# The Total Stiefel-Whitney Classes of Vector Bundles on $C P(n) \times C P(m)$ 

LI Ri Cheng, DING Yan Hong, WU Zhen De<br>(College of Mathematics and Information Science, Hebei Normal University, Hebei 050016, China)<br>(E-mail: richeng_cn@163.com)


#### Abstract

The possible form of the total Stiefel-Whitney classes of vector bundles on $C P(n) \times$ $C P(m)$ is determined in this paper.


Keywords vector bundle; total Stiefel-Whitney class; Wu formula.
Document code A
MR(2000) Subject Classification 54A10; 54A40
Chinese Library Classification O189.3

## 1. Introduction

In 1962, Steenrod raised to Conner the following question
Given a smooth closed manifold $F$, does there exist a non-trivial involution $(M, T)$ on a smooth closed manifold $M$ such that the fixed set of $T$ is $F$ ? Can one determine all involutions $(M, T)$ for a special $F$ ?

For the sake of convenience, people think about determining the bordism classes of involutions $(M, T)$ which has $F$ as its fixed set. When $F$ is a sphere, a projective space, or the disjoint union of them, and the case $F$ is a Dold manifold, there are some results in [1]-[5]. But there are few results for the case that $F$ is the product of some spaces. Stong, Weiss and Saiers discussed in [6], [7] the case that $F$ is the product of two real projective spaces.

From [8], one knows that the bordism classes of involutions with $F$ as its fixed set is determined by the bordism classes of normal bundles on $F$. For this reason, to determine involutions which has $F=C P(n) \times C P(m)$ as its fixed set, one must know the possible form of the total Stiefel-Whitney classes of vector bundles on it.

The main result of this paper is the following theorem.
Theorem The total Stiefel-Whitney class of a vector bundle $\xi$ on $C P(n) \times C P(m)$ must have the form

$$
W(\xi)=\left(1+z_{1}\right)^{a}\left(1+z_{2}\right)^{b}\left(1+z_{1}+z_{2}\right)^{c}\left(1+z_{1}^{i} z_{2}^{2^{s-1}-i}\right)^{\varepsilon}
$$

Received date: 2007-01-18; Accepted date: 2007-07-13
Foundation item: the National Natural Science Foundation of China (No. 10371029); the Natural Science Foundation of Hebei Province (No. 103144); the Foundation of Hebei Normal University (No. L2005B03) and the Funds of Hebei Province for Doctorate (No. 201006).
where $z_{1} \in H^{2}\left(C P(n) ; Z_{2}\right), z_{2} \in H^{2}\left(C P(m) ; Z_{2}\right)$ are generators, $a, b, c$ are non-negative integers. $\varepsilon=0$ or 1 , and when $\varepsilon=1$, we must have

$$
\begin{cases}i=2^{t}(2 p+1), & t \geq 0 \\ n=2^{t}(2 p+1)+x, & 0 \leq x<2^{t} \\ m=2^{s-1}-2^{t}(2 p+1)+y, & 0 \leq y<2^{t}\end{cases}
$$

Throughout this paper, $C P(n)$ denotes the $n$ dimensional complex projective space, $c_{i}(\xi)$ is the $i$ th Chern class of the complex vector bundle $\xi, w_{i}(\xi)$ is the $i$ th Stiefel-Whitney class of the real vector bundle $\xi$, and $W(\xi)$ denotes the total Stiefel-Whitney class of the real vector bundle $\xi$.

All vector bundles in this paper are real vector bundles unless there is a special announcement.

## 2. The total Stiefel-Whitney classes of vector bundles on $C P(n) \times C P(m)$

Let

$$
H^{*}(C P(n) \times C P(m) ; Z)=Z\left[z_{1}\right] / z_{1}^{n+1} \otimes Z\left[z_{2}\right] / z_{2}^{m+1}
$$

where $z_{1} \in H^{2}(C P(n) ; Z), z_{2} \in H^{2}(C P(m) ; Z)$ are generators. For convenience, we denote generators of $H^{2}\left(C P(n) ; Z_{2}\right), H^{2}\left(C P(m) ; Z_{2}\right)$ also by $z_{1}, z_{2}$.

Let $\gamma_{1}$ denote the canonical complex line bundle over $C P(n), \gamma_{2}$ denote the canonical complex line bundle over $C P(m) . p_{1}: C P(n) \times C P(m) \rightarrow C P(n), p_{2}: C P(n) \times C P(m) \rightarrow C P(m)$ are projections. Then pullbacks $p_{1}^{*}\left(\gamma_{1}\right)$ and $p_{2}^{*}\left(\gamma_{2}\right)$ are complex line bundles over $C P(n) \times C P(m)$. Thereby, $p_{1}^{*}\left(\gamma_{1}\right) \otimes p_{2}^{*}\left(\gamma_{2}\right)$ is also a complex line bundle over $C P(n) \times C P(m)$.

