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Abstract Partially linear varying coefficient model is a generalization of partially linear model
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1. Introduction

Over the last three decades, with the improvement of computing facilities, many useful semi-

parametric models have been proposed to capture the underlying relationships between response

variables and their associated covariates. Like parametric models, semiparametric models have

various forms, say, additive models, partially linear models, single-index models, varying coef-

ficient models and their hybrids. One popular semiparametric specification is partially linear

varying coefficient model which is a generalization of the partially linear model and varying co-

efficient regression model. The partially linear varying coefficient model assumes the following

structure:

yi = xT
i α(ui) + zT

i β + εi, i = 1, 2, . . . , n (1.1)

where y,
is are responses; xi = (xi1, xi2, . . . , xip)

T, zi = (zi1, zi2, . . . , ziq)
T and ui are associated

covariates; β = (β1, β2, . . . , βq)
T is a vector of q-dimensional unknown parameters and α(·) =

(α1(·), α1(·), . . . , αp(·))T is a p-dimensional vector of unknown functions and ε,
is are independent

random errors with E(εi|xi, zi, ui) = 0 and σ2(xi, zi, ui) = E[ε2
i |xi, zi, ui].

Obviously, model (1.1) is an extension of the varying coefficient model which was introduced

by Hastie and Tibshirani[1]. Due to its flexibility, varying coefficient model has been studied
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in many different contexts and has been successfully applied to nonlinear time series analysis,

longitudinal and functional data analysis, spatial data analysis, and time-varying models in

finance. See, for example, the work of Cai et al.[2,3], Fan and Zhang[4], Fotheringham et al.[5],

Hoover et al.[6] and Huang et al.[7] among others. When q = 1 and zi = 1, the model (1.1)

becomes a partially linear model, which was proposed by Engle et al.[8] when they studied the

effect of weather on electricity demand. Partially linear model has been widely studied among

statisticians and econometricians. More references and techniques can be found in Hardle et

al.[9,10]

Model (1.1) has been studied by many authors recently. Zhang et al.[11] developed the one-

stage and two-stage procedures to estimate linear part and nonparametric part. Zhou and You[12]

constructed estimators of the parametric and nonparametric components by wavelet procedure.

Xia et al.[13] proposed a new estimator for parametric component by local linear method. Ahmad

et al.[14] used a general series method to estimate unknown quantities in model (1.1). Fan and

Huang[15] introduced a profile least-squares approach and showed the estimator of parametric

component is root-n consistent. In addition, they proposed profile generalized likelihood ratio

statistics for testing problems on the parametric components.

Most of related works in literatures were focused on estimating unknown constant coefficients

β and coefficient functions αj(·) with homoscedastic errors. In this paper, we study the asymp-

totic properties of profile least-squares estimators of parametric and nonparametric components

with heteroscedastic errors.

The rest of this paper is organized as follows. In Section 2, we introduce the profile least-

squares procedure and construct the estimators. Large sample properties of the estimators are

derived in Section 3. Proofs of the main results are relegated to Section 5.

2. Profile least-squares estimation

For convenience, we first introduce the profile least-squares estimation. If β is known, the

model (1.1) can be written as

y∗

i = α1(ui)xi1 + · · · + αp(ui)xip + εi, i = 1, 2, . . . , n (2.1)

where y∗

i = yi − zT
i β. This transforms the partially linear varying coefficient model (1.1) into

the varying coefficient model (2.1). Now, we apply a local linear regression technique to estimate

the varying coefficient functions {αj(·), j = 1, 2, . . . , p}. For u in a small neighborhood of u0,

one can approximate αj(·) locally by a linear function

αj(u) ≈ αj(u0) + α′

j(u0)(u − u0), j = 1, 2, . . . , p. (2.2)

This leads to the following weighted local least-squares problems: find {(αj(u0), α
′

j(u0)), j =

1, 2, . . . , p} to minimize

n
∑

i=1

[

y∗

i −
p
∑

j=1

{αj(u0) + α′

j(u0)(u − u0)}xij

]2

Kh(ui − u0), (2.3)

where K is a kernel function, h is a bandwidth and Kh(·) = K(·/h)/h.
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and

ε = (ε1, . . . , εn)T,Wu0
= diag{Kh(u1 − u0), Kh(u1 − u0), . . . , Kh(un − u0)}.

Then model (2.1) can be written as

Y − Zβ = M + ε. (2.4)

The solution to the problem (2.3) is given by

[α̂1(u0), . . . , α̂p(u0), hα̂′

1(u0), · · · , hα̂′

p(u0)]
T = {DT

u0
Wu0

Du0
}−1DT

u0
Wu0

(Y − Zβ). (2.5)

Then the estimator for M is M̂ = S(Y − Zβ), where

S =
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





(xT
1 0){DT
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Wu1

Du1
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(xT
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}−1DT
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Wun















.

