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Abstract In this paper, we prove that (L*~,6) is To,T1,T%, regular (T3), normal (74) and
completely regular spaces if and only if (R(L)*,w(6)) is To, T1, T», regular (73), normal (T4) an
completely regular spaces, respectively, and (L~ §) is N-compact if and only if (R(L)X,w(d)) is
N-compact.
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1. Introduction

The induced fuzzy topological space plays an important role in fuzzy topological spaces. For a
topological space (X, 7), the all of L-valued lower semicontinuous mappings form L F-topology
on LX, (LX,wr(T)) is called the induced fuzzy topological spacel?l of the topological space
(X,T). The notion of induced fuzzy topological spaces was extended to the case of R(L)-fuzzy
topological spaces!* by using the R(l)-valued lower semicontinuous mappings. In this way, to
every L-fuzzy topological space (LX,d) one can assign a unique induced R(L)-fuzzy topological
space (R(L)X,w(d)). As Lowen!® proposed that a property P in fuzzy topology is called “a
good extension” of a property P’ in general topology if (X, 7) has P’ if and only if (LX,w (7))
has P. For induced R(L)-fuzzy topological space, an interesting question is what properties of
(R(L)X,w(d)) is “a good extension”. In this paper, we discuss the separation and N-compactness
of induced R(L)-fuzzy topological spaces.

Throughout this paper L denotes a fuzzy lattice, a completely distributive lattice with an
order-reversing involution, and M (L) denotes the set of all molecule in L. We refer to [2, 3, 4]

for some notions and symbols.

2. The separation of induced R(L)-fuzzy topological space

Let R be real line. Define a mapping A : R — L satisfying A(s) > A(t) when s < ¢ for each
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s,t € R. We denote all of such mapping by ¥, and for each A € ¥t € R let
At+) = VIAS)|s > £}, At—) = ADA(s)]s < t}.

For each A, p € 3, define A ~ p if and only if A(t+) = u(t+) and A(t—) = u(t—) for every
t € R. Obviously, ~ is an equivalence relation. Let R(L) = X/ ~. For every A € R(L), t € R
define

Li([A]) = A(t=)'s Re([A]) = A(t+).
An induced R(L)-fuzzy topological space of (LX,d) is a pair (R(L)*,w(d)), where w(d) =
{pe R(L)X | or(u) €6, t € R}, o4(p) = Ry o= p(t+), we(p) = Ly o = p(t—).
Define a mapping * : LX — R(L)X by letting v*(z)(t+) = v(z) for each v € LX 2 € Xt €
R. Moreover, for eacht € R, a € L, let

o, s<t,
0, s>t.

)\a,t(5+) = {

Theorem 2.1 Let A € R(L). Then X is a molecule of R(L) if and only if there exists a molecule
a€ L andt € R such that A = X\, ;.

Proof Let a € M(L), t € R, and p,v € R(L). Suppose that Ao < pV v, we have a =
Aa,t(t—) < p(t—) V v(t—) by the definition of A, ;. Since « is a molecule, we have a < p(t—) or
a < v(t—). Without loss of generality we assume « < u(t—). Note that p is decreasing, we have
Aa,it(s—) < u(s—) for any s € R. In the same way we can prove A, ((s+) < p(s+) for any s € R.
Therefore A,,+ < g1, which implies A, ¢ is a molecule of R(L).

Conversely, assume that A is a molecule of R(L). Without loss of generality, we assume that
A is left continuous and A # 0. If there exist ¢;, to € R with ¢; <t and , 6 € L —{0,1} with
a > (3 such that A(t1) = o and A(t2) = [, we shall show that it is impossible.

(1) If there exists a discontinuous point tg € [t1,t2), then A(tg) = A(to—) > A(to+). Let

0, t> 1o
and
=0
Obviously, A = p Vv and A # u, A # v, which contradicts with the fact that X\ is a molecule of
R(L).

