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Abstract Let X be a uniformly convex Banach space X such that its dual X
∗ has the KK

property. Let C be a nonempty bounded closed convex subset of X and G be a directed system.

Let ℑ = {Tt : t ∈ G} be a family of asymptotically nonexpansive type mappings on C. In this

paper, we investigate the asymptotic behavior of {Ttx0 : t ∈ G} and give its weak convergence

theorem.
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1. Introduction

Let C be a nonempty bounded closed convex subset of Banach space X . Let {Tn}∞n=1 be

a sequence of mappings from C into itself. Recall that {Tn}∞n=1 is said to be asymptotically

nonexpansive type, if ‖Tnx − Tny‖ ≤ ‖x − y‖ + rn(x) for all x, y in C with rn(x) ≥ 0 and

limn→+∞ rn(x) = 0. And {Tn}∞n=1 is said to be asymptotically nonexpansive, if ‖Tnx − Tny‖ ≤

Kn‖x − y‖ for all x, y in C with limn→+∞ Kn = 1.

Bose[1], Feathers and Dotson[2] gave the weak convergence theorem of asymptotically non-

expansive mappings in a uniformly convex Banach space with weak continuous duality mapping

by using Opial’s Lemma[3]. Using Bruck’s Lemma[4], Passty[5] extended to the results of [1, 2]

to a uniformly convex Banach space with a Fréchet differentiable norm. Recently, Huang and

Li[6] extended the results of Passty[5] to a uniformly convex Banach space with its dual having

the KK property. However, Bruck’s Lemma does not extend beyond Lipschitzian Mappings,

new techniques are needed for this more general case. Li[7] first gave the convergence theorem

of ℑ = {Tt : t ∈ G} of asymptotically nonexpansive type (Non-Lipschitzian) mappings in a

uniformly convex Banach space with a Fréchet differentiable norm, where G is a directed system.

The objective of this paper is to generalize the weak convergence theorem in [7] to the case that
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the dual space X∗ has KK property. We would like to remark that the condition that X∗ has

the KK property is strictly weaker than the condition that X has a Fréchet differentiable norm.

Our results are generalizations of the main results in [5,6,7].

2. Preliminaries

Throughout this paper, let C be a nonempty bounded closed convex subset of uniformly

convex Banach space X . Let X∗ be the dual of X . Then the value of x∗ ∈ X∗ at x ∈ X will be

denoted by 〈x, x∗〉 and we associate the set

J(x) = {x∗ ∈ X∗ : 〈x, x∗〉 = ‖x‖2 = ‖x∗‖2}.

Using the Hahn-Banach theorem, it is immediately clear that J(x) 6= ∅ for any x ∈ X . Then the

multi-valued operator J : X 7→ X∗ is called the normalized duality mapping of X . We need the

following lemma which plays a crucial role in the proof of our main theorem.

Lemma 2.1[8] Let X be a Banach space and J be the normalized duality mapping. Then for

given x, y ∈ X and j(x + y) ∈ J(x + y), we have

‖x + y‖2 ≤ ‖x‖2 + 2〈y, j(x + y)〉.

Recall that X has a Fréchet differentiable norm if for each x 6= 0,

lim
t→0

(‖x + ty‖ − ‖x‖)/t

exists uniformly in y ∈ Br, where Br = {z ∈ X : ‖z‖ ≤ r}, r > 0. We say that X has the

Kadec-Klee property (KK property, for short) if for every sequence {xn}n∈N in X , whenever

ω − limn→∞ xn = x with limn→∞ ‖xn‖ = ‖x‖, it follows that limn→∞ xn = x.

It is well known that if X is a reflexive Banach space with a Fréchet differentiable norm, then

X∗ has KK property, while the converse implication fails[9].

Example 2.1[9] Let us take X1 = Lp[0, 1], 1 < p < +∞, p 6= 2, and X2 = R2 with the

norm defined by ‖x‖ =
√

|x1|2 + |x2|2 (x = (x1, x2) ∈ R2). The Cartersian product of X1 and

X2 furnished with the l2-norm is a uniformly convex Banach space. Its norm is not Fréchet

differentiable, but its dual X∗ does have KK property.

