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Abstract We consider the rectilinear congruence T generated by the tangents to a one

parameter family of geodesics on a space-like surface S1 in the Minkowski 3-space E
3

1 , having

S1 as one of its focal surfaces. We prove that the two families of torsal surfaces of T touch

the second focal surface S2 along the net of orthogonal parametric curves if and only if S1

is developable. We also obtain the necessary and sufficient condition for the correspondence

between the points of S1 and S2 at the same rays preserving the net of asymptotic curves.

At last, we investigate the orthogonal surface S of T . We proved that the correspondence

between S1 and S2 preserves the net of asymptotic curves if S is maximal in E
3

1 .
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1. Introduction

In the Euclidean 3-space R3, the tangents to a one parameter family of curves C on a

regular surface S form a rectilinear congruence, having S as one of its focal surfaces. The two

focal surfaces coincide when C is a family of asymptotic curves.

Let the net of parameter curves of S be the net of lines of curvature C1 and C2. Suppose that

T1 and T2 are congruences generated by the tangents to families of curves C1 and C2, respectively.

Abdel-Baky[1,2] proved that the torsal surfaces of T1 and T2 touch the focal surfaces along the

net of lines of curvature if and only if

q̄2 + q̄1 = 0, (1.1)

q2 − q2 = 0, (1.2)

where q and q̄ are the geodesic curvatures of curves in C1 and C2, and suffix 1 and 2 imply taking

derivative with respect to the arc length parameter of curves in C1 and C2, respectively. In this

case, T1 and T2 are the Guichard congruences.
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It is easy to prove that S is developable when both T1 and T2 are the Guichard congruences.

It follows that one of C1 and C2 is a family of straight lines. Thus one of T1 and T2 has to be

degenerate.

Tsagas[3] investigated the congruences formed by the tangents to a one parametric family

of geodesics on S. He obtained the necessary and sufficient conditions for the correspondence

between the focal surfaces by focal points at the same rays preserving the area elements. Papan-

tonion et al[4,5] studied the same problems in E3
1 and generalized the results of Tsagas[3].

In this paper, we study the rectilinear congruence T generated by tangents to a one para-

metric family of geodesics G on a space-like surface S in E3
1 .

Firstly we prove that the necessary and sufficient condition for the torsal surfaces of T

touching the second focal surface along the net of orthogonal parametric curves is

q2 + q1 = 0, (1.3)

where q is the geodesic curvature of the orthogonal trajectories of G and the suffix 1 means

taking derivative with respect to the arc length parameter of the geodesics in G. It is easy to

see that (1.3) has the same form as (1.1). Therefore, we generalize the result of Abdel-Baky[1].

Furthermore, we prove that the Gauss curvature K of S is zero which means that S is developable.

Then we prove that the correspondence between the focal surfaces by focal points at the

same rays preserves the net of asymptotic curves if and only if the Gauss curvature K and K̄ of

the two focal surfaces satisfy the equality KK̄ = −q4.

Finally we investigate the surface S which is perpendicular to the rays of T , say the orthog-

onal surface of T . We prove that if the orthogonal surface S is maximal in E3
1 , then KK̄ = −q4,

where K and K̄ are the Gaussian curvatures of the two focal surfaces. That is to say, for the

congruence whose orthogonal surface is maximal, the correspondence between the focal surfaces

by focal points at the same rays preserves the net of asymptotic curves.

2. Preliminaries

First we introduce some basic concepts and properties on the rectilinear congruences in E3
1 .

More of them can be found in [6].

Definition 2.1 A rectilinear congruence T in E3
1 can be defined by

T : r̃(u, v) = r(u, v) + tR(u, v), (u, v) ∈ D, t ∈ (−∞, +∞), (2.1)

where S : r = r(u, v) is called the reference surface and the unit vector valued function R =

R(u, v) gives the directions of the rays of T . If R = R(u, v) is the normal vectors of a surface S′

transversal to the rays of T , then T is called a normal congruence, and S′ is called the orthogonal

surface of T .