(2) If X is continuous at each point ¢ with ¢ € [t1,t2), then A(ta—) = A(t2) = 8 < a = A(t1+).
Thus for any v € (8, @), there exists t3 € (¢1,t2) such that A(t3) = r. Let
At), t<ts,
MﬂZ{ ©)
0, t>13

and

t<t
y(t):{% > 03,

A(t), t>ts.
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Then we have A\ = y Vv and A # p, A # v, which is a contradiction. This implies that there
exist « € L and t € R such that A = A, ;. It is easy to show that « is a molecule in L when A,

is molecule in R(L).

Lemma 2.2 (1) Let 4 € R(L)* and o € M(L). Then 7o (wi(p)) = Ta.,(1). Where 7,(A) =
{z | A(z) > r}.

(2) Let (LX,68) be a L-fts, A€ L*, a € M(L) andt € R. Then 1/ (A) = Ly, , (A"). Where
ta(A) = {z | A(z) £ a}.

Proof (1) For any y € 7o(wi (1)), we have wi(p)(y) = pu(y)(t—) > o = At (t—). Thus u(y) >

)

Aa,t , which implies y € 7, , (1).

Conversely, for any y € 7, , (1), we have p(y) > Aa¢. Then p(y)(t—) > Aai(t—) = o, which
implies y € 7o (wi ().

(2) The proof is analogous to (1). O

Lemma 2.3 Let (LX,wy(T)) be the induced fuzzy topological space of (X,T). Then
Acwr(T) if and only if §,(A) = {x € X | A(z) < p} € T’ for each prime element p € L.

Lemma 2.4 Let (L, w; (7)) be an induced fuzzy topological space of (X, T). Then (R(L)X,w(wr(T)))
is also an induced fuzzy topological space of (X, T).

Proof Assume that p/ € w(wr(7)). Then wi(p) € wr(7T) for any ¢ € R. By Lemma 2.3,
Ta(wi(p)) = Ta,, (1) € T' for each Aqy € M(R(L)X). Thus p € wr()(T), ie, i € wrr)(T).

Conversely, suppose that p' € wrr)(7). By Lemma 2.3, 7o (w¢()) = 7, (1) € T’ for each
a € M(L). Thus wi(p) € wr(T), that is, p € w(wr (7))’

Lemma 2.5 Let ((R(L)X,w(d)) be an induced fuzzy topological space of (X, T). Then (L%, 6)
is also an induced fuzzy topological space of (X, T).

Proof Assume that p € §. Then pu* € w(0) = wg)(7). By Lemmas 2.2 and 2.3, we have
tar () = txr (u*) for each t € R and a € M(L), and 1y, (") ={rv € X | p'(z) £ Mo} €7,
that is, to/ (1) € 7. Thus 6 C wr(T).

Conversely, suppose that p € wr(7). Then p* € w(wr(7)) = wrr)(7) = w(d). Thus
d Dwp(7) for each t € R.

Summarizing Lemmas 2.4 and 2.5 we have

Theorem 2.6 Let (LX,5) be an L-fts. Then (LX) is an induced fuzzy topological space of
(X, T) if and only if (R(L)*X,w(d)) is an induced fuzzy topological space of (X, T).
Next, we consider the separation of (LX) and (R(L)¥,w(é)), and refer to [2] for some

relative notions and results.

Theorem 2.7 Let (L*,6) be an L-fts. Then (LX,§) is a Hausdorff space if and only if
(R(L)X,w(d)) is a Hausdorff space.



The separation and N-compactness of induced R(L)-fuzzy topological spaces 109

Proof Assume (L~,6) is a Hausdorff space. For each z, ,, yr,. € M(R(L)X) with = # y,
we have z,, ys € M(LX). Since (L¥,d) is a Hausdorff space, there exist P € 5~ (z,) and
Q € n (yg) such that PV @ = 1. By the definition * and Theorem 2.1, we have Ao+ ¥
P*(z), Ags £ Q*(y) and P*(z) V Q*(z) = 1 for each € X. Therefore, (R(L)X,w(d) is a
Hausdorff space.

