A Note of Order Congruences on Ordered Semigroups

SHI Xiao Ping^{1,2}, XIE Xiang Yun³

(1. Department of Mathematics, Nanjing Normal University, Jiangsu 210046, China;

2. Department of Mathematics, Southeast University, Jiangsu 210096, China;

3. Department of Mathematics and Physics, Wuyi University, Guangdong 529020, China)

(E-mail: xpshinj@gmail.com)

Abstract Which subset of an ordered semigroup S can serve as a congruence class of certain order-congruence on S is an important problem. XIE Xiangyun proved that if every ideal C of an ordered semigroup S is a congruence class of one order-congruence on S, then C is convex and when C is strongly convex, the reverse statement is true in 2001. In this paper, we give an alternative constructing order congruence method, and we prove that every ideal B is a congruence class of one order congruence on S if and only if B is convex. Furthermore, we show that the order relation defined by this method is "the least" order congruence containing B as a congruence class.

Keywords ordered semigroup; order congruence; convex ideal.

Document code A MR(2000) Subject Classification 06F05; 20M10 Chinese Library Classification 0152.7

1. Introduction

A semigroup S is a set together with a binary operation: $S \times S \longrightarrow S$ which satisfies the associative property: $(x \cdot y) \cdot z = x \cdot (y \cdot z)$ for all $x, y, z \in S$. An ideal of semigroup S is a non-empty subset I of S such that $SI \subseteq I$ and $IS \subseteq I^{[2]}$.

A semigroup S that is also a partially ordered set, in which the binary operation and the order relation are compatible, is called an ordered semigroup, that is, semigroup S is called an ordered semigroup if $s, t, x, y \in S$ and $x \leq y, s \leq t$, then $sx \leq ty$. A non-empty subset I of S is called an ordered ideal of an ordered semigroup S if (i) $SI \subseteq I$, $IS \subseteq I$ and (ii) $a \leq b \in I$ implies $a \in I$, for all $a, b \in S^{[6]}$.

A nonempty subset C of poset A is called convex if $a \leq b \leq c$ implies $b \in C$ for all $a, c \in C, b \in A$. A nonempty subset B of poset A is called strongly convex if $B = (B] := \{a \in A | (\exists b \in B) a \leq b\}$. Therefore, I is an ordered ideal of ordered semigroup S if and only if I is an ideal of semigroup S and I is a strongly convex subset of S.

Let S be a semigroup or an ordered semigroup. By a *congruence* we mean an equivalence relation ρ on S which is compatible with the binary operation on S. If S is a semigroup and ρ is

Received date: 2006-08-31; Accepted date: 2007-03-23

Foundation item: the National Natural Science Foundation of China (Nos. 10626012; 103410020); the Jiangsu Planned for Postdoctoral Research Found (No. 0502022B); the Natural Science Foundation of Guangdong Province (No. 0501332); the Educational Department Natural Science Foundation of Guangdong Province (No. Z03070).

a congruence on S, then the set $S/\rho := \{[a] | a \in S\}$ ([a] is the ρ -class of S containing a ($a \in S$)) is a semigroup via $[s][a] = [sa]^{[2]}$. Let B be an ideal of semigroup S. The Rees congruence λ_B induced by B is defined as follows:

$$a\lambda_Bb \iff a, b \in B \text{ or } a = b.$$

The factor semigroup S/λ_B is called Rees factor semigroup. It is clear that $S/\lambda_B = \{\{x\} | x \in S \setminus B\} \cup B$.

Congruences on ordered semigroups play an important role in studying the structures of ordered semigroups^{[3-6],[10]}. For any congruence σ on an ordered semigroup S, in general, we do not know whether the quotient semigroup S/σ is also an ordered semigroup. Even if S/σ is an ordered semigroup, the order on S/σ is not certainly relative to the order on the original ordered semigroup S. So we need the concept of order congruence and study order congruences on ordered semigroups. Let (S, \leq) be an ordered semigroup. A congruence σ is called an *order* congruence if there exists an order " \leq " on S/σ such that:

- (1) $(S/\sigma, \preceq)$ is an ordered semigroup;
- (2) The canonical epimorphism $\varphi: S \to S/\sigma, x \mapsto [x]$ is isotone.

