{3}\right)\left(x_{2}-u x_{1}\right)+ \\
& y_{3}\left(x_{3}-u x_{1}\right)\left(x_{3}-u x_{2}\right) \geq 0, \tag{4}\\
S_{2}(Y, X, u)= & \frac{y_{1}\left(x_{1}-u x_{2}\right)\left(x_{1}-u x_{3}\right)}{x_{1}}+\frac{y_{2}\left(x_{2}-u x_{3}\right)\left(x_{2}-u x_{1}\right)}{x_{2}}+ \\
& \frac{y_{3}\left(x_{3}-u x_{1}\right)\left(x_{3}-u x_{2}\right)}{x_{3}} \geq 0, \tag{5}\\
S_{3}(Y, X, u)= & y_{1}\left(x_{2}+x_{3}\right)\left(x_{1}-u x_{2}\right)\left(x_{1}-u x_{3}\right)+y_{2}\left(x_{1}+x_{3}\right)\left(x_{2}-u x_{3}\right) \times \\
& \left(x_{2}-u x_{1}\right)+y_{3}\left(x_{1}+x_{2}\right)\left(x_{3}-u x_{1}\right)\left(x_{3}-u x_{2}\right) \geq 0, \tag{6}\\
S_{4}(Y, X, u)= & \frac{y_{1}\left(x_{1}-u x_{2}\right)\left(x_{1}-u x_{3}\right)}{x_{2}+x_{3}}+\frac{y_{2}\left(x_{2}-u x_{3}\right)\left(x_{2}-u x_{1}\right)}{x_{1}+x_{3}}+ \\
& \frac{y_{3}\left(x_{3}-u x_{1}\right)\left(x_{3}-u x_{2}\right)}{x_{1}+x_{2}} \geq 0, \tag{7}
\end{align*}
$$

where equalities hold when $u=1, x_{1}=x_{2}=x_{3}$.
Proof Suppose that $y_{1} \geq y_{2} \geq y_{3}, x_{1} \geq x_{2} \geq x_{3}$ (otherwise we can do a repermutation to the sequences Y and X) and let

$$
y_{1}=a+b+c, y_{2}=a+b, y_{3}=a, x_{1}=x+y+z, x_{2}=x+y, x_{3}=x, u=1-v
$$

$(a, b, c, x, y, z, v \geq 0)$.
Thus $S_{1}(Y, X, u)$ transforms into a polynomial in a, b, c

$$
\begin{aligned}
S_{1}(Y, X, u)= & {\left[z^{2}+y^{2}+z y+\left(3 x^{2}+4 y x+2 x z+y^{2}+z y\right) v^{2}\right] a+\left[x(2 y+2 x+z) v^{2}+\right.} \\
& \left.\left(x z+2 z y+2 y^{2}+2 y x\right) v+z^{2}\right] b+\left[x(x+y) v^{2}+z(y+z)+\right. \\
& \left.\left(2 x z+y x+z y+y^{2}\right) v\right] c \geq 0 .
\end{aligned}
$$

Removing the denominators, $S_{2}(Y, X, u)$ is also transformed into a polynomial in a, b, c, denoted as $\tilde{S}_{2}(Y, X, u)$:

$$
\begin{aligned}
\tilde{S}_{2}(Y, X, u)= & {\left[8 v^{2} x^{3} y+\left(6 v^{2}-6 v+3\right) z y^{2} x+3 v^{2} x^{4}+(v-1)^{2} z^{2} y^{2}+4 v^{2} x^{3} z+\right.} \\
& \left(8 v^{2}-2 v+1\right) y^{2} x^{2}+\left(2 v^{2}-2 v+1\right) z^{2} x^{2}+2(v-1)^{2} y^{3} z+(v-1)^{2} y^{4}+ \\
& \left.\left(2 v^{2}-2 v+1\right) z^{2} x y+\left(4 v^{2}-4 v+2\right) y^{3} x+\left(8 v^{2}-2 v+1\right) z y x^{2}\right] a+ \\
& {\left[2 v^{2} x^{4}+3 x y^{2} z v+x z^{2} y v+2 v(2+v) y^{2} x^{2}+v(1+2 v) z x^{3}+2 v(2+v) \times\right.} \\
& \left.\left.z y x^{2}+2 x y^{3} v+\left(v^{2}-v+1\right) z^{2} x^{2}+2 v(1+2 v) x^{3} y\right)\right] b+\left[v(2+v) y^{2} x^{2}+\right. \\
& 2 v x^{3} z+v(1+2 v) x^{3} y+v x y^{3}+x z^{2} y+z^{2} x^{2}+(v+1) z y^{2} x+v^{2} x^{4}+ \\
& \left.(1+3 v) z y x^{2}\right] c .
\end{aligned}
$$

