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Abstract For positive integers j and k with j ≥ k, an L(j, k)-labeling of a graph G is an

assignment of nonnegative integers to V (G) such that the difference between labels of adjacent

vertices is at least j, and the difference between labels of vertices that are distance two apart is

at least k. The span of an L(j, k)-labeling of a graph G is the difference between the maximum

and minimum integers it uses. The λj,k-number of G is the minimum span taken over all

L(j, k)-labelings of G. An m-(j, k)-circular labeling of a graph G is a function f : V (G) →

{0, 1, 2, . . . , m− 1} such that |f(u)− f(v)|m ≥ j if u and v are adjacent; and |f(u)− f(v)|m ≥ k

if u and v are at distance two, where |x|m = min{|x|, m−|x|}. The minimum integer m such that

there exists an m-(j, k)-circular labeling of G is called the σj,k-number of G and is denoted by

σj,k(G). This paper determines the σ2,1-number of the Cartesian product of any three complete

graphs.
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1. Introduction

For two positive integers j and k with j ≥ k, an L(j, k)-labeling of a graph G is an assignment

L of nonnegative integers to V (G) such that the difference between labels of adjacent vertices

is at least j, and the difference between labels of vertices that are distance two apart is at least

k. Elements of the image of L are called labels, and the span of L, denoted by span(L), is

the difference between the largest and smallest labels of L. The λj,k-number of G, denoted

λj,k(G), is the minimum span over all L(j, k)-labelings of G. If L is an L(j, k)-labeling with span

λj,k(G), then L is called a λj,k-labeling of G. We shall assume without loss of generality that

the minimum label of L(j, k)-labelings of G is always 0. An m-(j, k)-circular labeling of a graph

G is a function f : V (G) → {0, 1, 2, . . . , m − 1} such that |f(u) − f(v)|m ≥ j if u and v are

adjacent; and |f(u)− f(v)|m ≥ k if u and v are at distance two, where |x|m = min{|x|, m− |x|}.

The minimum integer m such that there exists an m-(j, k)-circular labeling of G is called the

σj,k-number of G and is denoted by σj,k(G).
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Motivated by a special kind of channel assignment problem, Griggs and Yeh[7] first pro-

posed and studied the L(2, 1)-labeling of a graph. Since then the λ2,1-numbers of graphs have

been studied extensively[1,3,5−7,9,12,14]. And L(j, k)-labelings were also investigated in many

papers[2−5].

Given two graphs G and H , the Cartesian product of G and H is the graph G×H with vertex

set V (G)× V (H) in which two vertices (x, y) and (x′, y′) are adjacent if x = x′ and yy′ ∈ E(H)

or y = y′ and xx′ ∈ E(G). Let Gk denote the Cartesian product of k copies of G. Let Kn denote

the complete graph on n vertices. Then K2
n = Kn × Kn and K3

n = Kn × Kn × Kn.

The L(2, 1)-labeling of the Cartesian product of n paths, especially of the Cartesian product

of n copies of P2 (the n-cube Qn), was investigated by Whittlesey, Georges, and Mauro[14].

In the same paper, they completely determined the λ2,1-numbers of Cartesian products of two

paths. Jha et al.[9] studied the L(2, 1)-labeling of the Cartesian product of a cycle and a path.

The λ2,1-numbers of the Cartesian product of a cycle and a path were completely computed

by Klavžar and Vesel in [10]. Partial results for the λ2,1-numbers of the Cartesian products of

two cycles were obtained in [10]. These partial results are completed in [13]. Georges, Mauro,

and Whittlesey[6] determined L(2, 1)-labeling numbers of Cartesian products of two complete

graphs. This result was then extended by Georges, Mauro, and Stein[5] who determined the

L(j, k)-labeling numbers of Cartesian products of two complete graphs.

Theorem 1.1
[5] Let j, k,n, and m be integers where 2 ≤ m < n and j ≥ k. Then

(i) λj,k(Kn × Km) = (n − 1)j + (m − 1)k, if j/k > m;

(ii) λj,k(Kn × Km) = (nm − 1)k, if j/k ≤ m.

Theorem 1.2
[5] Let j, k, and n be integers where 2 ≤ n and j ≥ k. Then

(i) λj,k(K2
n) = (n − 1)j + (2n − 2)k, if j/k > n − 1;

(ii) λj,k(K2
n) = (n2 − 1)k, if j/k ≤ n − 1.

Georges, and Mauro[3] also obtained other results on L(j, k)-labelling numbers of Cartesian

products of complete graphs. In particular, they investigated the λj,k-number of K3
n.