Let (G,≤) be a directed system. We extend the definition of [1] to a family of mappings

which are not necessarily semigroups.

Definition 2.1[7] Let ℑ = {Tt : t ∈ G} be a family self-mappings of C. ℑ is said to be

asymptotically nonexpansive type if for each x ∈ C, there exists a function R(·)(x) : G 7−→

[0, +∞) with limt∈G Rt(x) = 0 such that

‖Ttx − Tty‖ ≤ ‖x − y‖ + Rt(x)

for all y ∈ C and t ∈ G, where limt∈G Rt(x) denotes the limit of the net R(·)(x) on the directed

system G.

Let L(ℑ) denote the set of all asymptotically fixed points of ℑ = {Tt : t ∈ G}, i.e., L(ℑ) =
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{x ∈ C : limt∈G Ttx = x}. It is easily seen that if ℑ is a semigroup and for each t ∈ G, Tt is

continuous, then L(ℑ) is exactly the set of all fixed points of ℑ. Let ωω(x) denote the set of all

weak limit points of subnet of {Ttx : t ∈ G}, i.e., ωω(x) = {y ∈ C : there exists a subnet tα of G

such that Ttα
x ⇀ y}, where ⇀ denotes weak convergence.

3. Main results

In order to prove the main theorem, we proceed with proving several lemmas.

Lemma 3.1 If X is a reflexive space, then the following are equivalent:

(a) X has the KK property;

(b) If {xα} ⊂ X , xα ⇀ x and ‖xα‖ → ‖x‖, then xα → x, where α ∈ I and I is a directed

system.

Proof It suffices to prove (a) ⇒ (b). Let us assume that this is not the case. Then there exists

ε0 > 0 such that for all α ∈ I, there exists βα ∈ I with βα ≥ α and ‖xβα
− x‖ ≥ ε0. Put

B = {βα, α ∈ I}. Then B is a subset of I. Obviously, for arbitrary α ∈ B we have

‖xα − x‖ ≥ ε0. (3.1)

Then for some j(x) ∈ J(x), there exists α1 ∈ B such that

| ‖xα1
‖ − ‖x‖ | < 1,

|〈xα1
− x, j(x)〉| < 1.

Hence for the above j(x) ∈ J(x) and some j(xα1
− x) ∈ J(xα1

− x), there exists an α2 ∈ B such

that

|‖xα2
‖ − ‖x‖ | <

1

2
,

|〈xα2
− x, j(x)〉| <

1

2
,

and

|〈xα2
− x, j(xα1

− x)〉| <
1

2
.

Now by mathematical induction, we can find inductive sequence {αn} ⊂ B such that for given

j(x) ∈ J(x) and j(xαi
− x) ∈ J(xαi

− x), i = 1, . . . , n − 1, we have the following inequalities:

|‖xαn
‖ − ‖x‖ | <

1

n
,

|〈xαn
− x, j(x)〉| <

1

n
, (3.2)

and, in addition,

|〈xαn
− x, j(xαi

− x)〉| <
1

n
, (3.3)

where i = 1, . . . , n − 1. Clearly, ||xαn
|| → ||x|| and {xαn

} has a weak convergent subsequence

{xαni
}. We may assume that xαni

⇀ y. Then ‖y‖ ≤ lim inf i→+∞ ‖xαni
‖ = ‖x‖. By (3.2), we
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get 〈y − x, j(x)〉 = 0 which implies ‖y‖ ≥ ‖x‖. Hence ‖y‖ = ‖x‖. Therefore, xαni
⇀ y and

‖xαni
‖ → ‖y‖. By the condition (a), we obtain xαni

→ y. It follows from (3.3) that

|〈xαni
− x, j(xαni−1

− x)〉| <
1

ni

.

Hence

‖xαni−1
− x‖2 = 〈xαni−1

− x, j(xαni−1
− x)〉

< |〈xαni
− xαni−1

, j(xαni−1
− x)〉| +

1

ni

≤ ‖xαni
− xαni−1

‖ · ‖xαni−1
− x‖ +

1

ni

→ 0 (i → +∞).

