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(H,η)-monotone operators in Banach space. Using the resolvent operator associated with (H,η)-
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system and discuss the convergence of the iterative sequence generated by the algorithm.
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1. Introduction and preliminaries

Variational inclusions are important generalization of classical variational inequalities and

thus, have found wide applications in many fields, including, for example, mechanics, physics,

optimization and control, nonlinear programming, economics, and engineering sciences. For

these reasons, various variational inclusions have been intensively studied in recent years. For

details, we refer the reader to [1]–[10] and the references therein. Recently, some interesting

and important problems related to variational inequalities and complementarity problems have

been considered by many authors. Ansari and Yao[11] studied a system of variational inequalities

using a fixed-point theorem. Huang and Fang[12] introduced a system of order complementarity

problems and established some existence results for these using fixed-point theory.

On the other hand, monotonicity techniques were extended and applied in recent years be-

cause of their importance in the theory of variational inequalities, complementarity problems,

and variational inclusions. In [4], Huang and Fang introduced a class of generalized mono-

tone operators, maximal η-monotone operators, and defined an associated resolvent operator.

Using resolvent operator methods, they developed some iterative algorithms to approximate
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the solution of a class of general variational inclusions involving maximal η-monotone opera-

tors. Huang and Fang’s method extended the resolvent operator method associated with an

η-subdifferential operator. Fang and Huang introduced another class of generalized monotone

operators, H-monotone operators, and defined an associated resolvent operator. They also es-

tablished the Lipschitz continuity of the resolvent operator and studied a class of variational

inclusions in Hilbert spaces using the resolvent operator associated with H-monotone operators.

In 2005, Fang and Huang further introduced a new class of generalized monotone operators, i.e.,

(H, η)-monotone operators, which provide a unifying framework for classes of maximal mono-

tone operators, maximal η-monotone operators, and H-monotone operators. They also studied

a class of variational inclusions using the resolvent operator associated with an (H, η)-monotone

operator.

Motivated and inspired by above works, in this paper, we introduce and study a new system

of variational inclusions involving (H, η)-monotone operators in Banach spaces. We prove the

existence and uniqueness of solutions for this new system of variational inclusions. We also

construct a new algorithm to approximate the solution of this system of variational inclusions

and discuss the convergence of iterative sequences generated by the algorithm. The present

results improve and extend many known results in the literature. This paper discusses the above

mentioned problems in Banach spaces and breaks through the restriction that the space X is

Hilbert space. Thus our research for the variational inclusions can be applied to such spaces as

Lp and Wm,p(Ω)(p > 1).

In what follows, let X be a real Banach space with dual space X∗, 〈·, ·〉 be the dual pair

between X and X∗, and 2X denote the family of all the nonempty subsets of X . The generalized

duality mapping Jq(x) : X → 2X is defined by

Jq(x) = {f∗ ∈ X∗ : 〈x, f∗〉 = ‖x‖q, ‖f∗‖ = ‖x‖q−1},

where q > 1 is a constant. In particular, J2 is the usual normalized duality mapping. It is known

that, in general, Jq = ‖x‖q−2J2, for all x ∈ X , and Jq(x) is single-valued if X∗ is strictly convex.

In the sequel, unless otherwise specified, we always suppose that X is a real Banach space such

that Jq(x) is single-valued and H is a Hilbert space. If X = H , then J2 becomes the identity

mapping of H .

The modulus of smoothness of X is the function ρX : [0, +∞) → [0, +∞) defined by

ρX(t) = sup
{1

2
(‖x + y‖ + ‖x − y‖ − 1) : ‖x‖ ≤ 1, ‖y‖ ≤ t

}

.

A Banach space X is called uniformly smooth if

lim
t→∞

ρX(t)

t
= 0,

X is called q-uniformly smooth if there exists a constant c > 0, such that

ρX(t) ≤ ctq, q > 1.

Note that Jq is single-valued if X is uniformly smooth. In the study of characteristic inequalities

in q-uniformly smooth Banach spaces, Xu[6] proved the following Lemma.
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Lemma 1.1[6] Let X be a real uniformly smooth Banach space. Then, X is q-uniformly smooth

if and only if there exists a constant cq > 0, such that for allx, y ∈ X,

‖x + y‖q ≤ ‖x‖q + q〈y, Jq(x)〉 + cq‖y‖
q. (1.1)

Definition 1.1[10] Let T : X → X∗ be a single-valued operator. The operator T is said to be

(1) Monotone if ∀x, y ∈ X ,

〈Tx − Ty, x − y〉 ≥ 0;

(2) Strictly monotone if T is monotone and 〈Tx − Ty, x− y〉 = 0 if and only if x = y;

(3) Strongly monotone if there exists some constant r > 0, such that

〈Tx − Ty, x− y〉 ≥ r‖x − y‖2;

(4) Lipschitz continuous if there exists a constant s > 0, such that

‖Tx − Ty‖ ≤ s‖x − y‖.