2. Main results

Theorem 1 Let B be an ideal of an ordered semigroup S. Then B is a congruence class of one order congruence on S if and only if B is convex.

Proof Let *B* be a congruence class of order congruence ρ , and $a, c \in B$. If $a \leq b \leq c$, by definition of order congruence, then $(a)_{\rho} \leq (b)_{\rho} \leq (c)_{\rho}$. Since $(a)_{\rho} = B = (c)_{\rho}$, we have $(a)_{\rho} = (b)_{\rho} = (c)_{\rho}$, that is, $b \in B$. Thus *B* is convex.

Conversely, let λ_B be the Rees congruence induced by B on S. Then it is clear that B is the congruence class of λ_B . Now we define a relation \leq on the factor $S/\lambda_B = \{\{x\} | x \in S \setminus B\} \cup B$ as follows:

$$[x] \preceq [y] \Leftrightarrow (x \leq y) \text{ or } (x \leq b, b' \leq y \text{ for some } b, b' \in B).$$

We show that λ_B is an order congruence. First we prove \leq is an order, that is, \leq is reflexive, anti-symmetric and transitive.

(1) Since $x \leq x$, we have $[x] \preceq [x]$.

(2) Let $[x] \leq [y]$ and $[y] \leq [x]$. Then $x \leq y$ or $x \leq b, b' \leq y$ for some $b, b' \in B$, and $y \leq x$ or $y \leq b_1, b'_1 \leq x$ for some $b_1, b'_1 \in B$. We consider following four cases:

(α) If $x \leq y$ and $y \leq x$, then x = y, therefore [x] = [y].

(β) If $x \leq y$ and $y \leq b_1, b'_1 \leq x$ for some $b_1, b'_1 \in B$, then $b'_1 \leq x \leq y \leq b_1$. Since B is convex and $b_1, b'_1 \in B$, we have $x, y \in B$. Hence [x] = B = [y].

(γ) If $x \leq b, b' \leq y$ for some $b, b' \in B$ and $y \leq x$, by similar discussion to (β), we have [x] = [y].

(δ) If $x \leq b, b' \leq y$ for some $b, b' \in B$ and $y \leq b_1, b'_1 \leq x$ for some $b_1, b'_1 \in B$, then $b'_1 \leq x \leq b$ and $b' \leq y \leq b_1$. Since B is convex, we have $x, y \in B$. Thus [x] = [y].

(3) If $[x] \leq [y]$ and $[y] \leq [z]$, then $x \leq y$ or $x \leq b, b' \leq y$ for some $b, b' \in B$, and $y \leq z$ or $y \leq b_1, b'_1 \leq z$ for some $b_1, b'_1 \in B$. We consider following four cases:

(α) If $x \leq y$ and $y \leq z$, then $x \leq z$, therefore $[x] \leq [z]$.

(β) If $x \leq y$ and $y \leq b_1, b'_1 \leq z$ for some $b_1, b'_1 \in B$, then $x \leq y \leq b_1, b'_1 \leq z$. By definition, $[x] \leq [z]$.

(γ) If $x \leq b, b' \leq y$ for some $b, b' \in B$ and $y \leq z$, by similar discussion to (β), we have $[x] \leq [z]$.

(δ) If $x \leq b, b' \leq y$ for some $b, b' \in B$ and $y \leq b_1, b'_1 \leq z$ for some $b_1, b'_1 \in B$, then $x \leq b$, $b'_1 \leq z$. Thus $[x] \preceq [z]$.

Now we show that the order is compatible with the binary operation on S. Let $[x] \leq [y]$ and $[s] \leq [t]$. Then $x \leq y$ or $x \leq b, b' \leq y$ for some $b, b' \in B$, and $s \leq t$ or $s \leq b_1, b'_1 \leq t$ for some $b_1, b'_1 \in B$. We consider following four cases:

(α) If $x \leq y$ and $s \leq t$, then $sx \leq ty$, therefore, $[s][x] = [sx] \leq [ty] = [t][y]$.

