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Abstract In this paper, existence of solutions of third-order differential equation

y
′′′(t) = f(t, y(t), y′(t), y′′(t))

with nonlinear three-point boundary condition














g(y(a), y′(a), y′′(a)) = 0,

h(y(b), y′(b)) = 0,

I(y(c), y′(c), y′′(c)) = 0

is obtained by embedding Leray-Schauder degree theory in upper and lower solutions method,

where a, b, c ∈ R,a < b < c; f : [a, c] × R3
→ R, g : R3

→ R, h : R2
→ R and I : R3

→ R are

continuous functions. The existence result is obtained by defining the suitable upper and lower

solutions and introducing an appropriate auxiliary boundary value problem. As an application,

an example with an explicit solution is given to demonstrate the validity of the results in this

paper.
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1. Introduction

Boundary value problems for third-order ordinary differential equations have received much

attention in the last few decades because of the theoretical challenges involved in the investi-

gation of such problems and also because of its importance in practical applications such as

boundary layer theory in fluid mechanics[1]. Many methods, such as upper and lower solutions

method[1−7], shooting method[8], monotone iterative method[9] had been developed to derive

existence of solutions for third-order differential equations with various boundary conditions
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including two-point boundary condition[1−8], three-point boundary condition[10] and periodic

boundary condition[9], etc. Recently, considerable attention was paid to third-order boundary

value problems with nonlinear boundary conditions, but most of works concentrate on two-point

boundary value problems. Multi-point boundary value problems are still largely unexplored.

In this paper, existence of solutions of a nonlinear three-point boundary value problem for

third-order differential equations is studied using upper and lower solutions method along with

Leray-Schauder degree theory. Upper and lower solutions method was developed by Nagumo[11]

for deducing existence of solutions of second-order Dirichlet boundary value problems. Ever

since its derivation, this method was widely adopted to obtain existence of solutions for vari-

ous boundary value problems for second-order[12], third-order[1−7] and higher-order differential

equations[13−15]. In recent years, upper and lower solutions method was further developed at

two aspects. On the one hand, this method is combined with other skills, such as maximum

principle[3], Leray-Schauder degree theory[4−7], monotone iterative method[9,14], which can be

used to derive existence of solutions of considered problems more simply and directly. On the

other hand, the sign-Nagumo condition was proposed to loosen the restriction of expressions

of differential equations[6−7]. In this work, we combine upper and lower solutions method with

Leray-Schauder degree theory to deduce existence of solutions for third-order differential equa-

tions

y′′′(t) = f(t, y(t), y′(t), y′′(t)) (1)

with nonlinear three-point boundary condition










g(y(a), y′(a), y′′(a)) = 0,

h(y(b), y′(b)) = 0,

I(y(c), y′(c), y′′(c)) = 0.

(2)

The article proceeds as follows. In Section 2, the definitions of upper and lower solutions for

boundary value problem (BVP)(1)–(2) and the Nagumo condition are given. Several assumptions

which are needed in the proof are also presented. Section 3 is devoted to the main results of the

paper. An example is given in the final section to demonstrate the validity of the results in the

paper.

2. Preliminaries

Definition 1 Functions α(t) and β(t) ∈ C3[a, b] are called the lower and upper solutions of

BVP (1)–(2), respectively, if

α′′′(t) ≥ f(t, α(t), α′(t), α′′(t)), (3)

β′′′(t) ≤ f(t, β(t), β′(t), β′′(t)) (4)

and

α′(t) ≤ β′(t), t ∈ [a, c]; α(t) ≤ β(t), t ∈ [b, c]; β(t) ≤ α(t), t ∈ [a, b],

g(β(a), β′(a), β′′(a)) ≤ 0 ≤ g(α(a), α′(a), α′′(a)), (5)
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h(α(b), α′(b)) ≤ 0 ≤ h(β(b), β′b)), (6)

I(α(c), α′(c), α′′(c)) ≤ 0 ≤ I(β(c), β′(c), β′′(c)). (7)

Definition 2 Third-order differential Eq. (1) is said to satisfy the Nagumo condition in a

bounded region D ⊂ [a, c]×R3 if the right-hand side function of Eq. (1) is continuous and there

exists a function ϕ ∈ C[[0,∞), (m,∞)] such that

|f(t, y(t), y′(t), y′′(t))| ≤ ϕ(|y′′(t)|), (8)

where m is a positive constant and for any µ > 0,
∫ +∞

µ
s

ϕ(s)ds = +∞.