And $S_{3}(Y, X, u)$ is transformed into a polynomial in a, b, c.

$$
\begin{aligned}
S_{3}(Y, X, u)= & {\left[12 v^{2} x^{2} y+\left(3 v^{2}-3 v+3\right) y^{2} z+\left(2 v^{2}-2 v+2\right) z^{2} x+\left(v^{2}-v+1\right) z^{2} y+\right.} \\
& \left(8 v^{2}-2 v+2\right) z y x+6 v^{2} x^{2} z+\left(2 v^{2}-2 v+2\right) y^{3}+\left(8 v^{2}-2 v+2\right) x y^{2}+ \\
& \left.6 v^{2} x^{3}\right] a+\left[2 v(3 v+2) x^{2} y+2 v(3+v) z y x+v z^{2} y+3 v y^{2} z+2 v(3+\right. \\
& \left.v) x y^{2}+4 v^{2} x^{3}+2 v y^{3}+\left(v^{2}-v+2\right) z^{2} x+v(3 v+2) x^{2} z\right] b+[v(3+ \\
& v) x y^{2}+(v+1) y^{2} z+2 v^{2} x^{3}+2 z^{2} x+4 v z x^{2}+(4 v+2) z y x+y z^{2}+ \\
& \left.v y^{3}+v(3 v+2) x^{2} y\right] c .
\end{aligned}
$$

The above expressions in every ${ }^{\prime}[]^{\prime}$ can be regarded as the polynomials in x, y, z, whose coefficients are expressions in v with degree less than 2. Obviously, these expressions are nonnegative. Then $S_{2}(Y, X, u) \geq 0$ and $S_{3}(Y, X, u) \geq 0$.
4) It is clear that after removing the denominators, $S_{4}(Y, X, u)$ transforms into a polynomial in a, b, c and then $S_{4}(Y, X, u) \geq 0$.

Thus Theorem 1 is verified.
Remark During the proof, we use the order 'expand' and 'collect' in Maplesoft.
Theorem 2 Let $u \geq 1$. If the sequence $Y=\left[y_{1}, y_{2}, y_{3}\right]$ and the sequence $X=\left[x_{1}, x_{2}, x_{3}\right]$ are oppositely ordered, namely, $y_{i} \geq y_{j} \geq y_{k}, x_{i} \leq x_{j} \leq x_{k}$, where (i, j, k) is a permutation of $(1,2,3)$, then

$$
\begin{align*}
S_{1}(Y, X, u)= & y_{1}\left(x_{1}-u x_{2}\right)\left(x_{1}-u x_{3}\right)+y_{2}\left(x_{2}-u x_{3}\right)\left(x_{2}-u x_{1}\right)+ \\
& y_{3}\left(x_{3}-u x_{1}\right)\left(x_{3}-u x_{2}\right) \geq 0 \tag{8}\\
S_{2}(Y, X, u)= & \frac{y_{1}\left(x_{1}-u x_{2}\right)\left(x_{1}-u x_{3}\right)}{x_{1}}+\frac{y_{2}\left(x_{2}-u x_{3}\right)\left(x_{2}-u x_{1}\right)}{x_{2}}+ \\
& \frac{y_{3}\left(x_{3}-u x_{1}\right)\left(x_{3}-u x_{2}\right)}{x_{3}} \geq 0 \tag{9}\\
S_{3}(Y, X, u)= & y_{1}\left(x_{2}+x_{3}\right)\left(x_{1}-u x_{2}\right)\left(x_{1}-u x_{3}\right)+y_{2}\left(x_{1}+x_{3}\right)\left(x_{2}-u x_{3}\right) \times \\
& \left(x_{2}-u x_{1}\right)+y_{3}\left(x_{1}+x_{2}\right)\left(x_{3}-u x_{1}\right)\left(x_{3}-u x_{2}\right) \geq 0 \tag{10}
\end{align*}
$$