Conversely, suppose that (R(L)*,w(8)) is a Hausdorff space. For each z,, yz € M(LY)
with @ # y, we have z,,,, yr,, € M(R(L)X) for each t € R. Since (R(L)*,w(d)) is a
Hausdorff space, there exist P € n~(xy,,) and Q € n~(yx,,) such that PV Q = 1, that is,
Aat £ P(x), dge £ Q(y) and P(x) vV Q(z) = 1 for each x € X. Thus there exist r < ¢, such
that a = Mg (r—) € P(z)(r—) = w(P)(x) and 8 = Ag(r—) € Qy)(r—) = w,(Q)(y), which
implies w,(P) € 1™ (74), w-(Q) € 1~ (ys) and w,(P) V w,(Q) = w.(P V Q) = 1. Hence (LX,6)

is a Hausdorff space.

Theorem 2.8 Let (LX,5) be an L-fts. Then
(1) (L%X,9) is a Ty-space if and only if (R(L)X,w(d)) is a Ty-space.
(2) (L*,9) is a Ti-space if and only if (R(L)X,w(d)) is a T1-space.

Theorem 2.9 Let (L~,5) be an L-fts. Then
(1) (L*,9) is a regular (Ts-) space if and only if (R(L)™,w(8)) is a regular (T-) space.
(2) (LX,6) is a normal (Ty-) space if and only if (R(L)*,w(d)) is a normal (Ty-) space.

Proof (1) Assume that (L, 6) is a regular space. For any z,,, € M(R(L)™), p is a quasi-
general closed set of (R(L)X,w(d)) and = ¢ suppy, there exists s € R such that wg(u) is a
quasi-general closed set of (L, §) and suppp = suppws(p). Obviously, 2, € M (LX), ws(u) € 4.
Since (LX,4) is a regular space, there exist P € 7 (z,) and Q € ™~ (ws(p)) such that PvQ = 1.
Thus o £ P(x), ws(p)(y) = p(y)(s—) £ Q(y) for any y € suppws(u), which implies Ao+ £ P*(x)
and p(y) £ Q*(y). By Theorem 2.11, we have P* € n= (x5, ,), Q* € (1) and P* v Q* = 1.
Therefore, (R(L)X,w(d)) is a regular space.

Conversely, Assume that (R(L)X,w(d)) is a regular space. For any x, € M(LX), uis a
€ M(R(L)*) for any t € R,
is a quasi-general closed set of (R(L)X,w(d)) and suppu = suppu*. Since (R(L)X,w(d)) is

quasi-general closed set of (LX,d) and x ¢ suppu, we have x)
1
a regular space, there exist P € ™ (xy,,) and Q € n~(u*) such that PV Q = 1, which implies
Aot £ P(z), p*(y) £ Qy) for any y € suppp®. Thus a = Aas(s—) £ P(z)(s—) = ws(P)(2)
for some s < ¢, and p(y) = p*(y)(s—) £ Qy)(s—) = ws(Q)(y) for any y € suppu. By Theorem
2.1 we have w,(P) € 7™ (74), ws(Q) € n~ (1) and ws(P) V wy(Q) = ws(PV Q) = 1. Therefore,
(L, 6) is a regular space.

(2) The proof is similar to (1).

For a mapping f : X — Y, we use f : LX — LY to denote the L-valued Zadeh function
induced by f, and use f : R(L)X — R(L)Y to denote the R(L)-valued Zadeh function induced

by f.

Lemma 2.104 Let (L¥,8) be an L-fts and f : X — Y be a mapping. Then o.(f~(n)) =

at

*



110 LIU Z B

f~Y(or(u)) for each p € R(L)Y and t € R.

Here, I denotes the unit interval [0,1], e denotes usual topology on I, (L!,w(¢)) and
(R(L)!,wr(r)(€)) are both induced fuzzy topological spaces of (I,e). For a mapping f : X —
[0,1], we use f; : LY — L0 to denote the L-valued Zadeh function induced by f, and use
f2: R(L)X — R(L)1%Y to denote the R(L)-valued Zadeh function induced by f.