To derive the results of this paper, the following assumptions are needed.

H1: There exist the upper and lower solutions of BVP (1)-(2) defined like Definition 1;

H2: Eq.(1) satisfies the Nagumo condition, and is increasing in y in the region D1 = [b, c] ×

[β(t), α(t)] × R2 and decreasing in y in D2 = [a, b] × [α(t), β(t)] × R2;

H3: g(y, y′, y′′) is continuous with respect to all its arguments in R3, decreasing in y and

increasing in y′′;

H4: I(y, y′, y′′) is continuous with respect to all its arguments in R3, decreasing in y and

increasing in y′′;

H5: h(y, y′) is continuous with respect to y and y′ and increasing in y′.

3. Main results

To attain the existence of solutions of BVP (1)–(2), we first introduce a boundary value

problem consisting of Eq. (1) and the following nonlinear three-point boundary condition










g(y(a), y′(a), y′′(a)) = 0,

y(b) = 0,

I(y(c), y′(c), y′′(c)) = 0.

(9)

BVP (1) and (9) is called the auxiliary boundary value problem.

Consider boundary value problem below with homotopy character

y′′′ = λf(t, r(y), s(y′), y′′) + (1 − λ)y′ + λ(y′ − s(y′))ϕ(|y′′|), (10)

y′(a) = λ [g(r2(y(a)), s(y′(a)), y′′(a)) + s(y′(a))], (11)

y(b) = 0, (12)

y′(c) = λ [−I(r1(y(c)), s(y′(c)), y′′(c)) + s(y′(c))], (13)

where λ ∈ [0, 1] and

r1(y(t)) =











α(t), y < α(t),

y(t), α(t) ≤ y ≤ β(t),

β(t), y > β(t)

t ∈ [b, c];
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r2(y(t)) =











β(t), y < β(t),

y(t), β(t) ≤ y ≤ α(t),

β(t), y > α(t)

t ∈ [a, b];

r(y(t)) =

{

r1(y(t)), t ∈ [a, b],

r2(y(t)), t ∈ [b, c],

s(y′(t)) =











α′(t), y < α′(t),

y′(t), α′(t) ≤ y ≤ β(′t),

β′(t), y > β′(t)

t ∈ [a, c].

In what follows, the priori estimates of solutions of BVP (10)–(13) are deduced first. In so

doing, existence of solutions of BVP (10)–(13) with λ = 1 can be obtained by applying Leray-

Schauder degree theory. It follows that existence of solutions of BVP (1) and (9) can be attained

by performing the estimates of solutions and its derivatives of BVP (10)–(13) with λ = 1.

Consequently, existence of solutions of BVP (1)–(2) can be obtained.

Lemma 1 Suppose that H1–H4 hold. Then every solution of BVP (10)–(13) satisfies

|y(t)| < max{c − b, b − a} × K, |y′(t)| < K, |y′′(t)| < K1, (14)

where K and K1 are both positive constants.

Proof According to the continuity of the functions f, g, h and I, and the boundedness of α(t)

and β(t) and their derivatives in bounded interval, we can choose a sufficiently large constant

K > 0, such that for t ∈ [a, c], the following inequalities hold

−K < α′(t) ≤ β′(t) < K, (15)

−f(t, α(t), α′(t), 0) − [K + α′(t)]ϕ(0) < 0, (16)

f(t, β(t), β′(t), 0) + [K − β′(t)]ϕ(0) > 0, (17)

g(β(a), β′(a), 0) + β′(a) < K, (18)

−I(β(c), β′(c), 0) + β′(c) < K, (19)

−K < g(α(a), α′(a), 0) + α′(a), (20)

−K < −I(α(c), α′(c), 0) + α′(c). (21)

We first turn to prove |y′(t)| < K. Suppose that |y′(t)| < K does not hold uniformly for t ∈ [a, c].