Definition 1.2[10] Let M : X → 2X∗

be a multivalued operator, and H : X → X∗ and

η : X × X → X be single-valued operators. M is said to be:

(1) Monotone if 〈x − y, u − v〉 ≥ 0, ∀u, v ∈ X , x ∈ Mu, y ∈ Mv;

(2) η-monotone if 〈x − y, η(u − v)〉 ≥ 0, ∀u, v ∈ Xx ∈ Mu, y ∈ Mv;

(3) Strongly η-monotone if there exists some constant r > 0, such that

〈x − y, η(u, v)〉 ≥ r‖u − v‖2, ∀u, v ∈ X, x ∈ Mu, y ∈ Mv.

When M is single-valued operator, above formula becomes

〈Mu − Mv, η(u, v)〉 ≥ r‖u − v‖2, ∀u, v ∈ X ;

(4) Maximal monotone if M is monotone and has no proper monotone extension in X , i.e.,

for ∀u, v0 ∈ X , x ∈ Mu, 〈x − y0, u − v0〉 ≥ 0 implies y0 ∈ Mv0. When X is reflective Banach

space, M is maximal monotone if and only if (J + λM)X = X∗, for ∀λ > 0;

(5) Maximal η-monotone if M is η-monotone and has no proper η-monotone extension in

X ;

(6) H-monotone if M is monotone and (H + λM)X = X∗, for all λ > 0;

(7) (H, η)-monotone if M is η-monotone and (H + λM)X = X∗, for all λ > 0.

Remark 1.1 Maximal η-monotone operators, H-monotone operators, and (H, η)-monotone

operators were first introduced by Huang and Fang[12]. Obviously, the class of (H, η)-monotone

operators provides a unifying framework for classes of maximal monotone operators, maximal

η-monotone operators, and H-monotone operators. For details about these operators, we refer

the reader to [5, 10–12] and the references therein.

For our results, we need the following concepts and definitions.

Definition 1.3[10] Let η : X × X → X and H : X → X∗ be two single-valued operators, and

M : X → 2X∗

be an (H, η)-monotone operator. The resolvent operator RH,η
M,λ : X∗ → X is

defined by RH,η
M,λ(u) = (H + λM)−1(u).
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In virtue of (H + λM)X = X∗, then ∀u ∈ X∗, RH,η
M,λ is a matter of significance, and we can

show that it is single-valued in following Theorem 2.1.

Remark 1.2 In [5, Proposition 2.1], Fang and Huang also showed that when H is bounded,

coercive, hemi-continuous, and monotone, M : X → 2X∗

is a maximal monotone operator, it

follows from Corollary 32.26 of [13] that H + λM is surjective, i.e., (H + λM)X = X∗ holds for

every λ > 0, in reflective Banach space.

Definition 1.4[6] The operator T : X → X∗ is said to be strongly accretive with respect to H

if there exists some constant r > 0, such that

〈Tx − Ty, J∗

q (Hx − Hy)〉 ≥ r‖x − y‖q, ∀x, y ∈ X,

where J∗

q : X∗ → X∗∗ is the generalized duality mapping on X∗.

2. (H, η)-monotone operators and resolvent operator technique

To study the iterative algorithm for a system of variational inclusions with (H, η)-monotone

operators, now we prove the Lipschitz continuity of the resolvent operator RH,η
M,λ.

Theorem 2.1 Let X be a real Banach space, η : X×X → X be a Lipschitz continuous operator

with constant τ > 0, i.e., for all x, y ∈ X , ‖η(x, y)‖ ≤ τ‖x − y‖. Let H : X → X∗ be a strongly

η-monotone operator with constants r > 0, M : X → 2X∗

be a multivalued (H, η)-monotone

operator. Then, the resolvent operator RH,η
M,λ : X∗ → X is Lipschitz continuous with constant τ

r
,

that is,

‖RH,η
M,λ(u) − RH,η

M,λ(v)‖ ≤
τ

r
‖u − v‖, ∀u, v ∈ X∗.