Lemma 2.11 Let (LX,0) be an L-fts and f : X — [0,1] be a mapping. Then f; is continuous

if and only if f5 is continuous.

Proof Assume that f1 is continuous. For each p € wp(r) (), since w(wr (€)) = wr(r)(€) (Lemma
2.4), we have oy(u) € wr(e) for each t € R. By Lemma 2.10 and f; is continuous, we have
or(fy(p) = fy o) €6, ie, fy '(1) € w(8). Thus fo is continuous.

Conversely, assume that f; is continuous. Let 1 € wr(g), then p* €w(wr(€)) = wr(r)(e) (Lemma
2.4). By Lemma 2.10, we have o(f; *(1*)) = f; Yoe(p*)) = fi'(u) for each t € R, thus
it (w) = o¢(f5 1 (%)) € 8. Therefore, f; is continuous.

Theorem 2.12 Let (L%, 6) be an L-fts. Then (LX) is a completely regular topological space
if and only if (R(L)*,w(d)) is a completely regular topological space.

Proof Assume that (L%, §) is a completely regular topological space. For each nonzero quasi-
general closed set A € R(L)X and LF point z) € R(L)X with = ¢ suppA, there exists t € R such
that w;(A) € LX is a nonzero quasi-general closed set, w;(zy) € LX and suppw;(A) = suppA.
Since (LX,6) is a completely regular topological space, there exists a continuous L-valued Zadeh
function f; : LX — L% induced by f, such that wi(zy) < f~1(01), wi(A) < f~(1;). For
R(L)-valued Zadeh function fo : R(L)X — R(L)%V induced by f, obviously z) < fo~ (01),
A< fgfl(ll). By Lemma 2.10, fa is continuous, thus (R(L)¥,w(6)) is a completely regular
topological space.

Conversely, for each nonzero quasi-general closed set A € L* and LF point ) € L* with z ¢
suppA. Obviously, A* and z% are nonzero quasi-general closed set and LF point of (R(L)*,w(d))
respectively, and suppA = suppA*. Since (R(L)X,w(8)) is a completely regular topological
space, there exists a continuous R(L)-valued Zadeh function fo : R(L)X — R(L)(! such that
z} < f71(01), A* < f71(11). By the definition f; and Lemma 2.10, we have f; is continuous
and x) < f71(04), A < f~1(1;). Thus (L, 6) is a completely regular topological space.

3. The N-compactness of induced R(L)-fuzzy topological space

8] and Peng!®! general-

The notion of N-compactness was first introduced by Wang!”!, Zhao
lized the notion to general L-fts. For each a € L, using $(a) denotes the greatest minimal set of
a, using §*(a) denotes the standard minimal set of a, that is 5*(a) = f(a) N M (L) = U{r(x) |

x € B(a)}, where w(z) ={y € M(L) |y < x}.

Lemma 3.1 Let o, 8 € M(L) and s, t € R. Then Ao € 3*(Ag,s) if and only if o € 3*(8) and
t <s.
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Proof Let Ao; € 5*(Ag,s). Then Ao < Ags and t < s. For each r < min{s,t}, we have
a= A (r=) <Ags(r—) = 0. Thus o € 5*(8)

Conversely, let a € 8*(5) and ¢t < s, then Ay ; < Ag . Since A is molecule of R(L), thus
Aayt € F* ()‘ﬁ,s)'

Theorem 3.2 Let (L*,0) be an L-fts and A € L*. Then A is an N-compact set if only if A*

is an N-compact set.