Definition 2.2 The rectilinear congruence T defined by (2.1) is called space-like (resp. time-

like) if R = R(u, v) is space-like (resp. time-like) for all (u, v) ∈ D.
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Definition 2.3 For the rectilinear congruence T defined by (2.1), the first and second Kummer

fundamental forms of T are defined by

dR · dR = Edu2 + 2Fdudv + Gdv2, (2.2)

where E = Ru · Ru, F = Ru · Rv, G = Rv · Rv; and

dr · dR = edu2 + (f + f ′)dudv + gdv2, (2.3)

where e = ru · Ru, f = rv · Ru, f ′ = ru · Rv, g = rv · Rv.

Lemma 2.1[6] The necessary and sufficient condition for the space-like or time-like rectilinear

congruence in E3
1 to be normal congruence is f = f ′.

Definition 2.4[6] The surface in E3
1 is called space-like or time-like if the normal vectors of the

surface are time-like or space-like.

3. Space-like rectilinear congruence in E
3
1

Given a regular space-like surface S in E3
1 defined by

S : r = r(u, v), (u, v) ∈ D.

Denote by gij , bij (i, j = 1, 2) the coefficients of the first and second fundamental forms of S,

respectively. Let the u-curves be geodesics and the v-curves be their orthogonal trajectories. Let

u be the arc length parameter of the u-curves. Then we have

g11 = 1, g12 = g21 = 0, g22 = ρ2 (ρ > 0).

We choose the orthonormal frame field {e1, e2, e3} over S so that

e1 = ru, e2 =
rv

ρ

and e3 is the unit normal vector to S satisfying (e1, e2, e3) = 1 where (∗, ∗, ∗) denotes the mixed

product of three vectors. Then we have

e2
1 = e2

2 = −e2
3 = 1,

e2 × e3 = e1, e3 × e1 = e2, e2 × e1 = e3,

where “×” is the vectorial product of two vectors in E3[6]

1 .

Let ds = du, ds̄ = ρdv. Then s and s̄ are the arc length parameters of the u-curves and

v-curves respectively. The derivative formula of the frame field {e1, e2, e3} with respect to s and

s̄ are

∂

∂s





e1

e2

e3



 =





0 0 k

0 0 p

k p 0









e1

e2

e3



 ,
∂

∂s̄





e1

e2

e3



 =





0 q p

−q 0 k̄

p k̄ 0









e1

e2

e3



 , (3.1)

where

k = −b11, p = −
b12

ρ
, k̄ = −

b22

ρ2
, q =

ρu

ρ
. (3.2)
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It is easy to check that q is the geodesic curvature of the v-curves.

We denote the derivatives of function φ with respect to s and s̄ by ∂φ/∂s = φ1 and ∂φ/∂s̄ =

φ2 respectively. Then the Gauss-Codazzi equations of S are:

K = kk̄ − p2 = q1 + q2, (3.3)

−k2 + p1 + 2pq = 0,

k̄1 − p2 + q(k̄ − k) = 0,

(3.4)

where K is the Gaussian curvature of S.

The collection of tangents of S along the u-curves forms a rectilinear congruence T having

S as one of its focal surfaces. The parametric equation of T is

T : Y (u, v, t) = r(u, v) + te1(u, v), (u, v) ∈ D, t ∈ (−∞, +∞). (3.5)

The coefficients of the first and second Kummer fundamental forms of T are:

E = e2
1u = −k2, F = e1u · e1v = −kρp, G = e2

1v = ρ2
(

q2 − p2
)

, (3.6)

e = e1u · ru = 0, f = e1u · rv = 0, f ′ = e1v · ru = 0, g = e1v · rv = ρ2q. (3.7)

It is easy to see that p ≡ 0 implies that the net of parametric curves is the net of curvature

lines. k ≡ 0 implies that all of the u-curves are straight lines and q ≡ 0 implies that S is

developable and the second Kummer fundamental form of T is zero.

From now on, we assume p 6= 0, k 6= 0 and q 6= 0.

Theorem 3.1 Let T be the rectilinear congruence generated by the tangents to a one parametric

family of geodesics (non straight lines) on a space-like surface S1 in E3
1 . Then the distance

between the foci on the same rays is the geodesic curvature radius of the orthogonal trajectories

of the family of geodesics. The second focal surface S2 of T is time-like and the normal vectors

of S2 are parallel to the tangent vectors of the orthogonal trajectories.

Proof Denote the parametric equation of the focal surface by

Z = r(u, v) + t(u, v)e1(u, v).