Proof We first show that RH,η
M,λ is single-valued operator. Let ∀u ∈ X∗, x, y ∈ (H + λM)−1(u).

It follows that −Hx + u ∈ λM(x) and −Hy + u ∈ λM(y). Since M is (H, η)-monotone, we have

0 ≤ 〈(−Hx + u) − (−Hy + u), η(x − y)〉 = 〈Hy − Hx, η(x − y)〉 ≤ −r‖x − y‖2.

The strong η-monotonicity of H implies that x = y. Thus, RH,η
M,λ(u) is single-valued. The proof

is completed. 2

Let u, v ∈ X∗. It follows that RH,η
M,λ(u) = (H + λM)−1(u) and RH,η

M,λ(v) = (H + λM)−1(v).

This implies that
1

λ
(u − H(RH,η

M,λ(u))) = M(RH,η
M,λ(u)),

1

λ
(v − H(RH,η

M,λ(v))) = M(RH,η
M,λ(v)).

Since M is η-monotone, we obtain

1

λ
〈(u − v − H(RH,η

M,λ(u))) + H(RH,η
M,λ(v)), η(RH,η

M,λ(u) − RH,η
M,λ(v))〉

=
1

λ
〈(u − H(RH,η

M,λ(u))) − (v − H(RH,η
M,λ(v))), η(RH,η

M,λ(u) − RH,η
M,λ(v))〉

= 〈M(RH,η
M,λ(u)) − M(RH,η

M,λ(v)), η(RH,η
M,λ(u) − RH,η

M,λ(v))〉 ≥ 0.
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The inequality above implies that

〈u − v, η(RH,η
M,λ(u) − RH,η

M,λ(v))〉 ≥ 〈H(RH,η
M,λ(u)) − H(RH,η

M,λ(v)), η(RH,η
M,λ(u) − RH,η

M,λ(v))〉.

By strong η-monotonicity of H , one has

τ‖u − v‖‖RH,η
M,λ(u) − RH,η

M,λ(v)‖ ≥ ‖u − v‖‖η(RH,η
M,λ(u) − RH,η

M,λ(v))‖

≥ 〈u − v, η(RH,η
M,λ(u) − RH,η

M,λ(v))〉

≥ 〈H(RH,η
M,λ(u)) − H(RH,η

M,λ(v)), η(RH,η
M,λ(u) − RH,η

M,λ(v))〉

≥ r‖RH,η
M,λ(u) − RH,η

M,λ(v)‖2,

i.e.,

‖RH,η
M,λ(u) − RH,η

M,λ(v)‖ ≤
τ

r
‖u − v‖.

Based on Theorem 2.1, we discuss the following existence and iterative algorithm for solution of

the system of variational inclusions

0 ∈ F (a, b) + M(a),

0 ∈ G(a, b) + N(b), (2.1)

where F : X × X → X∗ and G : X × X → X∗ are single-valued operator, and M : X → 2X∗

,

N : X → 2X∗

is a multivalued one, which is the system of nonlinear variational inclusions

considered by Fang and Huang[10]. It is easy to see that problem (2.1) includes many variational

inequalities (inclusions) as special cases.

Some examples of problem (2.1) include the following.

(1) If M(x) = ∆ηϕ(x) and N(y) = ∆ηφ(y), where ϕ : X → R ∪ {+∞} and φ : X →

R ∪ {+∞} are two proper, η-subdifferentiable functionals, and ∆ηϕ(x) and ∆ηφ(y) denote the

η-subdifferential operators of ϕ and φ (see [10]), respectively, then, problem (2.1) reduces to the

following problem: find (a, b) ∈ X × X , such that

〈F (a, b), η(x, a)〉 + ϕ(x) − ϕ(a) ≥ 0, ∀x ∈ X,

〈G(a, b), η(y, b)〉 + φ(y) − φ(b) ≥ 0, ∀y ∈ X,

which is called a system of nonlinear variational-like inequalities.

(2) If M(x) = ∂ϕ(x) and N(y) = ∂φ(y) , for all x, y ∈ X , where ϕ : X → R ∪ {+∞} and

φ : X → R ∪ {+∞} are two proper, convex, lower semicontinuous functionals, and ∂ϕ and ∂φ

denote the η-subdifferential operators of ϕ and φ, respectively, then, problem (2.1) reduces to

the following problem: find (a, b) ∈ X × X , such that

〈F (a, b), x − a〉 + ϕ(x) − ϕ(a) ≥ 0, ∀x ∈ X,

〈G(a, b), y − b〉 + φ(y) − φ(b) ≥ 0, ∀y ∈ X,

which is called a system of nonlinear variational inequalities.