Theorem 1.3
[3] The λj,k-number of Q3

∼= K3
2 is equal to 3j if j/k ≤ 5/2; and j + 5k if

j/k ≥ 5/2.

Theorem 1.4
[3] Suppose n is an odd integer, n ≥ 3. Then

(i) λj,k(K3
n) = (n − 1)(j + 3k), if j/k ≥ 3n− 4;

(ii) λj,k(K3
n) = (n2 − 1)k, if j/k ≤ n − 2;

(iii) λj,k(K3
n) ≤ (n − 1)(j + 3k), if n − 2 < j/k < 3n − 4.

Theorem 1.5
[3] Suppose n is an even integer. Then

(i) λj,k(K3
n) = (n2 − 1)k, if j/k ≤ n/2;

(ii) λj,k(K3
n) ≤











(n2 + 2n)k, if n/2 < j/k ≤ n − 2,

n(j + 3k), if n − 2 < j/k ≤ 2n(n − 2),

(n − 1)j + n(2n − 1)k, if j/k > 2n(n − 2)).
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Heuvel, Leese and Shepherd[8] first introduced σj,k-number of graphs, where infinite lattices

were focused on. The following theorem is useful in the proof of our main result.

Theorem 1.6
[8] For any graph G, λ2,1(G) + 1 ≤ σ2,1(G) ≤ λ2,1(G) + 2.

Theorem 1.7
[15] For n, m ≥ 2, then

σ2,1(Kn × Km) =

{

λ2,1(K
2
2 ) + 2 = 6, if m = n = 2,

λ2,1(Kn × Km) + 1 = nm, otherwise.

Theorem 1.8
[16] Let j, k, m and n be positive integers with 2 ≤ m < n and j ≥ k. Then

σj,k(Kn × Km) =

{

nmk, if j/k ≤ m,

mj, if j/k > m.

Theorem 1.9
[16] Let j, k, and n be positive integers with n ≥ 2 and j ≥ k. Then

σj,k(K2
n) =

{

n2k, if j/k ≤ n − 1,

n(j + k), if j/k > n − 1.

Theorem 1.10
[17] Let n, m and l be positive integers with n ≥ m ≥ l ≥ 2. If n ≥ 4, then

λ2,1(Kn × Km × Kl) = nm − 1.

Theorem 1.11
[17]

λ2,1(K3 × K3 × Kl) =

{

9, if l = 2,

10, if l = 3.

By Theorem 1.3, λ2,1(K2×K2×K2) = nm+2 = 6. And λ2,1(K3×K2×K2) = λ2,1(C3×C4) =

8 by [11].

The next section determines the σ2,1-number of Kn×Km×Kl for any three positive integers

n, m, l. We shall always suppose that n, m and l are positive integers with n ≥ m ≥ l ≥ 2.

2. σ2,1(Kn × Km × Kl)

For two positive integers a and b with a < b, denote by [a, b] the set of integers a, a+1, . . . , b.

A set of integers is called k-separated if any two distinct elements of the set differ by at least k.

Given a graph G(V, E), a subset S of V is called 2-independent if any two vertices in it are at

distance at least 3. The 2-independence number of G is the number of vertices in a maximum

2-independent set of G.

We shall view the vertices of the graph Kn × Km × Kl as points in Euclidean three-space

with coordinate (a, b, c), where a, b, c are nonnegative integers and 0 ≤ a ≤ n− 1, 0 ≤ b ≤ m− 1,

0 ≤ c ≤ l − 1. For v = (a, b, c) ∈ V (Kn × Km × Kl), we say that v is a vertex in the ath row,

bth column and the cth level of Kn ×Km ×Kl. For fixed h, 0 ≤ h ≤ m− 1, we shall refer to the

vertices on the 0th level in the set Dh = {(a, b, 0)|(b − a mod m) mod m = h} as vertices along

the hth diagonal.

It is not difficult to see that two vertices are at distance k if their coordinates are different in
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exactly k components. In other words, two vertices on a line parallel to some coordinate axis are

adjacent; two vertices on a plane parallel to some coordinate plane but not on any line parallel

to some coordinate axis are at distance 2; and any two vertices not on any plane parallel to some

coordinate plane are at distance 3. The diameter of Kn × Km × Kl is 3. The 2-independence

number of Kn×Km×Kl is l. Thus each label can be used at most l times by any L(2, 1)-labeling

of Kn × Km × Kl.

We first deal with the case that n ≥ 4.