Then there exists at least a t ∈ [a, c], such that either y′(t) > K or y′(t) < −K holds.

If the former case emerges, we define maxt∈[a,c] y
′(t) = y′(t0) ≥ K > 0. If t0 ∈ (a, c), it

follows that y′(t0) ≥ K > β′(t0), y
′′(t0) = 0, y′′′(t0) ≤ 0. On the other hand, according to H2,

the definitions of r(y) and s(y′) and inequality (17), for λ ∈ (0, 1], we have

y′′′(t0) = λf(t0, r(y(t0)), s(y
′(t0)), 0) + (1 − λ)y′(t0) + λ[y′(t0) − s(y′(t0))]ϕ(0)

≥ λf(t0, β(t0), β
′(t0), 0) + (1 − λ)y′(t0) + λ[K − β′(t0)]ϕ(0)
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≥ λ[f(t0, β(t0), β
′(t0), 0) + [K − β′(t0)]ϕ(0)] > 0,

which contradicts y′′′(t0) ≤ 0. For λ = 0, it follows from Eq. (10) that

0 ≥ y′′′(t0) = y′(t0) > 0.

It is a contradiction too. Thus, t0 6∈ (a, c) for λ ∈ [0, 1].

If t0 = a, then maxt∈[a,c] y
′(t) = y′(a) ≥ K > β′(a), which yields y′′(a+) = y′′(a) ≤ 0. For

λ ∈ (0, 1], it follows from equality (11), inequality (18) and H3 that

K ≤ y′(a) = λ[g(r2(y(a)), s(y′(a)), y′′(a)) + s(y′(a))]

≤ λ[g(β(a), β′(a), 0) + β′(a)] < λK < K.

It is a contradiction. For λ = 0, it follows from equality (11) that 0 = y′(a) ≥ K > 0. It is a

contradiction too. Thus, t 6= a.

Similarly, if t0 = c, then max
t∈[a,c]

y′(t) = y′(c) ≥ K > β′(c), which also yields y′′(c−) = y′′(c) ≥

0. Hence, for λ ∈ (0, 1], it can be deduced from equality (13), inequality (19) and H5 that

K ≤ y′(c) = λ[−I(r1(y(c)), s(y′(c)), y′′(c)) + s(y′(c))]

≤ λ[−I(β(c), β′(c), 0) + β′(c)] < λK < K.

For λ = 0, it follows from equality (13) that 0 = y′(c) ≥ K > 0. Thus, t 6= c.

Accordingly, y′(t) > K is not possible for any t ∈ [a, c]. Similarly, we can deduce that

y′(t) < −K is impossible too for any t ∈ [a, c]. Now, |y′(t)| < K is proved. Recalling y(b) = 0

and then integrating y′(t) from b to t yields |y(t)| < max{c − b, b − a} × K.

As far as |y′′(t)| < K1 is concerned, note that

|λf(t, r(y), s(y′), y′′) + (1 − λ)y′ + λ(y′ − s(y′))ϕ(|y′′|)|

≤ ϕ(|y′′|) + |y′| + (|y′| + |s(y′)|)ϕ(|y′′|) ≤ K + (1 + 2K)ϕ(|y′′|)

and for any µ > 0,
∫ +∞

µ

sds

K + (1 + 2K)ϕ(s)
<

∫ +∞

µ

sds

(1 + 2K)ϕ(s)
=

1

(1 + 2K)

∫ +∞

µ

sds

ϕ(s)
= +∞.