$$
\begin{align*}
S_{4}(Y, X, u)= & \frac{y_{1}\left(x_{1}-u x_{2}\right)\left(x_{1}-u x_{3}\right)}{x_{2}+x_{3}}+\frac{y_{2}\left(x_{2}-u x_{3}\right)\left(x_{2}-u x_{1}\right)}{x_{1}+x_{3}}+ \\
& \frac{y_{3}\left(x_{3}-u x_{1}\right)\left(x_{3}-u x_{2}\right)}{x_{1}+x_{2}} \geq 0 \tag{11}
\end{align*}
$$

where equalities hold when $u=1, x_{1}=x_{2}=x_{3}$.
Proof Suppose that $y_{1} \geq y_{2} \geq y_{3}, x_{1} \leq x_{2} \leq x_{3}$ (otherwise the orders of sequences Y, X can be repermuted). Let

$$
y_{1}=a+b+c, y_{2}=a+b, y_{3}=a, x_{3}=x+y+z, x_{2}=x+y, x_{1}=x, u=1+v
$$

$(a, b, c, x, y, z, v \geq 0)$.
And by removing the denominators, $S_{1}(Y, X, u), S_{2}(Y, X, u)$ and $S_{3}(Y, X, u)$ transform into polynomials in a, b, c. Analogously, we can easily have $S_{1}(Y, X, u) \geq 0, S_{2}(Y, X, u) \geq 0$, $S_{3}(Y, X, u) \geq 0$. The most difficult part is to prove $S_{4}(Y, X, u) \geq 0$. By reducing the fractions to a common denominator and removing the denominators in $S_{4}(Y, X, u)$, we get a new expression denoted as $\tilde{S}_{4}(Y, X, u)$:

$$
\begin{aligned}
\tilde{S}_{4}(Y, X, u)= & {\left[\left(29 v^{2}-4 v+4\right) z x^{2} y+(v-1)^{2} y^{4}+\left(15 v^{2}-9 v+6\right) z x y^{2}+32 v^{2} x^{3} y+\right.} \\
& 16 v^{2} x^{3} z+\left(29 v^{2}-4 v+4\right) y^{2} x^{2}+2(v-1)^{2} z y^{3}+\left(5 v^{2}-7 v+10\right) z^{2} x y+ \\
& 12 v^{2} x^{4}+\left(10 v^{2}-6 v+4\right) x y^{3}+z^{2}\left((z-v y / 2-x v)^{2}+5(y-3 v y / 10)^{2}+\right. \\
& \left.\left.(2 x-x v)^{2}+30(v y / 10-v x / 6)^{2}+13 v^{2} x^{2} / 6+4 z x+4 z y\right)\right] a+(y+ \\
& 2 x) \cdot\left[4 v^{2} x^{3}+\left(1+v^{2}\right) y^{3}+v(2 v+1) y^{2} z+v(2+9 v) x^{2} y+2 v(v+1) x z^{2}+\right. \\
& \left.\left(6 v^{2}+2 v+2\right) y^{2} x+2 v(2+3 v) x^{2} z+2 v(4 v+3) x y z+v(v+1) z^{2} y\right] b+ \\
& {[(y+2 x)(2 x+y+z)(y+v y+x v)(x v+v y+v z+y+z)] c . }
\end{aligned}
$$

It is clear that $S_{4}(Y, X, u) \geq 0$.
Thus Theorem 2 is verified.
It is obvious that Theorems 1 and 2 are the generalizations of Schur inequality (1). We call them Schur formal ordering inequalities involving parameter.

When the sequence $Y=\left[y_{1}, y_{2}, y_{3}\right]$ and the sequence $X=\left[x_{1}, x_{2}, x_{3}\right]$ are similarly ordered, the sequence $A=\left[y_{2}+y_{3}, y_{3}+y_{1}, y_{1}+y_{2}\right]$ and the sequence $X=\left[x_{1}, x_{2}, x_{3}\right]$ are oppositely ordered. When the sequence $Y=\left[y_{1}, y_{2}, y_{3}\right]$ and the sequence $X=\left[x_{1}, x_{2}, x_{3}\right]$ are oppositely ordered, the sequence $A=\left[y_{2}+y_{3}, y_{3}+y_{1}, y_{1}+y_{2}\right]$ and the sequence $X=\left[x_{1}, x_{2}, x_{3}\right]$ are similarly ordered. Then we have