Proof Suppose that A is an N-compact set. Let ¥ is A, ¢-remote neighborhood family of A*.
Then we have x),, £ AV for each z,, € A*, which implies that Ao, £ AV(z) = A{eo(z) |
¢ € U}, Hence there exists s with s < ¢ such that a = Ay 1(s—) € AMe(x)(s—) | ¢ € U}, ie,
To £ Mws(p) | ¢ € ¥}, Let @ = {ws(p) | ¢ € U}. Then ® is an a-remote neighborhood
family of A. Since A is an N-compact set, there exist a finite subfamily &9 C ® and 3 € §*(«)
such that g £ A®g, i.e., Dy is B~ remote neighborhood family of A. Let ¥ = {p | ws(p) €
®o}. Then ¥y is a finite subfamily of ¥ and zg € {ws(p) | ¢ € ¥o}, which implies that
B LA{ws(p)(x) | ¢ € To} = A{p(x)(s—) € Tp}. Taking r € (s,t), we have Ag, £ AUq(x), which
is equivalent to zy, £ AV¥g. Thus ¥q is A\g,-remote neighborhood family of A*. By Lemma
3.1, Ag,r € B8*(Aa,t), which implies that ¥ is a Ag, remote neighborhood family of A*. Thus A*
is an N-compact set.

Conversely, suppose A* € R(L)%X is an N-compact set. Let ® be an a-remote neighborhood
family of A, where o € M(L). Then for each z, € A, we have z, £ A®, and a £ A®(z) =
No(z) | ¢ € D} = AN{¢*(z)(t—) | ¢ € @} for each t € R. Hence Ao £ N{¢*(x) | ¢ € &} and
Tr,, £ Mo | ¢ € @}, where A, is a molecule of R(L) by Theorem 2.1. Let ®* = {¢* | ¢ € ®}.
Then ®* is an A, ;-remote neighborhood family of A*. Since A* is an N-compact set, there exist
Ag,r € B*(Aa,t) and a finite subfamily ®§ of ®* such that ®§ is an Ag,-remote neighborhood
family of A*, which implies that xy, £ A®{ for each molecule x5, , € A*. Let ®¢ = {¢ | ¢* €
®§}. Then ¢ is a finite subfamily of ®. Thus, for each s € R with s < r, we have

B=Apr(s—) L No"(x)(s—) | ¢ € o} = Mo(2) | ¢ € Do},
which implies g £ {¢ | ¢ € ®o}. By Lemma 3.1 we have 3 € 3*(«). Hence ®¢ is an o~ remote
neighborhood family of A. Therefore, A is an N-compact set.
Corollary 3.3 (LX,0) is N-compact if and only if (R(L)*,w(d)) is N-compact.

Corollary 3.4 If (L%,6) is an induced fuzzy topological space of (X, T), then (R(L)*,w(§))
is N-compact if and only if (X, T) is compact.

References

[1] WEISS M D. Fixed points, separation, and induced topologies for fuzzy sets [J]. J. Math. Anal. Appl., 1975,
50: 142-150.

[2] WANG Guojun. The L-Fuzzy Topological Spaces [M]. Xi’an: Shaanxi Normal University Press, 1988.

[3] WANG Geping, HU Lanfang. On induced fuzzy topological spaces [J]. J. Math. Anal. Appl., 1985, 108(2):
495-506.



112

(10]

LIU Z B

LIU Zhibin, LI Yaolong. Induced R(L)-type spaces and connectedness [J]. J. Math. (Wuhan), 2005, 25(6):
645-649. (in Chinese)

WANG Geping. Induced I(L)-fuzzy topological spaces [J]. Fuzzy Sets and Systems, 1991, 43(1): 69-80.
LOWEN R. A comparison of different compactness notions in fuzzy topological spaces [J]. J. Math. Anal.
Appl., 1978, 64(2): 446-454.

WANG Guojun. A new fuzzy compactness defined by fuzzy nets [J]. J. Math. Anal. Appl., 1983, 94(1):
1-23.

ZHAO Dongsheng. The N-compactness in L-fuzzy topological spaces [J]. J. Math. Anal. Appl., 1987, 128(1):
64-79.

PENG Yuwei. Nice compactness of L-fuzzy topological spaces [J]. Acta Math. Sinica, 1986, 29(4): 555-558.
(in Chinese)

LI Shenggang. Connectedness in L-fuzzy topological spaces [J]. Fuzzy Sets and Systems, 2000, 116(3):
361-368.