That is, the right-hand side function of Eq. (10) satisfies the Nagumo condition. Thus, |y′′(t)| <

K1 can be attained according to the Lemma 1 in [5].

Lemma 2 Suppose that H1–H4 hold. Then BVP (10)–(13) with λ = 1 has at least one solution

satisfying

α′(t) ≤ y′(t) ≤ β′(t), t ∈ [a, c]; α(t) ≤ y(t) ≤ β(t), t ∈ [b, c]; β(t) ≤ y(t) ≤ α(t), t ∈ [a, b].

Proof Define two operators as follows

L = (y′′′, y(a′), y′(c)) : D(L) → C([a, c], R),

where D(L) = {y(t) ∈ C3[a, c]|y(b) = 0}, and

Tλ = (Nλ, Aλ, Bλ) : C2([a, c], R) → C([a, c], R),
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where

Nλ = λf(t, r(y), s(y′), y′′) + (1 − λ)y′ + λ(y′ − s(y′))ϕ(|y′′|),

Aλ = λ[g(r2(y(a)), s(y′(a)), y′′(a)) + s(y′(a))],

Bλ = λ[−I(r1(y(c)), s(y′(c)), y′′(c)) + s(y′(c))].

Therefore, BVP (10)–(13) is equivalent to the following operator equation

[I − L−1Tλ]y = 0,

where I denotes the unit operator. Obviously, L−1Tλ is a completely continuous operator.

Define a bounded open domain

Ω = {y(t) ∈ C2[a, c] | |y(t)| < max{c − b, b − a} × K, |y′(t)| < K, |y′′(t)| < K1}.

Then, it follows from Lemma 1 that [I −L−1Tλ]∂Ω 6= 0. Hence, the degree Deg(I −L−1Tλ, Ω, 0)

is well defined. The invariance of degree under homotopy yields

Deg(I − L−1T0, Ω, 0) = Deg(I − L−1T1, Ω, 0).

Since the operator equation [I − L−1T0]y = 0 is equivalent to boundary value problem

y′′′ = y′, y′(a) = 0, y(b) = 0, y′(c) = 0, (22)

which has only a trivial solution, existence of solutions of BVP (10)–(13) with λ = 1 is obvious.

Next, we turn to prove the later part of Lemma 2. First, we deduce y′(t) ≤ β′(t). Suppose

that y′(t) ≤ β′(t) does not hold uniformly for t ∈ [a, c]. Then there exists at least a t ∈ [a, c]

such that y′(t) > β′(t). Define maxt∈[a,c][y
′(t) − β′(t)] = y′(t1) − β′(t1) > 0.

If t1 ∈ (a, c), then y′(t1) > β′(t1), y
′′(t1) = β′′(t1) and y′′′(t1) ≤ β′′′(t1). On the other hand,

y′′′(t1) − β′′′(t1) ≥f(t1, r(y(t1)), s(y
′(t1)), y

′′(t1))+

[y′(t1) − s(y′(t1))]ϕ(|y′′(t1)|) − f(t1, β(t1), β
′(t1), β

′′(t1))

>f(t1, β(t1), β
′(t1), β

′′(t1)) − f(t1, β(t1), β
′(t1), β

′′(t1)) = 0,

which contradicts y′′′(t1) ≤ β′′′(t1). Thus, t1 6∈ (a, c).

If t1 = a, then maxt∈[a,c][y
′(t)−β′(t)] = y′(a)−β′(a) > 0, which results in y′′(a+)−β′′(a+) =

y′′(a) − β′′(a) ≤ 0. It then follows from inequality (5), equality (11) and H3 that

y′(a) = g[r2(y(a)), s(y′(a)), y′′(a)] + s(y′(a))

≤ g[β(a), β′(a), β′′(a)] + β′(a) ≤ β′(a).

It is a contradiction. Thus, t1 6= a.

By similar deduction, t1 6= c can be concluded.