Lemma 1 The first Chern class of the bundle $p_{1}^{*}\left(\gamma_{1}\right) \otimes p_{2}^{*}\left(\gamma_{2}\right)$ is $\left.c_{1} p_{1}^{*}\left(\gamma_{1}\right) \otimes p_{2}^{*}\left(\gamma_{2}\right)\right)=z_{1}+z_{2}$.
Proof We define a map $i_{1}: C P(n) \rightarrow C P(n) \times C P(m)$ by $i_{1}(x)=\left(x, p t_{2}\right)$, for every $x \in C P(n)$; define a map $i_{2}: C P(m) \rightarrow C P(n) \times C P(m)$ by $i_{2}(x)=\left(p t_{1}, x\right)$, for every $x \in C P(m)$, where $p t_{1} \in C P(n), p t_{2} \in C P(m)$ are fixed. So we have

$$
\begin{aligned}
p_{1} i_{1}: C P(n) & \rightarrow C P(n) \\
p_{2} i_{2}: C P(m) & \rightarrow C P(m) \text { is the identity on } C P(n)
\end{aligned}
$$

Therefore, we have

$$
\begin{equation*}
\left(p_{1} i_{1}\right)^{*}\left(\gamma_{1}\right)=i_{1}^{*} p_{1}^{*}\left(\gamma_{1}\right)=\gamma_{1} \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
\left(p_{2} i_{2}\right)^{*}\left(\gamma_{2}\right)=i_{2}^{*} p_{2}^{*}\left(\gamma_{2}\right)=\gamma_{2} \tag{2}
\end{equation*}
$$

From (1), we have

$$
\begin{equation*}
i_{1}^{*}\left(c_{1}\left(p_{1}^{*}\left(\gamma_{1}\right) \otimes p_{2}^{*}\left(\gamma_{2}\right)\right)\right)=c_{1}\left(i_{1}^{*} p_{1}^{*}\left(\gamma_{1}\right) \otimes i_{1}^{*} p_{2}^{*}\left(\gamma_{2}\right)\right)=c_{1}\left(\gamma_{1}\right)=z_{1} \tag{3}
\end{equation*}
$$

For the same reason, from (2), we may get

$$
i_{2}^{*}\left(c_{1}\left(p_{1}^{*}\left(\gamma_{1}\right) \otimes p_{2}^{*}\left(\gamma_{2}\right)\right)\right)=z_{2}
$$

Let $c_{1}\left(p_{1}^{*}\left(\gamma_{1}\right) \otimes p_{2}^{*}\left(\gamma_{2}\right)\right)=\varepsilon_{1} z_{1}+\varepsilon_{2} z_{2}$. Then we have

$$
i_{1}^{*}\left(c_{1}\left(p_{1}^{*}\left(\gamma_{1}\right) \otimes p_{2}^{*}\left(\gamma_{2}\right)\right)\right)=i_{1}^{*}\left(\varepsilon_{1} z_{1}+\varepsilon_{2} z_{2}\right)=\varepsilon_{1} z_{1}
$$

from (3) we know that $\varepsilon_{1}=1$. For the same reason we may get $\varepsilon_{2}=1$. So we have $c_{1}\left(p_{1}^{*}\left(\gamma_{1}\right) \otimes\right.$ $\left.p_{2}^{*}\left(\gamma_{2}\right)\right)=z_{1}+z_{2}$.

Lemma 2 There exists a 2-dimensional vector bundle $\eta$ over $C P(n) \times C P(m)$ such that $W(\eta)=1+z_{1}+z_{2}$.

Proof Let $\eta$ be the realification of the complex bundle $p_{1}^{*}\left(\gamma_{1}\right) \otimes p_{2}^{*}\left(\gamma_{2}\right)$. Then $w_{2}(\eta)=$ $c_{1}\left(p_{1}^{*}\left(\gamma_{1}\right) \otimes p_{2}^{*}\left(\gamma_{2}\right)\right) \bmod 2$. From Lemma 1, one knows that $c_{1}\left(p_{1}^{*}\left(\gamma_{1}\right) \otimes p_{2}^{*}\left(\gamma_{2}\right)\right)=z_{1}+z_{2}$, so we have $w_{2}(\eta)=z_{1}+z_{2}$. Therefore, we have $W(\eta)=1+z_{1}+z_{2}$.

