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Abstract This short note is devoted to an approach of the quasi-hereditary orderings of An-type

algebras with exactly two generators. A necessary and sufficient condition for a quasi-hereditary

ordering is obtained. Moreover, the numbers of quasi-hereditary orderings of such algebras are

explicitly given.
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1. Introduction

Since the famous paper[1] by Cline, Parshall and Scott was published in 1988, quasi-hereditary

theory has received broad development. A remarkable feature of a quasi-hereditary algebra is

that its properties depend heavily on the selected ordering on simple modules. So an impor-

tant and interesting problem of quasi-hereditary theory is how to count the different quasi-

hereditary orderings for a quasi-hereditary algebra in general. A classical example is that Dlab

and Ringel proved that all orderings of hereditary algebras (and only hereditary algebras) are

quasi-hereditary[2]. Henceforth, the first author and Li proved that the different quasi-hereditary

orderings of a tree-type quasi-hereditary algebra are 2
3n! at most in [3]. However, it seems to be

very difficult to give a method for the computation of quasi-hereditary orderings for all quasi-

hereditary algebras. This short note is devoted to an approach of the quasi-hereditary orderings

of An-type algebras with exactly two generators. We first obtain a necessary and sufficient con-

dition for an ordering to be quasi-hereditary, then give explicitly the number of quasi-hereditary

orderings of all An-type algebras with exactly two generators by combinatoric technique. We

hope that the method given in this paper could produce a new way to this question.

2. Preliminaries

Throughout, algebras are all finite dimensional algebra (associative, having a unit) over an

algebraically closed field k. Modules are finitely generated (=finite dimensional) right modules.
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For an algebra A, mod A stands for the category of all A-modules. The composition of mappings

are from left to right, that is, fg means first f , then g. For M ∈ modA, Grad(M) denotes the

good radical of M and pd.M the projective dimension of M . We use gld.A to denote the global

dimension of A.

In order to save space, we use freely the standard terminologies and basic properties of

quasi-hereditary algebras, see also [2] and [4].

For an algebra A, denote by O(A) the collection of all orderings on simple modules. Let Λ be

the weight poset of A (That is, Λ is a partially ordered set in bijective correspondence with the

set of iso-class of simple modules over A). For each λ ∈ Λ, denote by E(λ) (or more precisely,

E(A, λ)) the corresponding simple module, P (λ) a projective cover of E(λ); Denote by ∆(λ) the

maximal factor module of P (λ) with all simple composition factors of the form E(µ) with µ ≤ λ.

Denote by ∆ the full subcategory of mod A consisting of all modules ∆(λ), λ ∈ Λ. The modules

in ∆ are called to be Weyl modules (or standard modules). Denote by F(∆) the collection of all

A-modules having ∆-filtrations, namely, M satisfies

0 = Mt ⊂ Mt−1 ⊂ · · · ⊂ M1 ⊂ M0 = M

such that Mi−1/Mi is isomorphic to some ∆(λ) ∈ ∆, 1 ≤ i ≤ t.

Definition 1 The algebra A is said to be quasi-hereditary with respect to the weight poset Λ

if for each λ ∈ Λ we have

1) EndA(∆(λ)) ≃ k;

2) P (λ) ∈ F(∆).

No matter the feature of a quasi-hereditary algebra is closely related with the poset Λ or

the selected ordering on its simple modules from the above definition. It is well-known that

any quasi-hereditary ordering of an algebra is equivalent to some total one (i.e., Weyl modules

coincide under two orderings). We take this fact for a convention in the present paper. So all

of the elements in O(A) are total orderings. Let {E(i)|1 ≤ i ≤ n} be the set of iso-classes

of the simple A-modules. Denote by O(E(i)) or O(i) the subset of O(A) consisting of those

elements with the largest element E(i). Notice that two different orderings may generate the

same quasi-hereditary algebra–such two orderings are called to be equivalent. In literature, some

authors identify such two ordering. However, we do not make this hypothesis in this paper.

We always suppose that “Two orderings are the same if and only if they are same as totally

ordered sets”. Therefore, |O(A)| = n!, |O(i)| = (n − 1)!. Denote by the number of the quasi-

hereditary ordering of A by q(A), and the number of the nonquasi-hereditary orderings by n(A).

Apparently, n(A) = n! − q(A). By [1], A is hereditary if and only if q(A) = |O(A)| = n!. For

nonhereditary algebra of A, we always have q(A) < n!.

3. Quasi-hereditary orderings of A
n
-type algebras with two generators

Later on, Λ = {1 < 2 < · · · < n}, and I(Λ) is its incidence algebra, namely, I(Λ) is the

hereditary algebra with ordinary quiver Q the Hasse diagram of Λ, where the arrows of Q are



Quasi-hereditary orderings of An-type algebras with two generators 977

given by αi : i + 1 −→ i, 1 ≤ i ≤ n − 1.

Definition 3.1 Let Λ = {1 < 2 < · · · < n}, I(Λ) be as above. Suppose 1 ≤ i < j ≤ n − 2.