Substituting M̂ into (2.4), we can obtain the following linear regression model

(I − S)Y = (I − S)Zβ + ε. (2.6)

Applying the least-squares approach to model (2.6) results in the following profile least squares

estimator of parametric component β,

β̂ = [ZT(I − S)T(I− S)Z]−1ZT(I − S)T(I − S)Y. (2.7)

Moreover, the estimator of α(u) can be defined as

α̂(u) = (α̂1(u), . . . , α̂p(u))
T

= (Ip 0p){DT
uWuDu}−1DT

uWu(Y − Zβ̂). (2.8)

Let Ŷ = (ŷ1, ŷ2, . . . , ŷn)T be the vector of the fitted values of Y and ε̂ = (ε̂1, ε̂2, . . . , ε̂n)T be the

vector of residuals. Then according to the above fitting procedure and the results in (2.7) and

(2.8), we have

Ŷ = Xβ̂ + M̂ = LY and ε̂ = Y − Ŷ = (I − L)Y, (2.9)

where

L = S + (I − S)X[XT(I − S)T(I − S)X]−1XT(I − S)T(I − S).
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The above profile least-squares estimation depends on the choice of bandwidth. Here, we use

the Cross-Validation technique to choose bandwidth, and the optimal value of the bandwidth is

chosen to minimize the expression

CV (h) =

n
∑

i=1

( ε̂i

1 − lii

)2

,

where ε̂i and lii (i = 1, 2, . . . , n) are respectively the residuals and the diagonal elements of the

matrix L which are shown in (2.9).

3. Asymptotic properties of proposed estimators

We begin with the following assumptions required to derive the large sample property of the

estimators descried in the last section, which are quite mild and can be easily satisfied. Let µi =
∫

tiK(t)dt, νi =
∫

tiK2(t)dt, Γ(U) = E(xxT|U), Φ(U) = E(xzT|U), Z̄ = (z̄1, z̄2, . . . , z̄n)T =

(I − S)Z and Ȳ = (ȳ1, ȳ2, . . . , ȳn)T = (I − S)Y.

Assumption 3.1 The random variable u has a bounded support Ω. Its density function f(·)
is Lipschitz continuous and bounded away from 0 on its support.

Assumption 3.2 The q × q matrix E(xxT|u) is non-singular for each u ∈ Ω. E(xxT|u),

E(xxT|u)−1 and E(xzT|u) are all Lipschitz continuous.

Assumption 3.3 There is an s > 2 such that E ‖ x ‖2s< ∞, E ‖ z ‖2s< ∞ and n2k−1h → ∞
for some k < 2 − s−1.

Assumption 3.4 {αj(·), j = 1, . . . , p} have continuous second derivative in u ∈ Ω.

Assumption 3.5 The function K(·) is a symmetric density function with compact support

and the bandwidth h satisfies nh8 → 0 and nh2/(log n)2 → ∞.

The following theorems gives the asymptotic normality of β̂.

Theorem 3.1 Suppose that Assumptions 3.1–3.5 hold, the profile least squares estimator β̂ of

β is asymptotically normal, namely,

√
n(β̂ − β)

d−→ N(0,Σ),

where Σ = Ξ−1ΩΞ−1, Ξ = E[ηiη
T
i ], Ω = E[ηiη

T
i σ2(xi, zi, ui)], and ηi = zi −ΦT(ui)Γ

−1(ui)xi.

Remark 3.1 If ε is homoscedastic, that is, σ2(xi, zi, ui) = σ2, i = 1, 2, . . . , n, then we have

Ω = E[ηiη
T
i σ2] = σ2Ξ, Σ = Ξ−1ΩΞ−1 = σ2Ξ−1.

Therefore,
√

n(β̂ − β)
d−→ N(0, σ2Ξ−1).

This result is consistent with that of Fan and Huang[15].

To apply Theorem 3.1 for making statistical inferences, we need to estimate the asymptotic
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Σ. Define

Σ̂ = (
1

n

n
∑

i=1

z̄iz̄
T
i )−1(

1

n

n
∑

i=1

z̄iz̄
T
i ε̂2

i )(
1

n

n
∑

i=1

z̄iz̄
T
i )−1.

Then we have the following results.

Theorem 3.2 Suppose that Assumptions 3.1–3.5 hold, we have

Σ̂ →P Σ.

Combining Theorems 3.1 and 3.2, we obtain the following corollary

Corollary 3.1 Suppose that Assumptions 3.1–3.5 hold, we have

√
nΣ̂

−1/2
(β̂ − β)

d−→ N(0, Iq).