Corollary If $u \leq 1$, and the sequence $Y=\left[y_{1}, y_{2}, y_{3}\right]$ and the sequence $X=\left[x_{1}, x_{2}, x_{3}\right]$ have the reverse order, or if $u \geq 1$, and the sequence $Y=\left[y_{1}, y_{2}, y_{3}\right]$ and the sequence $X=\left[x_{1}, x_{2}, x_{3}\right]$ are similarly ordered, then

$$
\begin{align*}
C_{1}(Y, X, u)= & \left(y_{2}+y_{3}\right)\left(x_{1}-u x_{2}\right)\left(x_{1}-u x_{3}\right)+\left(y_{1}+y_{3}\right)\left(x_{2}-u x_{3}\right)\left(x_{2}-u x_{1}\right)+ \\
& \left(y_{1}+y_{2}\right)\left(x_{3}-u x_{1}\right)\left(x_{3}-u x_{2}\right) \geq 0 \tag{12}
\end{align*}
$$

$$
\begin{align*}
C_{2}(Y, X, u)= & \frac{\left(y_{2}+y_{3}\right)\left(x_{1}-u x_{2}\right)\left(x_{1}-u x_{3}\right)}{x_{1}}+\frac{\left(y_{1}+y_{3}\right)\left(x_{2}-u x_{3}\right)\left(x_{2}-u x_{1}\right)}{x_{2}}+ \\
& \frac{\left(y_{1}+y_{2}\right)\left(x_{3}-u x_{1}\right)\left(x_{3}-u x_{2}\right)}{x_{3}} \geq 0, \tag{13}\\
C_{3}(Y, X, u)= & \left(y_{2}+y_{3}\right)\left(x_{2}+x_{3}\right)\left(x_{1}-u x_{2}\right)\left(x_{1}-u x_{3}\right)+\left(y_{1}+y_{3}\right)\left(x_{1}+x_{3}\right)\left(x_{2}-\right. \\
& \left.u x_{3}\right) \cdot\left(x_{2}-u x_{1}\right)+\left(y_{1}+y_{2}\right)\left(x_{1}+x_{2}\right)\left(x_{3}-u x_{1}\right)\left(x_{3}-u x_{2}\right) \geq 0, \tag{14}\\
C_{4}(Y, X, u)= & \frac{\left(y_{2}+y_{3}\right)\left(x_{1}-u x_{2}\right)\left(x_{1}-u x_{3}\right)}{x_{2}+x_{3}}+\frac{\left(y_{1}+y_{3}\right)\left(x_{2}-u x_{3}\right)\left(x_{2}-u x_{1}\right)}{x_{1}+x_{3}}+ \\
& \frac{\left(y_{1}+y_{2}\right)\left(x_{3}-u x_{1}\right)\left(x_{3}-u x_{2}\right)}{x_{1}+x_{2}} \geq 0, \tag{15}
\end{align*}
$$

where equalities hold when $u=1, x_{1}=x_{2}=x_{3}$.
Theorem $3^{[3]}$ Let $u=1$. If $x_{1} \geq x_{2} \geq x_{3}$, and $\sqrt{y_{1}}+\sqrt{y_{3}} \geq \sqrt{y_{2}}$, then

$$
\begin{align*}
S_{1}(Y, X, 1)= & y_{1}\left(x_{1}-x_{2}\right)\left(x_{1}-x_{3}\right)+y_{2}\left(x_{2}-x_{3}\right)\left(x_{2}-x_{1}\right)+ \\
& y_{3}\left(x_{3}-x_{1}\right)\left(x_{3}-x_{2}\right) \geq 0, \tag{16}\\
S_{2}(Y, X, 1)= & \frac{y_{1}\left(x_{1}-x_{2}\right)\left(x_{1}-x_{3}\right)}{x_{1}}+\frac{y_{2}\left(x_{2}-x_{3}\right)\left(x_{2}-x_{1}\right)}{x_{2}} \\
& \frac{y_{3}\left(x_{3}-x_{2}\right)\left(x_{3}-x_{1}\right)}{x_{3}} \geq 0, \tag{17}\\
S_{4}(Y, X, 1)= & \frac{y_{1}\left(x_{1}-x_{2}\right)\left(x_{1}-x_{3}\right)}{x_{2}+x_{3}}+\frac{y_{2}\left(x_{2}-x_{3}\right)\left(x_{2}-x_{1}\right)}{x_{1}+x_{3}}+ \\
& \frac{y_{3}\left(x_{3}-x_{1}\right)\left(x_{3}-x_{2}\right)}{x_{1}+x_{2}} \geq 0, \tag{18}
\end{align*}
$$

where equalities hold when $x_{1}=x_{2}=x_{3}$.
Proof Let

$$
y_{1}=a^{2}, y_{3}=c^{2}, y_{2}=(a+c)^{2}-b, x_{1}=x+y+z, x_{2}=x+y, x_{3}=x,(a, b, c, x, y, z \geq 0)
$$