Then it follows that t(u, v) is the root of the quadratic equation

(Yu, Yv, Yt) = 0, (3.8)

where

Yu = ru + te1u = e1 + tke3, Yv = rv + te1v = ρ[e2 + t(qe2 + pe3)], Yt = e1. (3.9)

From (3.8) and (3.9), we have t1(u, v) = 0 and t2(u, v) = −1/q. It follows that the distance

between the loci on the same rays is d = |t2(u, v)− t1(u, v)| = 1/|q|. So we proved the first claim.

The parametric equation of the second focal surface S2 of T is

S2 : Z = r(u, v) −
1

q
e1(u, v). (3.10)
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Direct computation yields

Z1 =
∂Z

∂s
= e1 +

q1

q2
e1 −

1

q
(ke3) =

q2 + q1

q2
e1 −

k

q
e3, (3.11)

Z2 =
∂Z

∂s̄
= e2 +

q2

q2
e1 −

1

q
(qe2 + pe3) =

q2

q2
e1 −

p

q
e3. (3.12)

The unit normal vector of S2 is

n = ε
Z1 × Z2

‖Z1 × Z2‖
= εe2 (ε = ±1). (3.13)

Thus n2 = 1 which implies that S2 is time-like and the normal vectors of S2 are the tangent

vectors of the orthogonal trajectories. The second claim is proved. �

Theorem 3.2 Let T be the rectilinear congruence given in Theorem 3.1. If the second focal

surface is non-degenerate, then the necessary and sufficient condition that the two torsal surfaces

of T touch the second focal surface along the net of orthogonal parametric curves is the reference

surface S is developable. In this case, the second focal surface is not developable.

Proof Let {A, B, C} and {L, M, N} be the coefficients of the first and second fundamental

forms of the second focal surface S2. It follows from (3.11)–(3.13) that

A =

(

q1 + q2
)2

q4
−

k2

q2
, B = ρ

{(

q1 + q2

q4

)

q2 −
kp

q2

}

, C = ρ2

(

q2
2

q4
−

p2

q2

)

, (3.14)

L = −ε
kp

q
, M = −ερ

p2

q
, N = ερ2

(

q2 − k̄p

q

)

. (3.15)

Let du : dv, δu : δv be the directions of two torsal surfaces of T . Then it follows from the

differential equation of torsal surfaces of T
∣

∣

∣

∣

∣

Edu + Fdv Fdu + Gdv

edu + fdv f ′du + gdv

∣

∣

∣

∣

∣

= 0

that

du : dv = −ρp : k, δu : δv = 1 : 0. (3.16)

If the two torsal surfaces of T touch the second focal surface S2 along the net of orthogonal

parametric curves, then (3.16) must fulfil the equation

Aduδu + B(duδv + dvδu) + Cdvδv = 0. (3.17)

From (3.14), (3.16) and (3.17), we immediately derive that

(q1 + q2)[(q1 + q2)p − q2k] = 0, (3.18)

that is

q1 + q2 = 0, (3.19)

or

(q1 + q2)p − q2k = 0. (3.20)
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It follows from (3.11) and (3.12) that

Z1 × Z2 =
(q1 + q2)p − kq2

p3
e2. (3.21)

Thus (3.20) implies that the second focal surface S2 is degenerate, which contradicts the assump-

tion of Theorem 3.2. Therefore (3.19) holds �
(3.19) together with (3.3) yields K = 0. That is to say, the reference surface S is developable.

From(3.14) and (3.15), we have that the Gauss curvature of the second focal surface S2 is

K̄ =
LN − M2

AC − B2
= −

q4(kk̄p2 − kpq2 − p4)

[(q1 + q2)p − kq2]2
.

From (3.3) we obtain

K̄ =
pq4

kq2 − Kp
. (3.22)

(3.19) together with (3.22) implies that

K̄ =
pq4

kq2
6= 0,

since p 6= 0 and q 6= 0. So S2 is not developable. Hence Theorem 3.2 is proved. �

One can establish a one to one correspondence ξ between S1 and S2 by focal points belonging

to the same rays. Now we look for the necessary and sufficient condition for the correspondence

ξ preserving the net of asymptotic curves. We shall prove the following

Theorem 3.3 Let T be the rectilinear congruence given in Theorem 3.1. Then the correspon-

dence ξ between the non-degenerate focal surfaces of T preserves the net of asymptotic curves if

and only if that the Gaussian curvatures K and K̄ of the focal surfaces satisfy

KK̄ = −q4,

where q is the geodesic curvature of the orthogonal trajectories to the family of geodesics given

in Theorem 3.1.