(β) If $x \leq y$ and $s \leq b_1, b'_1 \leq t$ for some $b_1, b'_1 \in B$, then $sx \leq b_1x, b'_1y \leq ty$. Since B is an ideal of S and $b_1, b'_1 \in B$, we have $b_1x, b'_1y \in B$. On the other hand, $sx \leq b_1x, b'_1y \leq ty$. Therefore, $[s][x] = [sx] \leq [ty] = [t][y]$.

(γ) If $x \leq b, b' \leq y$ for some $b, b' \in B$ and $s \leq t$, by similar discussion to (β), we have $[s][x] \leq [t][y]$.

(δ) If $x \leq b, b' \leq y$ for some $b, b' \in B$ and $s \leq b_1, b'_1 \leq t$ for some $b_1, b'_1 \in B$, then $sx \leq sb$, $tb'_1 \leq ty$. Thus $[sx] \leq [ty]$.

By the definition of \leq , we can get that the canonical epimorphism is isotone.

Proposition 2 Let S be an ordered semigroup and an ordered relation \leq on S/λ_B be defined as Theorem 1. Then for any $x, y \in S$

$$([x], [y]) \in \preceq \iff (x, y) \in \le \circ \lambda_B \circ \le .$$

Proof \implies If $[x] \leq [y]$, then $x \leq y$ or $x \leq b, b' \leq y$ for some $b, b' \in B$. If $x \leq y$, then $(x, y) \in \leq \subseteq \leq \circ \lambda_B \circ \leq$. If $x \leq b, b' \leq y$ for some $b, b' \in B$, then $x \leq b \lambda_B b' \leq y$. Thus $(x, y) \in \leq \circ \lambda_B \circ \leq$.

 $= \text{Let } (x, y) \in \leq \circ \lambda_B \circ \leq \text{. Then there exist } z, h \in S \text{ such that } x \leq z, (z, h) \in \lambda_B, h \leq y.$ Since $(z, h) \in \lambda_B$, we have $z = h \in S \setminus B$ or $z, h \in B$. If z = h, then $x \leq z = h \leq y$. If $z, h \in B$, then by $x \leq z, h \leq y$, we have $[x] \preceq [y]$.

Let B be an ordered ideal of an ordered semigroup S. In [7], [8], an ordered relation \leq_1 in S/λ_B is defined as follows:

$$\leq_1 := \{ (B, \{x\}) | x \in S \setminus B \} \cup \{ (\{x\}, \{y\}) | x, y \in S \setminus B, x \leq y \} \cup \{ (B, B) \}.$$

If $[a] \leq [b]$ in S/λ_B , then $a \leq b$ or $a \in B$ and $k \leq b$ for some $k \in B$. The latter implies $[a] \leq_1 [b]$, that is, $[a] \leq_1 [b]$. Hence $\leq \subseteq \leq_1$. The following example shows that $\leq \neq \leq_1$ in general.

Example We consider the ordered monoid $S = \{1, a, b, c, e, d, e\}$ whose multiplication and order

are given below:

		1	a	b	c	d	e		
	1	1	a	b a a a a a	c	d	e		
	a	a	a	a	a	a	a		
	b	b	a	a	a	a	a		
	c	c	a	a	c	c	e		
	d	d	a	a	c	d	e		
	e	e	a	a	c	c	e		
$\leq := \{(1,1), ($								(b,c)), (b, b)
$(b,e),(c,c),(c,d),(c,e),(d,d),(e,e)\}.$									

Obviously, $B = \{a\}$ is an ordered ideal of S. Since $a \nleq b$ and there does not exist $x \in B$ such that $x \leq b$, we have $[a] \nleq [b]$. But by the definition of \leq_1 , we have $[a] \leq_1 [b]$.

Let S be an ordered semigroup and θ be an equivalence relation on S. A θ -chain is a finite sequence of elements $\{a, a_1, a'_1, \ldots, a_i, a'_i, \ldots, a_n, a'_n, b\}$ of S such that $a \leq a_1, a_i \theta a'_i$, for $i = 1, \ldots, n, a'_i \leq a_{i+1}$ for $i = 1, \ldots, n-1$ and $a'_n \leq b$. A θ -chain is said to be close if a = b. Otherwise it is said to be open.