Then the (i, j)-th algebra A(i,j) is defined by the following bounden quiver

A(i,j) = I(Λ)/(I(i) + I(j)),

where I(i) respectively I(j) is a (two-sided) ideal of I(Λ) generated by αiαi+1 respectively

αjαj+1.

Therefore, A(i,j), 1 ≤ i < j ≤ n − 2, is the following Nakayama algebra:

Q : 1 → 2 → · · · → i
αi−→ i + 1

αi+1
−→ i + 2 → · · · → j

αj

−→ j + 1
αj+1
−→ j + 2 → · · · → n − 1 → n

with defining relations αiαi+1 = 0 and αjαj+1 = 0.

Proposition 3.1 Let 1 ≤ i < j ≤ n− 2. Then dimkA(i,j) = [(n− i)2 + (j − i)2 + i2 + n + 2j]/2.

Proof Because A(i,j) is a Nakayama algebra, its indecomposable modules can be determined

uniquely by the dimension vectors. So the indecomposable projective modules P (r), 1 ≤ r ≤ n

can be denoted by the dimension vectors. According to the definition of I(i) and I(j), we have

(From left to right: top to socle):

P (r) =











E(r), E(r + 1), . . . , E(i), E(i + 1), if 1 ≤ r ≤ i,

E(r), E(r + 1), . . . , E(j), E(j + 1), if i + 1 ≤ r ≤ j,

E(r), E(r + 1), . . . , E(n − 1), E(n), if j + 1 ≤ r ≤ n.

(1)

So we can compute the dimension of indecomposable projective modules P (r), 1 ≤ r ≤ n,

namely

dimkP (r) =











i(i + 3)/2, if 1 ≤ r ≤ i,

(j − i)(j − i + 3)/2, if i + 1 ≤ r ≤ j,

(n − j)(n − j + 1)/2, if j + 1 ≤ r ≤ n.

(2)

So

dimkA(i,j) =

n
∑

r=1

dimkP (r) =
1

2
[(n − j)2 + (j − i)2 + i2 + 2j + n].

Proposition 3.2 Let 1 ≤ i < j ≤ n − 2. Then

1) If i + 1 < j, then A(i,j) is a tilted algebra with global dimension 2;

2) If i + 1 = j, then A(i,j) is an algebra with global dimension 3.

Proof 1) Let i + 1 < j. According to formula (1), we have the following exact sequence in

mod A(i,j):

0 −→ P (r + 1) −→ P (r) −→ E(r) −→ 0, if r 6= i, j (3)

and

0 −→ P (r + 2) −→ P (r + 1) −→ P (r) −→ E(r) −→ 0, if r = i or r = j. (4)

So

pd.E(r) =

{

1, if r 6= i, j,

2, if r = i, j.
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According to the famous result by Goodearl[5], gld.A = sup{pd.M |M is simple-module}, we then

have gld.A = 2.

In order to prove A(i,j) is a tilted algebra, consider A as the following path-algebra An:

An : 1 → 2 → · · · → r → · · · → n − 1 → n.

Denote by er the primitive idempotent of A corresponding to the vertex r of An, and let PA(r) =

erA be the corresponding indecomposable projective module of A. Put

T (r) =

{

PA(r), if r 6= i, j,

PA(r)/PA(r + 2), if r = i or r = j.

Suppose T = ⊕n
r=1T (r). Since A is hereditary, pd.T ≤ 1 (In fact pd.T = 1). Furthermore,

it is easy to prove that Ext1A(T, T ) = 0. So TA is a tilting module. All of the T (r)’s are

Schurian-modules (that is, EndA(T (r)) ∼= k). If r < s, then HomA(T (r), T (s)) = 0; If r > s, we

have

HomA(T (r), T (s)) ∼=































k, if 1 ≤ s < r ≤ i + 1,

0, if 1 ≤ s < i + 1 < r ≤ j + 1,

k, if i + 1 ≤ s < r ≤ j + 1,

0, if i + 1 ≤ s < j + 1 < r ≤ n,

k, if j + 1 ≤ s < r ≤ n.

Therefore, EndAT = HomA(T, T ) ∼= A(i,j), so A(i,j) is a tilted algebra[6].

2) Let i + 1 = j. Then the defining relations of A(i,j) = A(i,i+1) are αiαi+1 = 0 and

αi+1αi+2 = 0. We have the following exact sequence in mod A(i,j) from (1):

0 −→ P (r + 1) −→ P (r) −→ E(r) −→ 0, if r 6= i, i + 1 (5)

and

0 −→ P (i + 3) −→ P (i + 2) −→ P (i + 1) −→ P (i) −→ E(i) −→ 0 (6)

and

0 −→ P (i + 3) −→ P (i + 2) −→ P (i + 1) −→ E(i + 1) −→ 0. (7)

Therefore

pd.E(r) =











1, if r 6= i, i + 1,

3, if r = i,

2, if r = i + 1.

We have gld.A(i,j) = 3. Since the global dimension of a classical tilted algebra ≤ 2[7], A(i,j) is

tilted (in fact,A(i,j) is even not a generalized tilted algebra).

Lemma 3.3 An ordering “≤” of A(i,j) is quasi-hereditary if and only if one of the following

conditions holds.