Proof The correspondence ξ preserves the net of asymptotic curves if and only if {b11, b12, b22}

and {L, M, N} satisfy the condition:

b11

L
=

b12

M
=

b22

N
. (3.23)

It follows from (3.2) and (3.15) that (3.23) is equivalent to

q2 = 0. (3.24)

From (3.22) and (3.24) we have

KK̄ = −q4.

Conversely, suppose that KK̄ = −q4. Then it follows from (3.22) that

pq4

kq2 − Kp
= −

q4

K
,
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which is equivalent to

kq2 = 0.

So (3.23) holds because k 6= 0. Hence Theorem 3.3 is proved. �

If (3.19) and (3.24) are both satisfied, then Z1 × Z2 = 0. It follows that the focal surface

S2 is degenerate. Hence we have the following

Corollary 3.1 Let S1 be a space-like surface in E3
1 . Let T be the rectilinear congruence

generated by the tangents to a one parametric family of geodesics. If the two torsal surfaces

of T touch the second focal surface S2 along the net of orthogonal parametric curves and the

correspondence ξ between S1 and S2 preserves the net of asymptotic curves, then S2 is degenerate.

From (3.7) we have f = f ′ = 0. It follows that T is a normal congruence. We investigate the

surfaces that are perpendicular to the rays of T . In [6], the authors proved that the parameter

equations of these surfaces can be expressed as

S̄ : Z̄(u, v) = r(u, v) + t(u, v)e1(u, v), (3.25)

where

t = −

∫

ru · e1du + rv · e1dv + c, c ∈ (−∞, +∞).

All of them are time-like due to e2
1 = 1. As

ru · e1 = e1 · e1 = 1, rv · e1 = ρe2 · e1 = 0,

we obtain

t = c − u.

Therefore, (3.25) becomes

S̄ : Z̄(u, v) = r(u, v) + (c − u)e1(u, v). (3.26)

Direct computation yields

Z̄u = (c − u)k e3, Z̄v = ρ{1 + (c − u)q}e2 + ρ(c − u)p e3. (3.27)

It is noted that S̄ is not regular along the curve u = c. So we assume u 6= c. Let {A1, B1, C1}

and {L1, M1, N1} be the coefficients of the first and second fundamental forms of S̄. It follows

from (3.26) and (3.1) that

A1 = −t2k2, B1 = −ρt2kp, C1 = ρ2(1 + tq)2 − ρ2t2p2, (3.28)

L1 = tk2, M1 = ρtkp, N1 = ρ2tp2 − ρ2q(1 + tq), t = c − u. (3.29)

The Gaussian and mean curvatures K1 and H1 of S̄ are

K1 =
q

(u − c){1 + (c − u)q}
= q

{

1

u − c
+

q

1 + (c − u)q

}

, (3.30)

H1 =
1 + 2q(c − u)

2(u − c){1 + (c − u)q}
=

q

2

{

1

u − c
−

q

1 + (c − u)q

}

. (3.31)

From q 6= 0 and (3.30) we can see that S̄ is not developable.
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Theorem 3.4 If the orthogonal surfaces of the rectilinear congruence T are maximal in E3
1 ,

then the correspondence between the focal surfaces of T preserves the net of asymptotic curves.

Proof Assume that S̄ is maximal in E3
1 . Then H1 = 0. From (3.31) we have

q =
1

2(u − c)
,

which implies that

q2 = 0.

Hence Theorem 3.3 follows from (3.23) and (3.24). �

Remark 3.1 From (3.2) we have q = ρu/ρ. It follows that q2 = 0 if and only if ρuv = 0 which

implies that ρ = α(u) + β(v).

Remark 3.2 From (3.30) and (3.30), we can see that

q2 =
K2

1 − 4H2
1

4K1
.

It follows that q2 = 0 if and only if

∂

∂v

(

K2
1 − 4H2

1

4K1

)

= 0,

which implies that the orthogonal surfaces S̄ of T are the Weingarten surfaces.
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