Theorem 2.1 Let n, m and l be positive integers with n ≥ m ≥ l ≥ 2. If n ≥ 4 and m ≥ 3 or

n ≥ 5 and m = 2, then

σ2,1(Kn × Km × Kl) = λ2,1(Kn × Km × Kl) + 1 = nm.

Proof We split the proof into the following four cases.

Case 1 n ≥ m ≥ 6 or n > m = 5.

In the proof of Theorem 2.1 in [17], the matrix X = (xij)n×m was defined as:

X =



























nm − 1 1 3 6 · · · · · · · · ·

2 4 7 · · · · · · · · · · · ·

5 8 · · · · · · · · · · · · · · ·

9 · · · · · · · · · · · · · · · · · ·

· · · · · · · · · · · · · · · · · · · · ·

· · · · · · · · · · · · · · · · · · nm − 3

· · · · · · · · · · · · · · · nm − 2 0



























n×m

≡ (xij)n×m. (2.1)

Using this matrix, the authors defined a λ2,1-labeling f with span mn − 1 as:

f((a, b, 0)) = x(a+1)(b+1), for 0 ≤ a ≤ n − 1, 0 ≤ b ≤ m − 1;

f((a, b, c)) = f(((a + c)mod n, (b + c)mod m, 0)), for 0 ≤ a ≤ n − 1, 0 ≤ b ≤ m − 1,

0 ≤ c ≤ l − 1.

We shall obtain the σ2,1-circular labeling of Kn × Km × Kl by modifying the definition of

the matrix X and using the same way to define the labeling f .

If n ≥ m ≥ 6, then let xnm = x25 and x25 = 0, and if n > m = 5, then let xnm = x2m

and x2m = 0. Similar to Case 1 in the proof of Theorem 2.1 in [17], one can prove that f is

an L(2, 1)-labeling of Kn × Km × Kl with span nm − 1. Furthermore, it is also easy to check

that the vertices labeled by 0 and those labeled by nm − 1 are nonadjacent. It follows that

this λ2,1-labeling of Kn × Km × Kl is also an mn-(2, 1)-circular labeling of Kn × Km × Kl. By

Theorem 1.6, we have σ2,1(Kn × Km × Kl) = nm.

Case 2 n > m = 4.
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In this case, we define the matrix X as:






































0 3n 2n n

3n + 1 2n + 1 n + 1 1

2n + 2 n + 2 2 3n + 2

n + 3 3 3n + 3 2n + 3

· · · · · · · · · · · ·

n − 4 4n − 4 3n − 4 2n− 4

4n − 3 3n − 3 2n − 3 n − 3

3n − 2 2n − 2 n − 2 4n− 2

2n − 1 n − 1 4n − 1 3n− 1







































a. n = 0 mod 4







































0 3n 2n n

3n + 1 2n + 1 n + 1 1

2n + 2 n + 2 2 3n + 2

n + 3 3 3n + 3 2n + 3

· · · · · · · · · · · ·

4n− 4 3n − 4 2n − 4 n − 4

3n− 3 2n − 3 n − 3 4n− 3

2n− 2 n − 2 4n − 2 3n− 2

n − 1 4n − 1 3n − 1 2n− 1







































b. n = 1 mod 4







































0 n 2n 3n

n + 1 2n + 1 3n + 1 1

2n + 2 3n + 2 2 n + 2

3n + 3 3 n + 3 2n + 3

· · · · · · · · · · · ·

3n − 4 4n − 4 n − 4 2n− 4

4n − 3 n − 3 2n − 3 3n− 3

n − 2 2n − 2 3n − 2 4n− 2

2n − 1 3n − 1 4n − 1 n − 1







































c. n = 2 mod 4







































0 n 2n 3n

n + 1 2n + 1 3n + 1 1

2n + 2 3n + 2 2 n + 2

3n + 3 3 n + 3 2n + 3

· · · · · · · · · · · ·

4n− 4 n − 4 2n − 4 3n− 4

n − 3 2n − 3 3n − 3 4n− 3

2n− 2 3n − 2 4n − 2 n − 2

3n− 1 4n − 1 n − 1 2n− 1







































d. n = 3 mod 4

Similar to Case 1, using these matrices, we can get mn-(2, 1)-circular labelings of Kn×Km×

Kl.

Case 3 n > m = 3.