Now, we can see that y′(t) ≤ β′(t) holds uniformly for t ∈ [a, c]. By the similar way, we can

prove that y′(t) ≥ α′(t) also holds uniformly for t ∈ [a, c]. The integration of α′(t) ≤ y′(t) ≤ β′(t)

from b to t if t ∈ [b, c] and from t to b if t ∈ [a, b] yields α(t) ≤ y(t) ≤ β(t), t ∈ [b, c] and

β(t) ≤ y(t) ≤ α(t), t ∈ [a, b] respectively. The proof of Lemma 2 is completed. 2
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Theorem 1 Assume that H1–H4 hold. Then BVP (1) and (9) has at least one solution y(t) ∈

C3[a, c] satisfying

α′(t) ≤ y′(t) ≤ β′(t), t ∈ [a, c]; α(t) ≤ y(t) ≤ β(t), t ∈ [b, c]; β(t) ≤ y(t) ≤ α(t), t ∈ [a, b].

Proof From the latter part of Lemma 2, we know that BVP (10)–(13) with λ = 1 is equivalent

to BVP (1) and (9). Thus, the conclusion of Theorem 1 is obvious.

Theorem 2 Suppose that H1–H5 hold. Then BVP (1)–(2) has at least one solution y(t) ∈

C3[a, c] satisfying

α′(t) ≤ y′(t) ≤ β′(t), t ∈ [a, c]; α(t) ≤ y(t) ≤ β(t), t ∈ [b, c]; β(t) ≤ y(t) ≤ α(t), t ∈ [a, b].

Proof Assume that y1(t) ∈ C3[a, c] is a solution of BVP (1) and (9). Then, it follows from

Lemma 2 that α(b) = y1(b) = β(b). By simple argument, β′(b) ≥ y1(b) ≥ α′(b) can be attained.

Hence, by H5, we have

h(β(b), β′(b)) ≥ h(y1(b), y
′

1(b)) ≥ h(α(b), α′(b)).

Recalling inequality (6) yields h(y1(b), y
′

1(b)) = 0. Therefore, y1(t) ∈ C3[a, c] is also a solution of

BVP (1)–(2). Thus, the result of Theorem 2 is obtained. 2

3. Example

Consider a nonlinear third-order ordinary differential equation

y′′′ = −ty + t2y′ + (y′′)2 sin(y′)2 := f(t, y, y′, y′′) (23)

with the following nonlinear three-point boundary condition










−y(−1) + a(y′(−1))3 + b(y′′(−1))2n+1 = 0,

y(0) + (y′(0))2 = 0,

−y(1) + c(y′(1))3 + d(y′′(1))2n+1 = 0,

(24)

where n = 1, 2, . . . , a, b, c, d ∈ R.

The upper and lower solutions of BVP (23)–(24) can be taken as α(t) = −t and β(t) = t,

respectively. Consequently,

−1 = α′(t) ≤ β′(t) = 1, t ∈ [−1, 1]; α(t) ≤ β(t), t ∈ [0, 1]; β(t) ≤ α(t), t ∈ [−1, 0]

hold. Furthermore, by simple arguments, it can be verified that inequalities (3)–(7) and H3–

H5 hold if a ≤ −1, b > 0 and c ≥ 1, d > 0. Since fy(t, y, y′, y′′) = −t, H2 holds if D1 =

[−1, 0]× [t,−t] × R2 and D2 = [0, 1] × [−t, t] × R2 are defined. Now, we can see that H1–H5 all

hold. Hence, according to Theorem 2, BVP (23)–(24) has at least one solution y(t) ∈ C3[a, c]

satisfying

−1 ≤ y′(t) ≤ 1, t ∈ [−1, 1]; t ≤ y(t) ≤ −t, t ∈ [−1, 0];−t ≤ y(t) ≤ t, t ∈ [0, 1]. (25)

Note that y(t) ≡ 0 is a solution of BVP (23)–(24), which obviously satisfies inequalities (25). In

this manner, the validity of the results in the paper can be seen.
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