Lemma 3^[7] Let S be an ordered semigroup and θ be a congruence on S. Then θ is an order congruence on S if and only if every closed θ -chain is contained in a single equivalent class of θ . In this case the induced order on S/θ is given by $[a] \leq [b]$ in S/θ if and only if there is a θ -chain from a to b in S.

In fact, we have more general results (see following Theorem 5). First we recall the concept of order congruence generated by an congruence ρ on an ordered semigroup S.

Definition 4 Let ρ be a congruence on ordered semigroup S. Order congruence σ is called an order congruence generated by ρ on S, if σ satisfies the following condition:

- (i) $\rho \subseteq \sigma$;
- (ii) If there is an order congruence η on S such that $\rho \subseteq \eta$, then $\sigma \subseteq \eta$.

Theorem 5 Let ρ ba a congruence on ordered semigroup S. Then we have

(1) If we define a relation \leq_{ρ} on S as follows:

 $(a, b \in S)(a, b) \in \leq_{\rho}$ if and only if there is a ρ -chain from a to b.

Then \leq_{ρ} is a quasi-order which is compatible with the binary operation;

(2) R_{ρ} on S is a relation on S defined as follows

$$(a, b \in S)(a, b) \in R_{\rho} \iff (a, b), (b, a) \in \underline{\prec}_{\rho}.$$

Then R_{ρ} is an order congruence on S, which, in fact, is the order congruence generated by ρ . And S/R_{ρ} has the induced order relation:

$$[x] \preceq_{R_{\rho}} [y] \Leftrightarrow x \preceq_{\rho} y.$$

d),

Proof (1) If $a \leq b$ for $a, b \in S$, then there is a ρ -chain from a to b: $\{a, b, b, b\}$, that is, $a \leq b$ implies $a \leq_{\rho} b$. Thus $\leq \subseteq \leq_{\rho}$. For any $a \in S$, since $a\rho a$, we have a ρ -chain from a to a. Consequently, $(a, a) \in \leq_{\rho} c$. Suppose that $(a, b) \in \leq_{\rho} c$ and $(b, c) \in \leq_{\rho} c$ for $a, b, c \in S$. Then there exist $a_1, a'_1, \ldots, a_i, a'_i, \ldots, a_n, a'_n, b_1, b'_1, \ldots, b_i, b'_i, \ldots, b_m, b'_m \in S$ such that $a \leq a_1, b \leq b_1, a_i \theta a'_i, b_j \theta b'_j$, for $i = 1, \ldots, n, j = 1, \ldots, m, a'_i \leq a_{i+1} b'_j \leq b_{j+1}$, for $i = 1, \ldots, n - 1$, $j = 1, \ldots, m - 1$ and $a'_n \leq b, b'_m \leq c$. Hence there is a ρ -chain from a to $c \{a, a_1, a'_1, \ldots, a_i, a'_i, \ldots, a_n, a'_n, b, b_1, b'_1, \ldots, b_m, b'_m, c\}$. Therefore, $(a, c) \in \leq_{\rho}$ and so \leq_{ρ} is transitive. Since ρ and \leq are compatible with the binary operation on S, it is easy to see that \leq_{ρ} is also compatible with the binary operation on S.

(2) Since ρ is a congruence on S, by definition of R_{ρ} and (1), we get that R_{ρ} is also a congruence on S. In order to prove R_{ρ} is an ordered congruence on S, we only show that every closed R_{ρ} -chain is contained in a single equivalent class of R_{ρ} by Lemma 3. For any closed R_{ρ} -chain $\{a, a_1, a'_1, \ldots, a_i, a'_i, \ldots, a_n, a'_n, a\}$, we have

$$a \le a_1 R_{\rho} a_1^{'} \le \dots \le a_i R_{\rho} a_i^{'} \le \dots a_n R_{\rho} a_n^{'} \le a$$

Thus $a \leq a_1 \preceq_{\rho} a'_1 \leq \cdots \leq a_i \preceq_{\rho} a'_i \leq \cdots \leq a_n \preceq_{\rho} a'_n \leq a$. Furthermore

$$a \preceq_{\rho} a_1 \preceq_{\rho} a_1' \preceq_{\rho} \cdots \preceq_{\rho} a_i \preceq_{\rho} a_i' \preceq_{\rho} \cdots a_n \preceq_{\rho} a_n' \preceq_{\rho} a.$$

Therefore, $(a, a_i), (a_i, a) \in \leq_{\rho}$. We have showed that $a_i R_{\rho} a$. Since $a_i R_{\rho} a'_i$, we have $a'_i R_{\rho} a$. Hence the closed R_{ρ} -chain is contained in a single equivalent class of $a_{R_{\rho}}$. Therefore, R_{ρ} is an order congruence.