This contradicts with (3.1). This completes the proof. 2

Lemma 3.2 If lim sups∈G lim supt∈G ‖TtTsx0−Ttx0‖ = 0, then for all f ∈ L(ℑ), limt∈G ‖Ttx0−

f‖ exists.

Proof Since

‖Ttx0 − f‖ ≤ ‖Ttx0 − TtTsx0‖ + ‖TtTsx0 − Ttf‖ + ‖Ttf − f‖

≤ ‖Ttx0 − TtTsx0‖ + ‖Tsx0 − f‖ + Rt(f) + ‖Ttf − f‖,

for fixed s ∈ G and passing the limsup for t ∈ G, we have

lim sup
t∈G

‖Ttx0 − f‖ ≤ lim sup
t∈G

‖Ttx0 − TtTsx0‖ + ‖Tsx0 − f‖.

Then

lim sup
t∈G

‖Ttx0 − f‖ ≤ lim inf
s∈G

lim sup
t∈G

‖Ttx0 − TtTsx0‖ + lim inf
s∈G

‖Tsx0 − f‖

≤ lim sup
s∈G

lim sup
t∈G

‖Ttx0 − TtTsx0‖ + lim inf
s∈G

‖Tsx0 − f‖

= lim inf
s∈G

‖Tsx0 − f‖.

This implies that limt∈G ‖Ttx0 − f‖ exists. This completes the proof. 2

Lemma 3.3 Let λ ∈ (0, 1) and f ∈ L(ℑ). If lim sups∈G lim supt∈G ‖TtTsx0 − Ttx0‖ = 0, then

for given ε > 0, there exists s0 ∈ G such that

lim sup
t∈G

‖Tt(λTsx0 + (1 − λ)f) − (λTtTsx0 + (1 − λ)f)‖ < ε

for all s ≥ s0.

Proof From Lemma 3.2, limt∈G ‖Ttx0 − f‖ exists. Put r = limt∈G ‖Ttx0 − f‖. If r > 0, then

there exists d > 0 such that

(r + d)(1 − 2λ(1 − λ)δ(
ε

r + d
)) < r − d, (3.4)

where δ is the modulus of convexity of the norm, and there exists s0 ∈ G such that

r −
d

4
≤ ‖Tsx0 − f‖ ≤ r +

d

4
(3.5)
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and

lim sup
t∈G

‖TtTsx0 − Ttx0‖ <
d

4
(3.6)

for all s ≥ s0. Now for fixed s ≥ s0, set z = λTsx0 + (1 − λ)f . Then from (3.6) there exists

t0 ∈ G (t0 ≥ s0) such that

Rt(z) <
1

2
λ(1 − λ)d, ‖Ttf − f‖ ≤

λd

4
,

and

‖TtTsx0 − Ttx0‖ <
d

2
(3.7)

for all t ≥ t0. Suppose that

‖Tt(λTsx0 + (1 − λ)f) − (λTtTsx0 + (1 − λ)f)‖ ≥ ε

for some t ≥ t0. Put x = (1 − λ)(Ttz − f) and y = λ(TtTsx0 − Ttz). Then

‖x‖ ≤ (1 − λ)(‖Ttz − Ttf‖ + ‖Ttf − f‖)

≤ (1 − λ)(‖z − f‖ + Rt(z) + ‖Ttf − f‖)

≤ λ(1 − λ)(‖Tsx0 − f‖ +
1

2
d +

1

4
d)

≤ λ(1 − λ)(r + d)

and

‖y‖ = λ‖TtTsx0 − Ttz‖ ≤ λ(‖Tsx0 − z‖ + Rt(z))

≤ λ(1 − λ)(‖Tsx0 − f‖ +
1

2
d) ≤ λ(1 − λ)(r + d).

We also have

‖x − y‖ = ‖Ttz − (λTtTsx0 + (1 − λ)f)‖ ≥ ε

and

λx + (1 − λ)y = λ(1 − λ)(TtTsx0 − f).