Lemma $3^{[9]}$ Let the total Stiefel-Whitney class of a vector bundle $\xi$ be

$$
W(\xi)=1+w_{2^{s}}+\text { higher terms }
$$

Then $S q^{i} w_{2^{s}}=0,0<i<2^{s-1}$.
Theorem The total Stiefel-Whitney class of a vector bundle $\xi$ on $C P(n) \times C P(m)$ must have the form

$$
W(\xi)=\left(1+z_{1}\right)^{a}\left(1+z_{2}\right)^{b}\left(1+z_{1}+z_{2}\right)^{c}\left(1+z_{1}^{i} z_{2}^{2^{s-1}-i}\right)^{\varepsilon}
$$

where $z_{1} \in H^{2}\left(C P(n) ; Z_{2}\right), z_{2} \in H^{2}\left(C P(m) ; Z_{2}\right)$ are generators, $a, b, c$ are non-negative integers. $\varepsilon=0$ or 1 , and when $\varepsilon=1$, we must have

$$
\begin{cases}i=2^{t}(2 p+1), & t \geq 0 \\ n=2^{t}(2 p+1)+x, & 0 \leq x<2^{t} \\ m=2^{s-1}-2^{t}(2 p+1)+y, & 0 \leq y<2^{t}\end{cases}
$$

Proof Let $p_{1}^{*}\left(\gamma_{1}\right), p_{2}^{*}\left(\gamma_{2}\right)$ as former. For convenience, denote their realification also by $p_{1}^{*}\left(\gamma_{1}\right), p_{2}^{*}\left(\gamma_{2}\right)$. Therefore we have $W\left(p^{*}\left(\gamma_{1}\right)\right)=1+z_{1}, W\left(p^{*}\left(\gamma_{2}\right)\right)=1+z_{2}$.

Let $W(\xi)=1+\varepsilon_{1} z_{1}+\varepsilon_{2} z_{2}+$ higher terms. If $\varepsilon_{1}=1, \varepsilon_{2}=0$, we may have $W\left(\xi-p^{*}\left(\gamma_{1}\right)\right)=$ $1+w_{4}+$ higher terms; if $\varepsilon_{1}=0, \varepsilon_{2}=1$, we may have $W\left(\xi-p^{*}\left(\gamma_{2}\right)\right)=1+w_{4}+$ higher terms; if $\varepsilon_{1}=1, \varepsilon_{2}=1$, we may have $W(\xi-\eta)=1+w_{4}+$ higher terms, where $\eta$ is the vector bundle in Lemma 2.

Let $w_{4}=\varepsilon_{1} z_{1}^{2}+\varepsilon_{2} z_{1} z_{2}+\varepsilon_{3} z_{2}^{2}$. Then from $W\left(2 p^{*}\left(\gamma_{1}\right)\right)=1+z_{1}^{2}, W\left(2 p^{*}\left(\gamma_{2}\right)\right)=1+z_{2}^{2}$, and

$$
W\left(p^{*}\left(\gamma_{1}\right)+p^{*}\left(\gamma_{2}\right)-\eta\right)=\frac{\left(1+z_{1}\right)\left(1+z_{2}\right)}{1+z_{1}+z_{2}}=1+z_{1} z_{2}+\text { higher terms }
$$

(note 1: From $\frac{\left(1+z_{1}\right)\left(1+z_{2}\right)}{1+z_{1}+z_{2}}=\frac{\left(1+z_{1}\right)\left(1+z_{2}\right)\left(1+z_{1}+z_{2}\right)^{2^{N}}}{1+z_{1}+z_{2}}=\left(1+z_{1}\right)\left(1+z_{2}\right)\left(1+z_{1}+z_{2}\right)^{2^{N}-1}$, one knows that it must be the total Stiefel-Whitney class of some vector bundle, where $N$ is sufficiently large.) We may obtain a vector bundle $\xi_{2}$, such that $W\left(\xi-\xi_{2}\right)=1+w_{8}+$ higher terms. Proceeding inductively, we may suppose that a vector bundle $\theta$ which is composed of multiples of $p^{*}\left(\gamma_{1}\right), p^{*}\left(\gamma_{2}\right), \eta$ has been found such that

