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1. Introduction

The theory of finite fields plays an important role in theoretical mathematics and also finds

various applications in computer science, coding theory, cryptography, algebraic geometry, num-

ber theory, group theory, and many branches in discrete mathematics. Therefore, it is very

important to study the theory of finite field.

In this paper, some problems on representations of subspace in a finite field are discussed, a

result in [3] is generalized in Sections 2, and a new proof about Singer Difference Sets is given

in Section 3. Finally, in Section 4 a class of association schemes are constructed by all affine

hyperplanes in a finite field, and the parameters are computed.

2. Representations of subspace in a finite field

Let Fq be a finite field with q elements, where q is a power of the prime p. Fqn is an n degree

extension field of Fq. Let N = {xq − x|x ∈ Fqn} be a subset of Fqn . When q = 2, we have

Lemma 2.1[3] Suppose that F2n is a finite field of characteristic 2, where n ≥ 2. Then

|(a1N + b1) ∩ (a2N + b2) ∩ · · · ∩ (amN + bm)| = 2n−m

if and only if a−1
1 , a−1

2 , . . . , a−1
m are linearly independent over F2, where ai, bi ∈ F2n , ai 6= 0, i =

1, 2, . . . , m.
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In this section, we discuss some problems on representations of subspace in a finite field Fqn

over Fq, and generalize a result in Lemma 2.1. At first, we introduce some properties of a finite

field and some counting results on subspaces of vector space over a finite field. More information

can be found in [2] and [5].

For α ∈ F = Fqn , we define the trace of α on K = Fq as

TrF/K(α) = α + αq + · · · + αqn−1

.

Lemma 2.2[2] If F is a finite extension field on a field K, then for α ∈ F , we have TrF/K(α) = 0

if and only if α ∈ N .

Lemma 2.3[5] If 0 ≤ m ≤ n, F is a vector space with dimension n on K, then the number of

m dimensional subspace of F , denoted by N(m, n), is

Πn
i=n−m+1(q

i − 1)

Πm
i=1(q

i − 1)
.

Considering F as a vector space of dimension n over K, we define a symmetric inner product

over F as follows �
(a, b) = TrF/K(ab), ∀a, b ∈ F.

Obviously, this inner product is non-degenerate. Notice that the map ϕ : F → N given by

ϕ : x 7→ xq − x, ∀x ∈ F

is a group epimorphism, where N = {xq − x x ∈ F} is subgroup of additive group F , and the

kernel of ϕ is just K. So |N | = qn−1, and N is an (n−1)-dimensional subspace over K of F . For

an arbitrary a ∈ F, a 6= 0, aN is an (n − 1)-dimensional subspace of F , and has the orthogonal

complement (aN)⊥ = 〈a−1〉. Therefore, aN = bN , ∀a, b ∈ F ∗ if and only if ab−1 ∈ K∗, where

F ∗ and K∗ denote respectively the multiplication groups of F and K. Thus, the number of

these n− 1-dimensional subspaces of F with the form aN is qn−1
q−1 . By Lemma 2.3, {aN |a ∈ F ∗}

presents all the subspaces of dimension n− 1 in F . So each affine hyperplane of F is of the form

aN + b, where a ∈ F ∗, b ∈ F . By linear algebra, we have the following theorem.

Theorem 2.4 Suppose that K is a finite field with q elements of characteristic p, and F is an

n degree extension field of K, where n ≥ 2. If N = {xq − x|x ∈ F}, then

|(a1N + b1) ∩ (a2N + b2) ∩ · · · ∩ (amN + bm)| = qn−m

if and only if a−1
1 , a−1

2 , . . . , a−1
m are linearly independent over K, where ai, bi ∈ Fq, ai 6= 0, i =

1, 2, . . . , m.

3. Singer differece set

In this section, we apply Theorem 2.4 to give another proof of Singer difference sets.