To improve upon β̂,we construct a generalized profile least squares estimator of β by taking

the heteroscedasticity of model (1.1) into consideration. Let σi =
√

σ2(xi, zi, ui). Then our new

estimator of β is defined as

β̄ = (

n
∑

i=1

z̄iz̄
T
i /σ2

i )−1(

n
∑

i=1

z̄iȳi/σ2
i ). (3.7)

The following theorem gives the asymptotic normality of β̄.

Theorem 3.3 Suppose that Assumptions 3.1–3.5 hold, we have

√
n(β̄ − β)

d−→ N(0,∆−1),

where ∆ = E[ηiη
T
i /σ2(xi, zi, ui)].

The next theorem provides the asymptotic normality of the nonparametric components esti-

mators.

Theorem 3.4 Suppose that Assumptions 3.1–3.5 hold and nh5 = O(1), we have

√
nh
(

α̂(u) − α(u) − 1

2
h2µ2α

′′(u)
)

d−→ N(0, ν0Ψ/f(u)),

where Ψ = Γ(u)−1E[x1x
T
1 σ2(x1, z1, u1)|u]Γ(u)−1.

4. Proof of the main results

In order to prove the main results, we first introduce several lemmas. The notation cn =

h2 + { log(1/h)
nh }1/2 will be used in the proofs of the lemmas and theorems.

Lemma 4.1 Let (X1,Y1), . . . , (Xn,Yn) be iid random sequence, where the Y,
is are scalar

random variables. Further assume that E|y|s < ∞ and Supx

∫

|y|sf(x, y)dy < ∞, where f

denotes the joint density of (X,Y). Let K be a bounded positive function with a bounded

support, satisfying a Lipschitz condition. Then

sup
x

| 1
n

n
∑

i=1

[Kh(Xi − x)Yi − E (Kh(Xi − x)Yi)] | = Op

({ log(1/h)

nh

}1/2)

,
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provided that n2ε−1h → ∞ for some ε < 1 − s−1.

Proof This follows immediately from the result that was obtained by Mack and Silverman[16].

Lemma 4.2 Under the assumptions 3.1–3.5, we have

1

n
ZT(I − S)T(I − S)Z → Ξ.

Lemma 4.3 Under the assumptions 3.1–3.5, we have

n−1ZT(I − S)T(I− S)M = Op(c
2
n).

The proofs of Lemmas 4.2 and 4.3 can be found in Fan and Huang[15].

Proof of Theorem 3.1 By the definition of β̂, we have

β̂ = [Z̄TZ̄]−1Z̄T(I − S)Y

= [Z̄TZ̄]−1Z̄T(I − S)(Zβ + M + ε)

= β + [Z̄TZ̄]−1Z̄T(I − S)M + [Z̄TZ̄]−1Z̄T(I − S)ε.

Hence, √
n(β̂ − β) =

√
n[Z̄TZ̄]−1Z̄T(I − S)M +

√
n[Z̄TZ̄]−1Z̄T(I − S)ε. (4.1)

By Lemmas 4.2 and 4.3, it is easy to prove that

√
n[Z̄TZ̄]−1Z̄T(I − S)M = Op(

√
nc2

n) = op(1), (4.2)

and √
n[Z̄TZ̄]−1Z̄T(I − S)ε = n−1/2Ξ−1Z̄T(I − S)ε{1 + op(1)}. (4.3)

By Lemma 4.1, we can obtain

Z̄T(I − S)ε =

n
∑

i=1

{zi − ΦT(ui)Γ
−1(ui)xi}εi{1 + op(1)} =

n
∑

i=1

ηiεi{1 + op(1)}.

For random variable ηiεi, we have

E(ηiεi) = 0, Var(ηiεi) = E[ηiη
T
i ε2

i ] = E[ηiη
T
i E[ε2

i |xi, zi, ui]] = E[ηiη
T
i σ2(xi, zi, ui)] = Ω.

By central limit theorem, we have

n−1/2Z̄T(I − S)ε
d−→ N(0,Ω). (4.4)

Combing (4.1)–(4.4), by Slutsky theorem, there holds

√
n(β̂ − β)

d−→ N(0,Ξ−1ΩΞ−1).

Proof of Theorem 3.2 From the definition of ε̂i, we have

ε̂i = ȳi − z̄T
i β̂ = εi + (αT(ui)xi − ST

i M) + z̄T
i (β − β̂) − ST

i ε,

where Si = (si1, si2, sin)T, and sij is the (ij)th element of matrix S.