(3) If M(x) = ∂δA(x) and N(y) = ∂δB(y), for all x ∈ A and y ∈ B, where A ⊂ X and

B ⊂ X are two nonempty, closed, and convex subsets, δA and δB denote the indicator functions
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of A and B, respectively, i.e.,

δA(x) =

{

0 x ∈ A

+∞ x /∈ A,

then, problem (2.1) reduces to the following system of variational inequalities: find (a, b) ∈ A×B,

such that

〈F (a, b), x − a〉 ≥ 0, ∀x ∈ A,

〈G(a, b), y − b〉 ≥ 0, ∀y ∈ B.

(4) If F (x, y) = G(x, y) = T (x), where T : X → X∗ is a single-valued operator, then,

above case (3) reduces to the following standard nonlinear variational inequality problem: find

an element a ∈ A, such that

〈T (x), x − a〉 ≥ 0, ∀x ∈ A.

Lemma 2.1 Let X be a real Banach space, η : X ×X → X be a Lipschitz continuous operator

with constant τ , H1, H2 : X → X∗ be two strongly η-monotone operator with constants ν1 and

ν2, respectively, and let M : X → 2X∗

be (H1, η)-monotone and N : X → 2X∗

be (H2, η)-

monotone. Then, for any given (a, b) ∈ X ×X , (a, b) is a solution of problem (2.1) if and only if

(a, b) satisfies

a = RH1,η
M,ρ [H1(a) − ρF (a, b)],

b = RH2,η
N,λ [H2(b) − λG(a, b)], (2.2)

where λ and ρ > 0 are two constants.

Proof The conclusion directly follows from Definition 1.3 and Theorem 2.1.

Theorem 2.2 Let X∗ be q-uniformly smooth Banach space, η : X×X → X be a Lipschitz con-

tinuous operator with constant σ, H1 : X → X∗ be a strongly η-monotone, Lipschitz continuous

operator with constants ν1, τ1 and H2 : X → X∗ be a strongly η-monotone, Lipschitz continuous

operator with constants ν2, τ2. Let M : X → 2X∗

be (H1, η)-monotone and N : X → 2X∗

be

(H2, η)-monotone. Let F : X ×X → X∗ be an operator, such that, for any given (a, b) ∈ X ×X ,

F (·, b) is strongly accretive with respect to H1 and Lipschitz continuous with constants r1 and

s1, respectively, and F (a, ·) is Lipschitz continuous with constant θ. Let G : X × X → X∗ be

an operator, such that, for any given (x, y) ∈ X × X, G(x, ·) is strongly accretive with respect

to H2 and Lipschitz continuous with constant r2 and s2, respectively, and G(·, y) is Lipschitz

continuous with constant ξ. Suppose there exist constants λ, ρ > 0, such that

ν2σ
q

√

τq
1 − qρr1 + ρqcqs

q
1 + ν1σλξ < ν1ν2,

ν1σ
q

√

τq
2 − qλr2 + λqcqs

q
2 + ν2σρθ < ν1ν2. (2.3)

Then, problem (2.1) admits a unique solution.

Proof For any given λ and ρ > 0, define Tρ : X × X → X and Sλ : X × X → X by

Tρ(u, v) = RH1,η
M,ρ [H1(u) − ρF (u, v)],
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Sλ(u, v) = RH2,η
N,λ [H2(v) − λG(u, v)], (2.4)

for all u, v ∈ X.

For any (u1, v1), (u2, v2) ∈ X × X , it follows from (2.4) and Theorem 2.1 that

‖Tρ(u1, v1) − Tρ(u2, v2)‖ = ‖RH1,η
M,ρ [H1(u1) − ρF (u1, v1)] − RH1,η

M,ρ [H1(u2) − ρF (u2, v2)]‖

≤
σ

ν1
‖H1(u1) − H1(u2) − ρ[F (u1, v1) − F (u2, v2)]‖

≤
σ

ν1
‖H1(u1) − H1(u2) − ρ[F (u1, v1) − F (u2, v1)]‖+

σρ

ν1
‖F (u2, v1) − F (u2, v2)‖, (2.5)

and

‖Sλ(u1, v1) − Sλ(u2, v2)‖ =‖RH2,η
N,λ [H2(v1) − λG(u1, v1)] − RH2,η

N,λ [H2(v2) − λG(u2, v2)]‖

≤
σ

ν2
‖H2(v1) − H2(v2) − λ[G(u1, v1) − G(u2, v2)]‖

≤
σ

ν2
‖H2(v1) − H2(v2) − λ[G(u1, v1) − G(u1, v2)]‖+

σλ

ν2
‖G(u1, v2) − G(u2, v2)‖. (2.6)