So by using the Lemma in [10], we get

λ(1 − λ)‖TtTsx0 − f‖ = ‖λx + (1 − λ)y‖

≤ λ(1 − λ)(r + d)(1 − 2λ(1 − λ)δ(
ε

r + d
))

and then from (3.5) and (3.7), we have

r − d ≤ ‖Ttx0 − f‖ − ‖TtTsx0 − Ttx0‖

≤ ‖TtTsx0 − f‖ ≤ (r + d)(1 − 2λ(1 − λ)δ(
ε

r + d
)).

This contradicts (3.4). In the case r = 0, since

‖Ttz − (λTtTsx0 + (1 − λ)f)‖

≤ λ‖Ttz − TtTsx0‖ + (1 − λ)‖Ttz − Ttf‖ + ‖Ttf − f‖

≤ λ(Rt(z) + (1 − λ)‖Tsx0 − f‖) + (1 − λ)Rt(z)+
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λ(1 − λ)‖Tsx0 − f‖ + ‖Ttf − f‖

≤ Rt(z) + 2λ(1 − λ)‖Tsx0 − f‖ + ‖Ttf − f‖,

we can get what we desired. This completes the proof. 2

Lemma 3.4 If lim sups∈G lim supt∈G ‖TtTsx0 − Ttx0‖ = 0, then

lim
t∈G

‖λTtx0 + (1 − λ)f − g‖

exists for all λ ∈ (0, 1) and f , g ∈ L(ℑ).

Proof For given ε > 0, from Lemma 3.3, there exists s0 ∈ G such that

lim sup
t∈G

‖Tt(λTsx0 + (1 − λ)f) − (λTtTsx0 + (1 − λ)f)‖ < ε

for all s ≥ s0. Since

‖λTtx0 + (1 − λ)f − g‖

≤ ‖Tt(λTsx0 + (1 − λ)f) − (λTtTsx0 + (1 − λ)f)‖+

‖Tt(λTsx0 + (1 − λ)f) − Ttg‖ + λ‖TtTsx0 − Ttx0‖ + ‖Ttg − g‖

≤ ‖Tt(λTsx0 + (1 − λ)f) − (λTtTsx0 + (1 − λ)f)‖ + Rt(g)+

‖Tsx0 + (1 − λ)f − g‖ + λ‖TtTsx0 − Ttx0‖ + ‖Ttg − g‖,

for fixed s ≥ s0 and taking the limsup for t ∈ G, we get

lim sup
t∈G

‖Ttx0 + (1 − λ)f − g‖

≤ ε + ‖Tsx0 + (1 − λ)f − g‖ + λ lim sup
t∈G

‖TtTsx0 − Ttx0‖.

Hence

lim sup
t∈G

‖Ttx0 + (1 − λ)f − g‖ ≤ ε + lim inf
s∈G

‖Tsx0 + (1 − λ)f − g‖.

Since ε > 0 is arbitrary, this completes the proof. 2

Now we are ready to prove our main theorem.

Theorem 3.1 Let X be a uniformly convex Banach space such that its dual X∗ has the KK

property. Let C be a nonempty bounded closed convex subset of X . Let (G,≤) be a directed

system and ℑ = {Tt : t ∈ G} be asymptotically nonexpansive type mappings on C. Assume that

there exists x0 in C for which

(a) ωω(x0) ⊂ L(ℑ);

(b) lim sups∈G lim supt∈G ‖TtTsx0 − Ttx0‖ = 0.

Then there exists p ∈ L(ℑ) such that Ttx0 ⇀ p.

Proof It suffices to show that ωω(x0) consists of exactly one point. Since X is reflexive, ωω(x0)

is nonempty. Let f, g ∈ ωω(x0). By the condition (a), we know f, g ∈ L(ℑ). For any λ ∈ (0, 1),

from Lemma 3.4, limt∈G ‖λTtx0 + (1 − λ)f − g‖ exists. Put

h(λ) = lim
t∈G

‖λTtx0 + (1 − λ)f − g‖.
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Then for given ε > 0, there exists t1 ∈ G such that