In this case, we define the matrix X as:



























0 n + 2 2n + 1

n 2n + 2 1

2n 2 n + 1

· · · · · · · · ·

n − 3 2n− 1 3n − 1

2n − 3 3n− 2 n − 2

3n − 3 n − 1 2n − 2



























a. n = 0 mod 3

































0 2n n

2n + 1 n + 1 1

n + 2 2 2n + 2

3 2n + 3 n + 3

· · · · · · · · ·

3n − 3 2n − 3 n − 3

2n − 2 n − 2 3n− 2

n − 1 3n − 1 2n− 1

































b. n = 1 mod 3

































0 n 2n

n + 1 2n + 1 1

2n + 2 2 n + 2

3 n + 3 2n + 3

· · · · · · · · ·

3n− 3 n − 3 2n − 3

n − 2 2n − 2 3n − 2

2n− 1 3n − 1 n − 1

































c. n = 2 mod 3

Similar to Case 1, using these matrices, we can get mn-(2, 1)-circular labelings of Kn×Km×

Kl.
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Case 4 n = m = 5 or n = m = 4.

We define the matrix X as:
















9 13 17 21 0

14 18 22 1 5

19 23 2 6 10

24 3 7 11 15

4 8 12 16 20

















a. n = m = 5













7 10 13 0

11 14 1 4

15 2 5 8

3 6 9 12













b. n = m = 4

Similar to Case 1, using these matrices, we can get mn-(2, 1)-circular labelings of Kn×Km×

Kl.

Case 5 n ≥ 5 and m = 2.

Clearly, we have Kn ×K2×K2
∼= Kn ×C4. The L(2, 1)-labeling of Kn×C4 with span 2n−1

given by the following matrix[17] is also the σ2,1-circular labeling of K4 × K2 × K2. 2

We now consider the case n = 4 and m = 2.

Theorem 2.2 σ2,1(K4 × K2 × K2) = λ2,1(K4 × K2 × K2) + 2 = 10.

Proof In [17], we know that λ2,1(K4×K2×K2) = 8. Let Vjk = {(a, j, k)|0 ≤ a ≤ 3} for j = 0, 1

and k = 0, 1. Suppose σ2,1(K4 ×K2 ×K2) = 9. Let g be a 9-circular labelings of K4 ×K2 ×K2.

Define Xi1 and Xi1 as follows:

X01 = {1, 3, 5, 7} and X01 = {2, 4, 6, 8}; X11 = {0, 3, 5, 7} and X11 = X01;

X21 = X11 , X21 = {1, 4, 6, 8}; X31 = {0, 2, 5, 7}, X31 = X21;

X41 = X31 , X41 = {1, 3, 6, 8}; X51 = {0, 2, 4, 7} , X51 = X41;

X61 = X51 , X61 = {1, 3, 6, 8}; X71 = {0, 2, 4, 6} , X71 = X61;

X81 = X71 , X81 = X11.

Then for k = 0, 1, f(V0k) ∪ f(V1k) = Xi1 ∪ X(i2) for some 0 ≤ i ≤ 8. Clearly, there must

exist four consecutive labels i, i+1, i+2 and i+3 in f(V00)∪ f(V10) and f(V01)∪ f(V11). Then

i + 4 and i − 1 must not be used in the two levels of K4 × K2 × K2, where the “+” and “-” are

taken modulo 9, a contradiction.

So σ2,1(K4 × K2 × K2) = 10. 2

We now turn to the case n ≤ 3.

Theorem 2.3 σ2,1(K2 × K2 × K2) = λ2,1(K2 × K2 × K2) + 2 = 8.

Proof Let f be any k-(2, 1)-circular labeling of K3
2 . For i ∈ [0, k − 1], it is easy to see that i

can be assigned to at most two vertices of K3
2 . Furthermore, if i is assigned to two vertices, then

i − 1 and i + 1 (where “−” and “+” are taken modulo k) cannot be assigned to any vertices of

K3
2 . For i ∈ [0, k − 1], let Ai = {v|f(v) = i, or i + 1 and v ∈ V (K3

2 )}. It follows from the above

discussion that |Ai| ≤ 2 for each i ∈ [0, k − 1]. Therefore
∑k−1

i=0 |Ai| ≤ 2k. On the other hand,

since K3
2 has 8 vertices, we clearly have

∑k−1
i=0 |Ai| = 16. This implies k ≥ 8. By Theorem 1.6,

σ2,1(K2 × K2 × K2) = λ2,1(K2 × K2 × K2) + 2 = 8. 2
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Next we consider the case n = 3.

Theorem 2.4 For n = 3 and m = l = 2, we have σ2,1(Kn × Km × Kl) = 9.