By assumptions, we have

‖H1(u1) − H1(u2) − ρ[F (u1, v1) − F (u2, v1)]‖
q

≤ ‖H1(u1) − H1(u2)‖
q + ρqcq‖F (u1, v1) − F (u2, v1)‖

q−

qρ〈F (u1, v1) − F (u2, v1), J
∗

q (H1(u1) − H1(u2))〉

≤ (τq
1 − qρr1 + ρqcqs

q
1)‖u1 − u2‖

q, (2.7)

and

‖H2(v1) − H2(v2) − λ[G(u1, v1) − G(u1, v2)]‖
q

≤ ‖H2(v1) − H2(v2)‖
q + λqcq‖G(u1, v1) − G(u1, v2)‖

q−

qλ〈G(u1, v1) − G(u1, v2), J
∗

q (H1(v1) − H1(v2))〉

≤ (τq
2 − qλr2 + λqcqs

q
2)‖v1 − v2‖

q, (2.8)

where J∗

q : X∗ → X∗∗ is the generalized duality mapping on X∗.

Furthermore,

‖F (u2, v1) − F (u2, v2)‖ ≤ θ‖v1 − v2‖, (2.9)

‖G(u1, v2) − G(u2, v2)‖ ≤ ξ‖u1 − u2‖. (2.10)

It follows from (2.5)–(2.10) that

‖Tρ(u1, v1) − Tρ(u2, v2)‖ ≤
σ

ν1

q

√

τq
1 − qρr1 + ρqcqs

q
1‖u1 − u2‖ +

σρθ

ν1
‖v1 − v2‖, (2.11)

‖Sλ(u1, v1) − Sλ(u2, v2)‖ ≤
σ

ν2

q

√

τq
2 − qλr2 + λqcqs

q
2‖v1 − v2‖ +

σλξ

ν2
‖u1 − u2‖, (2.12)
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‖Tρ(u1, v1) − Tρ(u2, v2)‖ + ‖Sλ(u1, v1) − Sλ(u2, v2)‖

≤
( σ

ν1

q

√

τq
1 − qρr1 + ρqcqs

q
1 +

σλξ

ν2

)

‖u1 − u2‖+

( σ

ν2

q

√

τq
2 − qλr2 + λqcqs

q
2 +

σρθ

ν1

)

‖v1 − v2‖

≤ k(‖u1 − u2‖ + ‖v1 − v2‖), (2.13)

where

k = max
{ σ

ν1

q

√

τq
1 − qρr1 + ρqcqs

q
1 +

σλξ

ν2
,

σ

ν2

q

√

τq
2 − qλr2 + λqcqs

q
2 +

σρθ

ν1

}

.

Define ‖ · ‖1 on X × X by

‖(u, v)‖1 = ‖u‖ + ‖v‖, ∀(u, v) ∈ X × X.

It is easy to see that (X × X, ‖ · ‖1) is a Banach space. For any given λ > 0 and ρ > 0, define

Qλ,ρ : X × X → X × X by

Qλ,ρ(u, v) = (Tρ(u, v), Sλ(u, v)) , ∀(u, v) ∈ X × X.

By (2.3), we know that 0 < k < 1. It follows from (2.13) that

‖Qλ,ρ(u1, v1) − Qλ,ρ(u2, v2)‖ ≤ k (‖u1 − u2‖ + ‖v1 − v2‖) .

This proves that Qλ,ρ : X ×X → X ×X is a contraction operator. Hence, there exists a unique

(a, b) ∈ X × X , such that Qλ,ρ(a, b) = (a, b), namely,

a = RH1,η
M,ρ [H1(a) − ρF (a, b)],

b = RH2,η
N,λ [H2(b) − λG(a, b)].

This completes the proof of Theorem 2.2. 2

Motivated by above Theorem 2.2, we consider the following iterative algorithms.