$$
W(\xi-\theta)=1+w_{2^{s}}+\text { higher terms }
$$

(note 2: see also [10], page 94, Problem 8-B.) Since $W\left(2^{s-1} p^{*}\left(\gamma_{1}\right)\right)=1+z_{1}^{2^{s-1}}, W\left(2^{s-1} p^{*}\left(\gamma_{2}\right)\right)=$ $1+z_{2}^{2^{s-1}}$, and

$$
W\left(2^{s-2}\left(p^{*}\left(\gamma_{1}\right)+p^{*}\left(\gamma_{2}\right)-\eta\right)\right)=1+z_{1}^{2^{s-2}} z_{2}^{2^{s-2}}+\text { higher terms }
$$

we may also suppose that

$$
w_{2^{s}}(\xi-\theta)=\sum a_{i} z_{1}^{i} z_{2}^{2^{s-1}-i}, \quad \text { with } i \neq 0,2^{s-2}, 2^{s-1}
$$

For all values of $i$ such that $a_{i} \neq 0$, we may suppose that they are all divisible by $2^{t}\left(0<2^{t}<\right.$ $2^{s-2}$ ) with at least one $i$ being an odd multiple of $2^{t}$.

If a monomial $z_{1}^{h} z_{2}^{2^{s-1}-h}$ occurs in $w_{2^{s}}(\xi-\theta)$, then we have

$$
\begin{aligned}
& S q^{2 \cdot 2^{t}}\left(z_{1}^{h} z_{2}^{2^{s-1}-h}\right)=\binom{h}{2^{t}} z_{1}^{h+2^{t}} z_{2}^{2^{s-1}-h}+\binom{2^{s-1}-h}{2^{t}} z_{1}^{h} z_{2}^{2^{s-1}-h+2^{t}} \\
& \quad=z_{1}^{h+2^{t}} z_{2}^{2^{s-1}-h}+z_{1}^{h} z_{2}^{2^{s-1}-h+2^{t}}
\end{aligned}
$$

while $h=2^{t}(2 p+1)$. If $h$ is an even multiple of $2^{t}$, one has $S q^{2 \cdot 2^{t}}\left(z_{1}^{h} z_{2}^{2^{s-1}-h}\right)=0$. From Lemma 3 , one knows

$$
S q^{i} w_{2^{s}}=0, i<2^{s-1}
$$

Therefore, we have

$$
\begin{equation*}
0=S q^{2 \cdot 2^{t}} w_{2^{s}}=\sum_{h} S q^{2 \cdot 2^{t}}\left(z_{1}^{h} z_{2}^{2^{s-1}-h}\right)=\sum_{h}\left(z_{1}^{h+2^{t}} z_{2}^{2^{s-1}-h}+z_{1}^{h} z_{2}^{2^{s-1}-h+2^{t}}\right) \tag{4}
\end{equation*}
$$

where $h$ in the right side of the third equal sign are odd multiples of $2^{t}$.
For $h=2^{t}(2 p+1), h^{\prime}=2^{t}(2 q+1)$, we have

$$
S q^{2 \cdot 2^{t}}\left(z_{1}^{h} z_{2}^{2^{s-1}-h}\right)=z_{1}^{h+2^{t}} z_{2}^{2^{s-1}-h}+z_{1}^{h} z_{2}^{2^{s-1}-h+2^{t}}
$$

and

$$
S q^{2 \cdot 2^{t}}\left(z_{1}^{h^{\prime}} z_{2}^{2^{s-1}-h^{\prime}}\right)=z_{1}^{h^{\prime}+2^{t}} z_{2}^{2^{s-1}-h^{\prime}}+z_{1}^{h^{\prime}} z_{2}^{2^{s-1}-h^{\prime}+2^{t}}
$$

Since $h \neq h^{\prime}+2^{t}, h^{\prime} \neq h+2^{t}$, we know that (4) implies that

$$
z_{1}^{h+2^{t}} z_{2}^{2^{s-1}-h}=z_{1}^{h} z_{2}^{2^{s-1}-h+2^{t}}=0,
$$

for every $h=2^{t}(2 p+1)$.
So, if $w_{2^{s}} \neq 0$, then there must be a monomial $z_{1}^{i} z_{2}^{2^{s-1}-i}, i=2^{t}(2 p+1)$, in $w_{2^{s}}$ such that

$$
z_{1}^{i+2^{t}} z_{2}^{2^{s-1}-i}=z_{1}^{i} z_{2}^{2^{s-1}-i+2^{t}}=0
$$

Therefore, we get

$$
\begin{gathered}
i \leq n, 2^{s-1}-i \leq m ;\left(\text { since } z_{1}^{i} z_{2}^{2^{s-1}-i} \neq 0\right) \\
n<i+2^{t}, m<2^{s-1}-i+2^{t}
\end{gathered}
$$