‖λTtx0 + (1 − λ)f − g‖ ≤ h(λ) + ε

for all t ≥ t1. Hence

〈λTtx0 + (1 − λ)f − g, j(f − g)〉 ≤ ‖f − g‖(h(λ) + ε),

for all t ≥ s1, where j(f − g) ∈ J(f − g). Inasmuch as f ∈ c̄o{Ttx0, t ≥ s1},

〈λf + (1 − λ)f − g, j(f − g)〉 ≤ ‖f − g‖(h(λ) + ε),

that is, ‖f − g‖ ≤ h(λ) + ε. Since ε > 0 is arbitrary,

‖f − g‖ ≤ h(λ). (3.8)

It follows from g ∈ ωω(x0) that there exists a subnet {tα, α ∈ A} of G such that Ttα
x0 ⇀ g,

where A is a directed system. Put I = A×N = {β = (α, n); α ∈ A, n ∈ N}. For βi = (αi, ni) ∈ I,

i = 1, 2, we define β1 ≤ β2 if and only if α1 ≤ α2 and n1 ≤ n2. In this case, I is also a directed

system. For arbitrary β = (α, n) ∈ I, we also define P1β = α, P2β = n, tβ = tP1β = tα, εβ = 1
P2β

.

Then we obtain Ttβ
x0 ⇀ g, εβ → 0, β ∈ I. From Lemma 2.1, we have

‖λTtx0 + (1 − λ)f − g‖2 ≤ ‖f − g‖2 + 2λ〈Ttx0 − f, j(λTtx0 + (1 − λ)f − g)〉.

by Lemma 3.4 and (3.8), we get

lim inf
β∈I

〈Ttβ
x0 − f, j(λTtβ

x0 + (1 − λ)f − g)〉 ≥ 0.

Then for arbitrary γ ∈ I, there exists βγ ∈ I with βγ ≥ γ and

〈Ttβγ
x0 − f, j(εγTtβγ

x0 + (1 − εγ)f − g)〉 ≥ −εγ . (3.9)

Obviously, βγ is a subset of I, then Ttβγ
x0 ⇀ g. Put

jγ = j(εγTtβγ
x0 + (1 − εγ)f − g).

Since X is reflexive, X∗ is reflexive and the set of all weak limit points of {jγ , γ ∈ I} is nonempty.

Hence we may assume that, without loss of generality, {jγ , γ ∈ I} is weakly convergent to some

point j ∈ X∗. Therefore ‖j‖ ≤ lim infγ∈I ‖jγ‖ = ‖f − g‖. Since

〈f − g, jγ〉 = ‖εγTtβγ
x0 + (1 − εγ)f − g‖2 − εγ〈Ttβγ

x0 − f, jγ〉,

passing the limit for γ ∈ I, we have 〈f − g, j〉 = ‖f − g‖2. Hence ‖j‖ ≥ ‖f − g‖ and we get

〈f − g, j〉 = ‖f − g‖2 = ‖j‖2. This means j ∈ J(f − g). Thus we can conclude that jγ ⇀ j and

‖jγ‖ → ‖j‖. Since X∗ has KK property, from Lemma 3.1, we have jγ → j. Taking the limit for

γ ∈ I in (3.9), we get

〈g − f, j〉 ≥ 0,

i.e., ‖f − g‖2 ≤ 0 which implies f = g. This completes the proof. 2

Remark 3.1 If ℑ = {Tt : t ∈ G} is a right reversible semigroup of asymptotically nonexpansive

type mappings on C, then we can get the weak convergence theorem of the right reversible
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semigroups and the condition (b) in Theorem 3.1 is not necessary (see [10] for more detail).

Remark 3.2 It is well known that if X is a reflexive Banach space with a Fréchet differentiable

norm, then its dual X∗ has KK property, but not conversely. From Theorem 3.1, we can get the

main results in [5,6,7].

From Theorem 3.1, we can get the following corollary.

Corollary 3.1 Let X be a uniformly convex Banach space such that X∗ has KK property. Let

C be a nonempty bounded closed convex subset of X and ℑ = {Tt : t ∈ G} be a right reversible

semigroup of asymptotically nonexpansive type mappings on C. If Tt is weakly continuous and

asymptotically regular at x0 (i.e., Ttsx0 − Ttx0 → 0 for all s ∈ G). Then Ttx0 converges weakly

to a fixed point of ℑ.
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