Let $(a,b) \in \rho$. Since ρ is a congruence, we have $(b,a) \in \rho$. Consequently, $(a,b), (b,a) \in \preceq_{\rho}$, thus $(a,b) \in R_{\rho}$, which shows that $\rho \subseteq R_{\rho}$.

Suppose that η is an order congruence on S and $\rho \subseteq \eta$. Then $R_{\rho} \subseteq \eta$. In fact: If $(a, b) \in R_{\rho}$, then $(a, b), (b, a) \in \preceq_{\rho}$. By (1), there exist $a_1, a'_1, \ldots, a_i, a'_i, \ldots, a_n, a'_n, b_1, b'_1, \ldots, b_i, b'_i, \ldots, b_m, b'_m \in S$ such that

$$a \le a_1 \rho a'_1 \le \dots \le a_i \rho a'_i \le \dots a_n \rho a'_n \le b,$$

$$b \le b_1 \rho b'_1 \le \dots \le b_j \rho b'_j \le \dots b_m \rho a'_m \le a.$$

Hence there exists a closed η -chain $a \leq a_1 \eta a'_1 \leq \cdots \leq a_i \eta a'_i \leq \cdots a_n \eta a'_n \leq b \eta b \leq b_1 \eta b'_1 \leq \cdots \leq b_j \eta b'_j \leq \cdots b_m \eta a'_m \leq a$. Since η is an order congruence on S, we have that the closed η -chain is contained in a single equivalent class of η . In particular, we have $(a, b) \in \eta$. Therefore R_ρ is the order congruence generated by ρ .

In S/R_{ρ} , we define a relation as follows:

$$[x] \preceq_{R_{\rho}} [y] \Leftrightarrow x \preceq_{\rho} y.$$

By (1) and definition of $R_{\rho}, \leq_{R_{\rho}}$ is a quasi-order which is compatible with the binary operation. Furthermore, if $[x] \leq_{R_{\rho}} [y]$ and $[y] \leq_{R_{\rho}} [x]$, then $x \leq_{\rho} y$ and $y \leq_{\rho} x$. Thus $(x, y) \in R_{\rho}$, that is, $[x]_{R_{\rho}} = [y]_{R_{\rho}}$. Furthermore, if $x \leq y$, then $x \leq_{\rho} y$. Thus $[x] \leq_{R_{\rho}} [y]$.

Remark We will always specify the corresponding order on S/R_{ρ} that we have in mind.

Let S be an ordered semigroup and B be an ideal of S, and denote by H the Rees congruence λ_B . Then the order congruence R_H generated by H can be characterized as follows:

Theorem 6 Let S be an ordered semigroup, B an ideal of S, and $H = \lambda_B$. Then for $x, y \in S$, xR_Hy if and only if x = y, or there exist $b, b', c, c' \in B$ such that

$$x \le b, b' \le y$$
 and $y \le c, c' \le x$. (*)

Therefore,

$$[x] \preceq [y]$$
 in $S/R_H \Leftrightarrow (x \leq y)$ or $(x \leq b, b' \leq y \text{ for some } b, b' \in B)$.

Moreover, $([x] = [y] \text{ in } S/R_H \text{ if and only if } x = y, \text{ or } x, y \in B) \Leftrightarrow B \text{ is convex.}$

Proof For any $x, y \in S$, we define a relation σ on S by: $a\sigma b$ if and only if x = y or a system of inequalities (*) exists. It is easy to check that the relation σ is an equivalence which is compatible with the binary operation.