Since other monomials in $w_{2^{s}}$ must have the form $z_{1}^{l} 2_{2}^{2^{s-1}-l}\left(l\right.$ is a multiple of $\left.2^{t}\right)$, if $l>i$, then $l \geq i+2^{t}>n$, we may have $z_{1}^{l} z_{2}^{2^{s-1}-l}=0$; if $l<i$, then $2^{s-1}-l>2^{s-1}-i$, thereby $2^{s-1}-l \geq 2^{s-1}-i+2^{t}$, we may also have $z_{1}^{l} z_{2}^{2^{s-1}-l}=0$. So we get

$$
w_{2^{s}}=z_{1}^{i} z_{2}^{2^{s-1}-i}, i=2^{t}(2 p+1)
$$

From the proof of Lemma 3, one knows that $w_{2^{s}+l}=0$, for $0<l<2^{s-1}$. We may prove that $w_{2^{s}+l}=0$, for $l \geq 2^{s-1}$. It is sufficient to prove that $z_{1}^{u} z_{2}^{v}=0$, for $u+v \geq 2^{s-1}+2^{s-2}$. If $u \geq i+2^{t}$, then $u>n$, so $z_{1}^{u} z_{2}^{v}=0$; if $u<i+2^{t}$, then

$$
v \geq 2^{s-1}+2^{s-2}-u>2^{s-1}+2^{s-2}-i-2^{t} \geq 2^{s-1}-i+2^{t}>m
$$

so $z_{1}^{u} z_{2}^{v}=0$.
From the above discussion, we may conclude that the total Stiefel-Whitney class of a vector bundle $\xi$ on $C P(n) \times C P(m)$ must have the form

$$
W(\xi)=\left(1+z_{1}\right)^{a}\left(1+z_{2}\right)^{b}\left(1+z_{1}+z_{2}\right)^{c}\left(1+z_{1}^{i} z_{2}^{2^{s-1}-i}\right)^{\varepsilon}
$$

where $z_{1} \in H^{2}\left(C P(n) ; Z_{2}\right), z_{2} \in H^{2}\left(C P(m) ; Z_{2}\right)$ are generators, $\varepsilon=0$ or 1 , and when $\varepsilon=1$, we must have

$$
\begin{cases}i=2^{t}(2 p+1), & t \geq 0 \\ n=2^{t}(2 p+1)+x, & 0 \leq x<2^{t} \\ m=2^{s-1}-2^{t}(2 p+1)+y, & 0 \leq y<2^{t}\end{cases}
$$

From note 1 , one knows that $a, b, c$ are non-negative integers.
Remark We do not know whether there is a vector bundle over $C P(n) \times C P(m)$ whose total Stiefel-Whitney class is $1+z_{1}^{i} z_{2}^{s^{s-1}-i}$.

## References

[1] STONG R E. Involutions fixing projective spaces [J]. Michigan Math. J., 1966, 13: 445-447.
[2] WU Zhende, LIU Zongze, BAI Ruipu. The cobordism classification of involution on Dold manifold $P(1,2 l)$ [J]. Acta Math. Sinica (N.S.), 1997, 13(1): 9-20.
[3] ROYSTER D C. Involutions fixing the disjoint union of two projective spaces [J]. Indiana Univ. Math. J., 1980, 29(2): 267-276.
[4] HOU Duo, TORRENCE B. Involutions fixing the disjoint union of copies of even projective space [J]. Acta Math. Sinica (N.S.), 1996, 12(2): 162-166.
[5] LÜ Zhi. Involutions fixing $R P^{\text {odd }} \cup P(h, i) I[J]$. Trans. Amer. Math. Soc., 2002, 354(11): 4539-4570
[6] WEISS K H. Involutions with fixed set $R P^{2 m} \times R P^{2 n}$ [D]. University of Virginia, 1997.
[7] SAIERS N. Involutions fixing products of projective spaces [D]. University of Virginia, 1998.
[8] CONNER P E. Differentiable Periodic Maps [M]. Second edition. Lecture Notes in Mathematics, 738. Springer, Berlin, 1979.
[9] LI Richeng, MA Kai, WU Zhende. The total Stiefel-Whitney classes of vector bundles on $R P(j) \times C P(k)$ [J]. Acta Math. Sinica (Chin. Ser.), 2007, 50(3): 535-538. (in Chinese)
[10] MILNOR J W, STASHEFF J D. Characteristic Classes [M]. Princeton University Press, 1974.