Substituting $y_{1}, y_{3}, y_{2}, x_{1}, x_{2}, x_{3}$ into $S_{1}(Y, X, 1), S_{2}(Y, X, 1), S_{4}(Y, X, 1)$ gives

$$
\begin{aligned}
& S_{1}(Y, X, 1)=(a z-c y)^{2}+b y z \geq 0 \\
& S_{2}(Y, X, 1)=\frac{\left(a x z-y^{2} c-x y c-y c z\right)^{2}+\left(z y x^{2}+\left(y z^{2}+z y^{2}\right) x\right) b}{x_{1} x_{2} x_{3}} \geq 0 \\
& S_{4}(Y, X, 1)=\frac{[z(z+2 x+2 y) a-y(y+2 x) c]^{2}+z y(y+2 x)(z+2 x+2 y) b}{\left(x_{1}+x_{2}\right)\left(x_{2}+x_{3}\right)\left(x_{3}+x_{1}\right)} \geq 0
\end{aligned}
$$

The proof is completed.

3. Applications

In this section, we utilize the results in Section 2 to construct a series of beautiful inequalities.
Proposition 1 If $u=1, k \in R$, or $u<1, k \geq-1$, or $u>1, k \leq 0$, then

$$
\begin{equation*}
\sum x^{k}(x-u y)(x-u z) \geq 0 \tag{19}
\end{equation*}
$$

The equality holds when $u=1, x=y=z$.
Proof When $u=1, k \in R$, (19) is Schur inequality (1). And when $k \geq 0,\left[x^{k}, y^{k}, z^{k}\right]$ and $[x, y, z]$ have the same order. Otherwise, when $k \leq 0,\left[x^{k}, y^{k}, z^{k}\right]$ and $[x, y, z]$ are oppositely ordered. Then according to (4), (8) in Theorems 1 and 2 , (19) holds when $u<1, k \geq-1$ or $u>1, k \leq 0$.

The proofs of the following propositions are all similar to the one of Proposition 1, and will be omitted.

Proposition 2 If $u=1, k \in R$, or $u<1, k \geq 1$, or $u>1, k \leq 0$, then

$$
\begin{equation*}
\sum y^{k} z^{k}(x-u y)(x-u z) \geq 0 \tag{20}
\end{equation*}
$$

Proposition 3 If $u=1, k \in R$, or $u<1, k \geq 0$, or $u>1, k \leq 0$, then

$$
\begin{equation*}
\sum x^{k}(y+z)(x-u y)(x-u z) \geq 0 \tag{21}
\end{equation*}
$$

Proposition 4 If $u=1, k \in R$, or $u<1, k \leq 0$, or $u>1, k \geq 0$, then

$$
\begin{equation*}
\sum y^{k} z^{k}(x+y)(x-u y)(x-u z) \geq 0 \tag{22}
\end{equation*}
$$

Proposition 5 If $u=1, k \in R$, or $u<1, k \leq 0$, or $u>1, k \geq 0$, then

$$
\begin{equation*}
\sum\left(y^{k}+z^{k}\right)(x-u y)(x-u z) \geq 0 \tag{23}
\end{equation*}
$$

References

[1] HUANG Fangjian, CHEN Shengli. Schur Partition for Symmetric Ternary Forms and Readable Proof to Inequalities [M]. ACM, New York, 2005.
[2] CHEN Shengli, HUANG Fangjian. Schur decomposition for symmetric ternary forms and readable proof to inequalities [J]. Acta Math. Sinica (Chin. Ser.), 2006, 49(3): 491-502.
[3] KUANG Jichang. Applied Inequalities (3rd Ed.) [M]. Ji'nan: Shandong Science and Technology Press, 2004. (in Chinese)