1) i + 1 < i and j + 1 < j;

2) i + 1 < i and j < j + 1 < j + 2;

3) j + 1 < j and i < i + 1 < i + 2;
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4) i < i + 1 < i + 2 and j < j + 1 < j + 2.

Proof Necessity. Suppose (A(i,j),≤) is a quasi-hereditary algebra. Then P (i) ∈ F(∆). Since

the dimension vector of P (i) is [i, i + 1], we know that, P (i) ∈ ∆, that is, P (i) = ∆(i), or P (i)

has a F(∆)-filtration of length 2. Notice that HomA(i,j) (P (r), P (i)) ∼= (δir + δi+1,r)k, where

δxy is the Kronecker symbol, so the former implies that i < i + 1, while the latter requires that

i < i + 1 and ∆(i + 1) is a simple-module. So we must have i + 1 < i + 2. Similar argument

works for the case P (j) ∈ F(∆). So we also have that j + 1 < j or j < j + 1 < j + 2.

Sufficiency. We prove only the sufficiency of condition 1), the proof of other conditions

are similar. For any r < s, there is HomA(i,j)(P (r), P (s)) = 0, so whether P (r) in ∆ or not

only relates to P (s)(s > r). Because the quotient algebra A(i,j)/(
∑j

r=1 er) ∼= kAn−j of Ai,j is

hereditary, P (r) ∈ F(∆), r ≥ j + 1 for all orderings “≤” of simple modules. So we only need to

discuss those P (r) with r ≤ j.

Now suppose condition 1) holds, that is, i+1 < i and j +1 < j. Notice that for all r > j, we

have HomA(i,j)(P (r), P (j)) = δj+1,jk. But j + 1 < j, so Grad(P (j)) = 0 and P (j) ∈ ∆. Thus,

P (r) ∈ ∆ for all i < r < j. According to the same reason, if i + 1 < i, then Grad(P (i)) = 0 and

P (i) ∈ ∆. Whence, P (r) ∈ ∆ for all 1 ≤ r < i. Therefore (A(i,j),≤) is quasi-hereditary. The

proof is completed.

Now, we can prove our main result:

Theorem 3.4 Let 1 ≤ i < j ≤ n − 2. Then

1) If i + 1 = j, then O(A(i,j)) = n!
3 ;

2) If i + 2 = j, then O(A(i,j)) = 7n!
15 ;

3) If i + 2 < j, then O(A(i,j)) = 4n!
9 .

Proof By Theorem 3.3, we may obtain O(A(i,j)) by computing O(i + 1 < i and j + 1 < j) and

other three cases.

1) Suppose i + 1 = j. Then

(i) O(i + 1 < i and j + 1 < j) = O(i + 2 < i + 1 < i) = n!
3! = n!

6 ;

(ii) O(i+1 < i and j < j +1 < j +2) = O(i+1 < i and i+1 < i+2 < i+3) = n!
4! × 3 = n!

8 ;

(iii) O(j + 1 < j and i < i + 1 < i + 2) = O(i + 2 < i + 1 and i < i + 1 < i + 2) = 0;

(iv) O(i < i + 1 < i + 2 and j < j + 1 < j + 2) = O(i < i + 1 < i + 2 < i + 3) = n!
4! = n!

24 .

Therefore, O(A(i,i+1)) = n!
6 + n!

8 + n!
24 = n!

3 .

2) Suppose i + 2 = j. Then

(i) O(i + 1 < i and j + 1 < j) = O(i + 1 < i and i + 3 < i + 2) = n!
2!×2! = n!

4 ;

(ii) O(i + 1 < i and j < j + 1 < j +2) = O(i + 1 < i and i + 2 < i + 3 < i +4) = n!
2!×3! = n!

12 ;

(iii) O(j +1 < j and i < i+1 < i+2) = O(i+3 < i+2 and i < i+1 < i+2) = n!
4! ×3 = n!

8 ;

(iv) O(i < i+1 < i+2 and j < j+1 < j+2) = O(i < i+1 < i+2 < i+3 < i+4) = n!
5! = n!

120 .

Therefore, O(A(i,i+2)) = n!
4 + n!

12 + n!
8 + n!

120 = 7n!
15 .

3) Suppose i + 2 < j. Then

(i) O(i + 1 < i and j + 1 < j) = n!
2!×2! = n!

4 ;
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(ii) O(i + 1 < i and j < j + 1 < j + 2) = n!
2!×3! = n!

12 ;

(iii) O(j + 1 < j and i < i + 1 < i + 2) = n!
4! × 3 = n!

12 ;

(iv) O(i < i + 1 < i + 2 and j < j + 1 < j + 2) = n!
3!×3! = n!

36 .

Therefore, O(A(i,j)) = n!
4 + n!

12 + n!
8 + n!

120 = 4n!
9 .

Remark If i+2 < j, there is an interesting relationship between the numbers of quasi-hereditary

orderings of An-type algebras with two generators and one generator:

O(A(i,j))

n!
= (

O(A(i))

n!
)2.

We guess that the above formula is true in general.
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