By Lemma 4.1, it is easy to prove that

αT(ui)xi − ST
i M = Op(cn), ST

i ε = Op(cn).
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From the result of Theorem 3.1, we have β − β̂ = Op(n
−1/2). By the above results, we can

obtain that

1

n

n
∑

i=1

z̄iz̄
T
i ε̂2

i =
1

n

n
∑

i=1

z̄iz̄
T
i ε2

i + op(1). (4.5)

From Lemma 4.1, it is easy to prove that

z̄i = zi − ΦT(ui)Γ
−1(ui)xi{1 + Op(cn)}. (4.6)

By the law of large numbers, it follows from (4.5) and (4.6),

1

n

n
∑

i=1

z̄iz̄
T
i ε2

i →P Ω

Applying Lemma 4.2 gives

(
1

n

n
∑

i=1

z̄iz̄
T
i )−1(

1

n

n
∑

i=1

z̄iz̄
T
i ε̂2

i )(
1

n

n
∑

i=1

z̄iz̄
T
i )−1 →P Ξ−1ΩΞ−1.

Proof of Theorem 3.3 By the same arguments as used in the proof of Theorem 3.1, we can

prove Theorem 3.3, we omit the details.

Proof of Theorem 3.4 By (2.8), we have

α̂(u) = (α̂1(u), . . . , α̂p(u))
T

= (Ip 0p){DT
uWuDu}−1DT

uWu(Y − Zβ̂)

=(Ip 0p){DT
uWuDu}−1DT

uWuM + (Ip 0p){DT
uWuDu}−1DT

uWuε+

(Ip 0p){DT
uWuDu}−1DT

uWuZ(β̂ − β)
.
=I1 + I2 + I3.

Therefore, in order to complete the proof of this theorem, we just need to show














(i) I1 = α(u) + 1
2h2µ2α

′′(u) + op(h
2),

(ii)
√

nhI2
d−→ N(0, ν0Ψ/f(u)),

(iii)
√

nhI3 = op(1).

Proof of (i) Because the coefficient functions α(·) are smooth in the neighborhood of |ui−u| <

h, by the Taylor’s expansion, we have

α(ui) = α(u) + hα′(u)(
ui − u

h
) +

h2

2
α′′(u)(

ui − u

h
)2 + op(h

2).

Therefore,
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
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1 α(u1)
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...
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
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α(u) + hα′(u)(u2−u
h ) + h2

2 α′′(u)(u2−u
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}

...

xT
n

{

α(u) + hα′(u)(un−u
h ) + h2

2 α′′(u)(un−u
h )2

}












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= Du
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hα′(u)
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By Lemma 4.1, we can prove that

DT
uWuDu =
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n
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xix
T
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n
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xix
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T
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xix
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h )2Kh(ui − u)






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= nf(u)Γ(u) ⊗
(

1 0

0 µ2

)

{1 + Op(cn)}, (4.8)

and

DT
uWu















xT
1 (u1−u

h )2

xT
2 (u2−u

h )2

...

xT
n (un−u

h )2















=









n
∑

i=1

xix
T
i (ui−u

h )2Kh(ui − u0)

n
∑

i=1

xix
T
i (ui−u

h )3Kh(ui − u0)








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From (4.7)–(4.9), we have,
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1
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h2µ2α
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The proof of (i) is completed.

Proof of (ii) By (4.8), we have
√

nhI2 =
√

nh(Ip 0p){DT
uWuDu}−1DT

uWuε

= f(u)−1Γ(u)−1
(√

nh
1

n

n
∑

i=1

xiKh(ui − u)εi

)

+ op(1).

As for
√

nh 1
n

∑n
i=1 xiKh(ui−u)εi, it is obviously asymptotically normal with mean 0 and variance

Vu = f(u)ν0E[x1x
T
1 σ2(x1, z1, u1)|u] + o(1).
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Therefore
√

nh
1

n

n
∑

i=1

xiKh(ui − u)εi → N
(

0, ν0f(u)E[x1x
T
1 σ2(x1, z1, u1)|u]

)

.

By the Slutsky theorem, we have
√

nhI2 → N
(

0, ν0f(u)−1Γ(u)−1E[x1x
T
1 σ2(x1, z1, u1)|u]Γ(u)−1

)

.

This completes the proof of (ii).

Proof of (iii) By Lemma 4.1, we can obtain that

DT
uWuZ = nf(u)Φ(u) ⊗ (1, 0)T{1 + Op(cn)}. (4.10)

From Theorem 3.1, we have

β̂ − β = Op(n
−1/2). (4.11)

Combining (4.10), (4.11) and (4.7) yields
√

nhI3 =
√

nhΓ(u)−1Φ(u)(β̂ − β) = op(1).

This completes the proof of (iii). 2
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