Algorithm 2.1 Let η, H1, H2, M, N, F and G be as in Theorem 2.2. For any given (a0, b0) ∈

X × X , define the iterative sequence {(an, bn)} by

an+1 = RH1,η
M,ρ [H1(an) − ρF (an, bn)],

bn+1 = RH2,η
N,λ [H2(bn) − λG(an, bn)]. (2.14)

Theorem 2.3 Let X∗ be q-uniformly smooth Banach space, and η, H1, H2, M, N, F and G

be as in Theorem 2.2. Assume that all the conditions (2.3) of Theorem 2.2 are satisfied. Then

{(an, bn)} generated by Algorithm 2.1 converges strongly to the unique solution (a, b) of problem

(2.1) and there exists 0 < d < 1 , such that

‖an − a‖ + ‖bn − b‖ ≤ dn(‖a0 − a‖ + ‖b0 − b‖).

Proof By Theorem 2.2, problem (2.1) admits a unique solution, (a, b). It follows from Lemma

2.1 that

a = RH1,η
M,ρ [H1(a) − ρF (a, b)],
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b = RH2,η
N,λ [H2(b) − λG(a, b)].

Thus

‖an+1 − a‖ = ‖RH1,η
M,ρ [H1(an) − ρF (an, bn)] − RH1,η

M,ρ [H1(a) − ρF (a, b)]‖

≤
σ

ν1
‖H1(an) − H1(a)‖ + ρ‖F (an, bn) − F (a, b)‖

≤
σ

ν1

q

√

τq
1 − qρr1 + ρqcqs

q
1‖an − a‖ +

σρθ

ν1
‖bn − b‖, (2.15)

and

‖bn+1 − b‖ ≤
σ

ν2
‖H2(bn) − H2(b)‖ + λ‖G(an, bn) − G(a, b)‖

≤
σ

ν2

q

√

τq
2 − qλr2 + λqcqs

q
2‖bn − b‖ +

σλξ

ν2
‖an − a‖. (2.16)

It follows from (2.15) and (2.16) that

‖an+1 − a‖ + ‖bn+1 − b‖ ≤
( σ

ν1

q

√

τq
1 − qρr1 + ρqcqs

q
1 +

σλξ

ν2

)

‖an − a‖+

( σ

ν2

q

√

τq
2 − qλr2 + λqcqs

q
2 +

σρθ

ν1

)

‖bn − b‖

≤k(‖an − a‖ + ‖bn − b‖) ≤ dn(‖a0 − a‖ + ‖b0 − b‖), (2.17)

where 0 < d = k < 1 is defined by

k = d = max
( σ

ν1

q

√

τq
1 − qρr1 + ρqcqs

q
1 +

σλξ

ν2
,

σ

ν2

q

√

τq
2 − qλr2 + λqcqs

q
2 +

σρθ

ν1

)

.

Thus, using formula (2.17) and iterating, we have an → a, bn → b.

Remark 2.1 Applying above method, we can also construct the Mann iterative algorithm for

{an} and {bn} to approximate the unique solution of problem (2.1)

an+1 = αnan + (1 − αn)RH1,η
M,ρ [H1(an) − ρF (an, bn)], n = 1, 2, . . . ,

bn+1 = αnbn + (1 − αn)RH2,η
N,λ [H2(bn) − λG(an, bn)], n = 1, 2, . . . ,

where 0 ≤ αn < 1, lim supαn < 1. Similarly, we can prove the same results under the conditions

of Theorem 2.2.

Remark 2.2 Conditions (2.3) hold for some suitable values of constants, because by [6] we have

the following

Proposition Let E = lP (or Lq), 1 < q ≤< ∞, x, y ∈ E. We have

(i) If 1 < q < 2, then

‖x + y‖q ≤ ‖x‖q + q〈y, Jq(x)〉 + cq‖y‖
q,

where cq = (1 + bq−1
q )/(1 + bq)

q−1, and bq is the unique solution of equation

(q − 2)bq−1
q + (q − 1)(1 + bq)

q−1 − 1 = 0, 0 < bq < 1.
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(ii) If q ≥ 2, then

‖x + y‖2 ≤ ‖x‖2 + 2〈y, J(x)〉 + (q − 1)‖y‖2.

It is clear that when 1 < q < 2, we have 0 < cq < 1; when q = 2, we have cq = 1; when

q ≥ 2, we have cq ≥ 1, and the value of d is continuous function of q. Therefore, the value of

d is attainable. For example, if one sets q = 2.05, cq = 1.05, σ = 0.8, τ1 = τ2 = 2, ρ = 0.5,

r1 = r2 = 0.5, s1 = s2 = 0.5, ν1 = ν2 = 4, λ = 0.5 and ξ = θ = 2, then d = 0.578 and (2.3) is

satisfied.
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