Definition 3.1 Let G be an additively written group of order v. A k-subset D of G is called

a (v, k, λ; n)-difference set, if every nonzero element g of G has exactly λ representations as a



The subspace representations of finite field and its applications 1023

difference x − y with elements from D. In particular, the difference set is cyclic if the group G

is cyclic.

Theorem 3.2[4] Suppose that q is a power of a prime, n ≥ 3 an integer, then there exists a

(v, k, λ)-cyclic difference set with the parameters

v =
qn − 1

q − 1
, k =

qn−1 − 1

q − 1
, λ =

qn−2 − 1

q − 1
.

Proof Suppose that K is a finite field with q elements of characteristic p, and F is an n

degree extension field of K, n ≥ 3. We know that the multiplicative group of a finite field

is cyclic. Denote by M the quotient group F ∗ modulo K∗. Obviously, M is a cyclic group

of order qn−1
q−1 . Let D = {xK∗|x ∈ N∗}, where N∗ denotes the set of all nonzero elements

in the set N = {xq − x|x ∈ F}. Notice that for any x, y ∈ F ∗, xK∗ = yK∗ if and only if

y−1x ∈ K∗. Furthermore, since xq = x, ∀x ∈ K∗, a ∈ N∗ if and only if ax ∈ N∗, ∀x ∈ K∗.

Therefore, the subset D of M has qn−1−1
q−1 elements. For any nonidentity tK∗ of M , aK∗, bK∗ ∈ D

such that aK∗(b−1)K∗ = tK∗ if and only if aK∗ = tbK∗. Obviously,a ∈ N∗ ∩ tN∗. Since

tK∗ 6= K∗, t−1 6∈ K∗, by Theorem 2.4, there are qn−2 − 1 possible choices for a. Notice that

a ∈ N∗ if and only if ax ∈ N∗, ∀x ∈ K∗. So there are qn−2−1
q−1 possible choices for aK∗. Once aK∗

is chosen, bK∗ is unique, that is, bK∗ = t−1aK∗. Thus, we obtain a (v, k, λ)-cyclic difference

set, where

v =
qn − 1

q − 1
, k =

qn−1 − 1

q − 1
, λ =

qn−2 − 1

q − 1
.

4. A class of association schemes

Association schemes have close connections with coding theory, design theory and finite group

theory, etc. It has become an important and basic part of algebraic combinatorics. We refer to

[1] for more about association schemes.

Let X be the finite set with n elements and R0, R1, . . . , Rd be subsets of X×X , which satisfy

the following conditions

(1) R0 = {(x, x)|x ∈ X};

(2) X × X = R0 ∪ R1 ∪ · · · ∪ Rd, Ri ∩ Rj = φ (i 6= j);

(3) For any i, there is some i′ ∈ {0, 1, . . . , d} such that

tRi = {(x, y)|(y, x) ∈ Ri} = Ri′ ;

(4) For any i, j, k ∈ {0, 1, . . . , d}, |{z ∈ X |(x, z) ∈ Ri, (z, y) ∈ Rj}| is a constant whenever

(x, y) ∈ Rk, which is denoted by pk
ij , called the intersection number.

The configuration X = (X, {Ri}0≤i≤d) is called an association scheme on X . Moreover, an

association scheme with the following additional condition;

(5) pk
ij = pk

ji, ∀i, j, is called a commutative association scheme. And an association scheme

with the following additional condition;

(6) i′ = i, ∀i, is called a symmetric association scheme. Obviously, a symmetric association
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scheme is necessarily commutative. n and pk
ij are called parameters of an association scheme.

ki = p0
ii′ is called the valency of Ri.

It is known that the parameters of an association scheme of class d have the following basic

relations

ki = p0
ii′ , k0 = 1, |X | = k0 + k1 + · · · + kd,

pi
0j = δij , pi

j0 = δij , p0
ij = kiδij′ , pi

jk = pi′

j′k′ ,

d
∑

k=0

pi
jk = kj , kip

i
jk = kjp

j
ik′ ,

d
∑

m=0

pm
ij pl

km =
d

∑

n=0

pn
kip

l
nj .