To see that σ is an order congruence, we assume $x, a_i, a'_i \in S$ for $1 \leq i \leq n$, and suppose

$$x \le a_1 \sigma a'_1 \le a_2 \sigma a'_2 \le \dots \le a_j \sigma a'_j \le \dots \le a_{n-1} \sigma a'_{n-1} \le a_n \sigma a'_n \le x.$$

Then, for each $k \in \{1, ..., n\}$ we have a system of inequalities

$$a_k \leq b_k, b'_k \leq a'_k$$
 and $a'_k \leq c_k, c'_k \leq a_k$,

where $b_k, b'_k, c_k, c'_k \in B$. The system below establishes the fact that $x\sigma a'_k$ holds for each k:

$$x \le a_1 \le b_1, \quad b'_k \le a'_k, \ a'_k \le c_k, \quad b'_n \le a'_n \le x$$

Because $a_k \sigma a'_k$, we obtain $x \sigma a_k$. Thus, every closed σ -chain is contained in a single equivalence class of σ , so σ is an order congruence on S. Since $H \subseteq \sigma$, $R_H \subseteq \sigma$. On the other hand, if $(x, y) \in \sigma$, then, by the definition of σ , x = y, or there exists a system of inequalities (*). Therefore, $x \leq bR_H b' \leq y$. Thus $x \leq_{R_H} y$. Similarly, $y \leq_{R_H} x$. Since R_H is an order congruence, we have $(x, y) \in \lambda(H)$. This means that $\sigma \subseteq R_H$. Thus $\sigma = R_H$.

By Remark, $[x] \leq [y] \Leftrightarrow x \leq_{R_H} y \Leftrightarrow x \leq_H y$. By Proposition 5, $x \leq_H y$ if and only if there is a *H*-chain from x to y, that is, there exist $a_1, a'_1, \ldots, a_i, a'_i, \ldots, a_n, a'_n \in S$ such that $x \leq a_1, a_i H a'_i$ for $i = 1, \ldots, n, a'_i \leq a_{i+1}$ for $i = 1, \ldots, n-1$, and $a'_n \leq y$. Thus $a_i, a'_i \in B$ for $i = 1, \ldots, n$. Hence

$$x \preceq_H y \Leftrightarrow (x \leq y) \text{ or } (x \leq b, b' \leq y \text{ for some } b, b' \in B).$$

Furthermore, if R_H is the Rees congruence, that is, [x] = [y] in S/R_H if and only if x = y, or $x, y \in B$, then by the discussion of Theorem 1, if and only if B is convex.

We note that if B is a convex ideal of an ordered semigroup S, then R_H is the least order congruence containing $B \times B$, and $[x] \preceq [y]$ in $S/R_H \Leftrightarrow (x \leq y)$ or $(x \leq b, b' \leq y)$ for some $b, b' \in B$. The latter is the ordered relation defined in Theorem 1.

References

- BLYTH T S, JANOWITZ M F. Residuation Theory [M]. Pergamon Press, Oxford-New York-Toronto, Ont., 1972.
- [2] HOWIE J M. Fundamentals of Semigroup Theory [M]. The Clarendon Press, Oxford University Press, New York, 1995.
- [3] KEHAYOPULU N, TSINGELIS M. On subdirectly irreducible ordered semigroups [J]. Semigroup Forum, 1995, 50(2): 161–177.
- KEHAYOPULU N, TSINGELIS M. Pseudo-order in ordered semigroups [J]. Semigroup Forum, 1995, 50(3): 389–392.
- [5] XIE Xiangyun. Contributions to theory of congruences on ordered semigroups [D]. Lanzhou: Lanzhou University, 1995.
- [6] XIE Xiangyun. An Introduction of Partially Ordered Semigroup [M]. Beijing: Science Press, 2000. (in Chinese)
- [7] XIE Xiangyun. On regular, strongly regular congruences on ordered semigroups [J]. Semigroup Forum, 2000, 61(2): 159–178.
- [8] XIE Xiangyun. Regular congruence classes of ordered semigroups [J]. J. Math. Res. Exposition, 2001, 21(2): 207-211.
- [9] XIE Xiangyun, SHI Xiaoping. Order-congruences on S-posets [J]. Commun. Korean Math. Soc., 2005, 20(1): 1–14.
- [10] XIE Xiangyun, WU Mingfen. On congruences on ordered semigroups [J]. Math. Japon., 1997, 45(1): 81–84.