Proof Note that K3 ×K2 ×K2
∼= C3 × C4. So σ2,1(K3 × K2 ×K2) = σ2,1(C3 × C4). In [11], a

λ2,1- labeling of C3 × C4 is defined by the matrix Y as follows:

Y =







6 4 0 2

3 1 6 8

0 7 3 5






. (2.2)

It is also a 9-circular labeling of C3 × C4. Thus we have that σ2,1(C3 × C4) = 9 . Then

σ2,1(K3 × K2 × K2) = 9. 2

Finally we assume that n = m = 3.

Theorem 2.5

σ2,1(K3 × K3 × Kl) = λ2,1(K3 × K3 × Kl) + 2 =

{

11, if l = 2,

12, if l = 3.

Proof By Theorems 1.6 and 2.5, we have σ2,1(K3×K3×K2) ≤ 11 and σ2,1(K3×K3×K3) ≤ 12.

To prove the theorem, it suffices to show that there is no k-(2, 1)-circular labeling of K3×K3×K2

with k < 11 and there is no k-(2, 1)-circular labeling of K3 × K3 × K3 with k < 12.

Let f be a k-(2, 1)-circular labeling of K3 ×K3 ×K2. As in the proof of Theorem 2.3 in [17],

we can make the following observation.

Observation A For any integer i ∈ [0, k− 1], if each of the three consecutive labels i− 1, i and

i + 1 is assigned to exactly two vertices of K3 × K3 × K2, then the three vertices in the same

level receiving the labels i − 1, i, and i + 1 respectively must lie in different rows and different

columns, i.e., the three vertices in the same level receiving labels i−1, i, and i+1 are along some

diagonal. (Note that vertices in each level can be partitioned into three disjoint diagonals.)

Then each label is used at most twice by f . From the above observation, any four consecutive

labels are assigned to at most 7 vertices. For i ∈ [0, k − 1], let Ai = {v|f(v) ∈ {i, i + 1, i + 2, i +

3} andv ∈ V (K3
2 )} (where “+” is taken modulo k). Then |Ai| ≤ 7 for each i ∈ [0, k − 1] and so

∑k−1
i=0 |Ai| ≤ 7k. As K3 × K3 × K2 has 18 vertices, we must have

∑k−1
i=0 |Ai| = 4 × 18 = 72. It

follows that k ≥ 11.

We now deal with the graph K3
3 . Let f be a k-(2, 1)-circular labeling of K3

3 . For i ∈ [0, k−1],

let mi be the number of vertices v of K3
3 with f(v) = i. Clearly 0 ≤ mi ≤ 3 for i ∈ [0, k− 1] and

∑k−1
i=0 mi = 27. By Observation A, it is not difficult to make the following three observations.

Observation B For any integer i ∈ [0, k−1], if mi = mi+1 = mi+2 = 3, then mi−1 = mi+3 = 0.

Observation C For any integer i ∈ [0, k − 1], if mi = 2 and mi+1 = mi+2 = 3, then mi+3 ≤ 1.

Observation D For any integer i ∈ [0, k − 1], if mi = mi+2 = 3 and mi+1 = 2, then mi+3 ≤ 1.

It follows from Observations B, C and D that
∑i+3

j=i mj ≤ 10 for any i ∈ [0, k − 1]. Fur-
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thermore,
∑i+3

j=i mj = 10 if and only if (mi, mi+1, mi+2, mi+3) is one of the following forms:

(3, 2, 2, 3), (3, 3, 2, 2), (2, 2, 3, 3), (3, 3, 1, 3), (3, 1, 3, 3).

Next we show that if k ≤ 11, then
∑k−1

i=0 mi < 27 and thus get a contradiction.

If mi ≥ 2 for all i ∈ [0, k − 1], then, by Observations C and D, it is easy to see that there

are at most three integers i with mi = 3 and so
∑k−1

i=0 mi < 27. Now suppose w.l.o.g. that

m0 ≤ 1. If m0 + m1 + m2 ≤ 6, then since
∑i+3

j=i mj ≤ 10 for i = 3, 7,
∑k−1

i=0 mi < 27. Thus we

assume m0 + m1 + m2 ≥ 7. Then we must have m0 = 1 and m1 = m2 = 3. If
∑i+3

j=i mj ≤ 9

for i = 3 or 7, then
∑k−1

i=0 mi < 27. Thus we assume that
∑i+3

j=i mj = 10 for i = 3, 7. This

implies that (m3, m4, m5, m6) and (m7, m8, m9, m10) must be of the form (2, 2, 3, 3). But then

(m4, m5, m6, m7) = (2, 3, 3, 2). This is a contradiction to Observation C.
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