Example Suppose that G is a finite group, and acts transitively on the finite set Ω(|Ω| = n > 1).

It deduces a natural action on the set Ω × Ω, that is, for any (x, y) ∈ Ω × Ω, σ ∈ G,

(x, y)σ = (xσ, yσ).

Let Λ0, Λ1, . . . , Λd be the orbits of G on Ω × Ω, where Λ0 = {(x, x)|x ∈ Ω}. Then X =

(Ω, {Λi}0≤i≤d) is an association scheme.

Let K = Fq be a finite field with q elements of characteristic p, F = Fqn be an n (n ≥ 2)

degree extension field of K, N = {xq − x|x ∈ F}, Ω = {aN + b|a ∈ F ∗, b ∈ F}, that is, the set

of all affine superplanes of F over K and G = {(x, y)|x ∈ F ∗, y ∈ F}. Define a binary operation

∗i, (i = 1, 2) on G, called multiplication,

(x1, y1) ∗1 (x2, y2) = (x1x2, x1y2 + y1),

(x1, y1) ∗2 (x2, y2) = (x1x2, y2 + x−1
2 y1).

It is easy to verify that G is a group with order qn(qn − 1) for ∗i, (i = 1, 2).

Define the action of (G, ∗1) on the set Ω

(x, y)(aN + b) = (axN + bx + y), ∀(x, y) ∈ G, aN + b ∈ Ω.

Obviously, it is transitive. Thus, we obtain a class of association schemes by this action. Let

Λ0, Λ1, . . . , Λd be the orbits of (G, ∗1) on Ω × Ω. By the transitivity, we have that every orbit

contains an element of the form (N, aN + b). The orbit containing the element (N, aN + b)

is denoted by [a, b]. (N, aN + b) and (N, cN + d) are in an orbit if and only if there exists

(x, y) ∈ (G, ∗1) such that (x, y)((N, aN + b)) = (N, cN + d), that is,

x ∈ K∗, y ∈ N, ac−1 ∈ K∗, bx + y − d ∈ aN.

(i) Whence a ∈ K∗, aN = N . By Theorem 2.4, (N, N + b) and (N, cN + d) belong to the

same orbit if and only if there exists x ∈ K∗ such that c ∈ K∗, bx−d ∈ N . Notice that, if b ∈ N ,

then bx ∈ N by x ∈ K∗, so d ∈ N . Contrarily, if d ∈ N , then b ∈ N . Furthermore, if b 6∈ N , then

d 6∈ N . Consider N as an (n − 1)-dimension subspace of F over K and let αi, i = 1, . . . , n − 1,

be a base of N . Since b 6∈ N , b, αi, i = 1, . . . , n − 1, are a base of F over K. So there exists a

group of elements λ, µi ∈ K, i = 1, . . . , n − 1 such that

−d = λb + µ1α1 + · · · + µn−1αn−1.
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Let x = −λ ∈ K∗. From d 6∈ N and λ 6= 0 it follows bx − d ∈ N . From the above argument, we

have that, when a ∈ K∗, (N, aN + b) and (N, cN + d) belong to the same orbit if and only if

c ∈ K∗, b, d ∈ N or c ∈ K∗, b, d 6∈ N ;

(ii) When a 6∈ K∗, by Theorem 2.4, |(N + bx − d) ∩ aN | = qn−2 ≥ 1. (N, aN + b) and

(N, cN + d) belong to the same orbit if and only if ac−1 ∈ K∗.

From above, we have

Theorem 4.1 With the definition of the group (G, ∗1) and the set Ω as above, the action of

(G, ∗1) on Ω is transitive. Define an association scheme with qn−1
q−1 classes by this action, denoted

by X1. Suppose that α is a fixed element in F and not in N , and K∗, a1K
∗, . . . , a (qn

−1)
q−1 −1

K∗

are all cosets of K∗ in F∗. Then

[1, 0], [1, α], [aj, 0], j = 1, . . . ,
(qn − 1)

q − 1
− 1

are all classes of X1.

Theorem 4.2 The parameters of X1 are the following:

n =
q(qn − 1)

q − 1
; k0 = k[1,0] = 1, k[1,α] = q − 1,

k[aj ,0] = q, j = 1, . . . ,
(qn − 1)

q − 1
− 1,

k
[1,α]
[1,α],[1,α] = q − 2, k

[1,α]
[1,α],[aj,0] = 0, k

[1,α]
[ai,0],[1,α] = 0,

k
[1,α]
[ai,0],[aj ,0] =

{

q aiaj = 1

0 aiaj 6= 1
, k

[ak,0]
[1,α],[1,α] = 0,

k
[ak,0]
[1,α],[aj,0] =

{

q − 1 ak = aj

0 ak 6= aj

, k
[ak,0]
[ai,0],[1,αt]

=

{

q − 1 ak = ai

0 ak 6= ai

,

k
[ak,0]
[ai,0],[aj,0] =

{

q ak = aiaj

0 ak 6= aiaj

.

Proof We only compute k
[1,α]
[ai,0],[aj ,0] as example, and the others are similar.

Now that the element (N, N + α) ∈ [1, α] is chosen, then

k
[1,α]
[ai,0],[aj,0] = |{xN + y ∈ Ω|(N, xN + y) ∈ [ai, 0], (xN + y, N + α) ∈ [aj , 0]}|.

Since (N, xN + y) and (N, aiN) belong to the same orbit if and only if xai
−1 ∈ K∗. Therefore,

x = ai, y ∈ F . Furthermore, (xN + y, N + α) and (N, ajN) belong to the same orbit if and only

if x = aj
−1. So, if aiaj = 1, then there are q possible choices for xN + y. Otherwise, there are 0

possible choices for xN + y.

Notice that [ai, 0] = [ai, 0]
′

if and only if a2
i ∈ K∗, that is, the order of aiK

∗ is 2 in the

quotient group of F ∗ modulo K∗. Since this quotient group is cyclic, for any i, a2
i ∈ K∗ if

and only if the order of the quotient group is 2. By calculation, the equation qn−1
q−1 = 2 has no

solution. Therefore, X1 is not symmetric. By the parameters in Theorem 4.2, X1 is a commutative
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association scheme. Thus, we have

Corollary 4.3 The association scheme X1 is commutative and nonsymmetric.

Suppose that X = (X, {Ri}0≤i≤d) and Y = (Y, {Λi}0≤i≤d) are two association schemes, and

their classes are equal. Let |X | = |Y |, f be a bijective map from X to Y , and a permutation

σ(f) be induced on the set {0, 1, . . . , d}, that is, for any elements u and v in X , (u, v) ∈ Ri if

and only if (f(u), f(v)) ∈ Λiσ(f) . Then f is called an isomorphism between X and Y. Whence

X is isomorphic to Y.

Define the action of (G, ∗2) on Ω

(x, y)(aN + b) = (axN + bx + yx), ∀(x, y) ∈ G, aN + b ∈ Ω.

Obviously, this action is transitive. Thus, it induces a class of association schemes, denoted by

X2.

Let ϕ be a map from the group (G, ∗1) to the group (G, ∗2), such that ϕ(x, y) = (x, xy), ∀(x, y) ∈

(G, ∗1). It is easy to verify that ϕ is an isomorphism between (G, ∗1) and (G, ∗2), and satisfies

that for any aN + b ∈ Ω,

(x, y)(aN + b) = ϕ(x, y)(aN + b), ∀(x, y) ∈ (G, ∗1).

Therefore, the orbits of (G, ∗1) on Ω × Ω are the same as (G, ∗2) Ω × Ω. So, we have

Theorem 4.4 X1 is isomorphic to X2.
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