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1. Introduction

Hopf group-coalgebras which are generalizations of ordinary Hopf algebras, were introduced

by Turaev[1] and studied in [2] and [3]. On the one hand, crossed Hopf group-coalgebras play

key roles in the theory of constructing homotopical invariant of 3-manifold[1]. On the other

hand, the structure of a Hopf group-coalgebra is much more complicated than that of the usual

Hopf algebra. In particular, the group Yetter-Drinfel’d category introduced by Zunino[4] is more

complicated than the ordinary Yetter-Drinfel’d category.

In the classical Hopf algebra theory, Sweedler showed that the dual of a finite-dimensional

Hopf algebra is still a Hopf algebra and obtained the fundamental theorem of Hopf modules[5]. In

1998, Doi[6] showed that if H is a finite-dimensional Hopf algebra in the Yetter-Drinfel’d category
L
LYD over a Hopf algebra L, then its dual H∗ is also a Hopf algebra in the category L

LYD and

he proved the fundamental theorem of Hopf modules in L
LYD. We remark here that although a

lot of results of classical Hopf algebra theory can be generalized to Hopf group-coalgebras, we do

not know why it works. This stimulates that the people are interested in some topics related to

a Hopf group-coalgebra.

The main aim of this note is to generalize the Doi’s results in [6] to the setting of a group

Yetter-Drinfel’d category over a Hopf group-coalgebra.

The paper is organized as follows.

In Section 1, we will recall some basic notions related to a Hopf group coalgebra. In Section

2, we mainly show that if H is a finite-dimensional Hopf algebra in a group Yetter-Drinfel’d
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category L
LYD(π) over a crossed Hopf group-coalgebra L, then its dual H∗ is also a Hopf algebra

in the category L
LYD(π) (cf. Theorem 3.3). In Section 3, we establish the fundamental theorem

of Hopf modules for H in the category L
LYD(π) (cf. Theorem 4.3).

2. Basic definitions and results

Throughout this paper, k denotes a fixed field. We will work over k. We always let π be a

discrete group, L a crossed Hopf group-coalgebra with a bijective antipode SL, and H a Hopf

algebra in the π-Yetter-Drinfel’d category L
LYD(π).

We first recall from Turaev[1] that a π-coalgebra is a family of k-spaces C = {Cα}α∈π together

with a family of k-linear maps ∆ = {∆α,β : Cαβ −→ Cα ⊗ Cβ}α,β∈π (called a comultiplication )

and a k-linear map ε : C1 −→ k (called a counit), such that ∆ is coassociative in the sense that,

(i) (∆α,β ⊗ idCγ
)∆αβ,γ = (idCα

⊗ ∆β,γ)∆α,βγ , for any α, β, γ ∈ π.

(ii) (idCα
⊗ ε)∆α,1 = idCα

= (ε ⊗ idCα
)∆1,α, for all α ∈ π.

We use the Sweedler-like notation[2] for the comultiplication in the following way: for any

α, β ∈ π and c ∈ Cαβ , we write

∆α,β(c) = c(1,a) ⊗ c(2,β).

A Hopf π-coalgebra is a π-coalgebra L = ({Lα}, ∆, ε) endowed with a family of k-linear maps

S = {Sα : Lα −→ Lα−1}α∈π (called an antipode) such that

(a) each Lα is an algebra with multiplication mα and unit element 1α ∈ Lα,

(b) ε : L1 → k and ∆α,β : Lαβ → Lα ⊗ Lβ are algebra maps, for all α, β ∈ π,

(c) for each α ∈ π, mα(Sα−1 ⊗ idLα
)∆α−1, α = ε1α = mα(idLα

⊗ Sα−1)∆α, α−1 .

The antipode S = {Sα}α∈π of L is said to be bijective if each Sα is bijective. The antipode

of a Hopf π-coalgebra is anti-multiplicative and anti-comultiplicative, i.e., we have

Sα(ab) = Sα(b)Sα(a), Sα(1α) = 1α−1 ,

∆β−1,α−1Sαβ = TL
α−1 ,L

β−1
(Sα ⊗ Sβ)∆α,β , εS1 = ε

for all α, β ∈ π, a, b ∈ Lα.

Furthermore, a Hopf π-coalgebra L = ({Lα}, ∆, ε, S) is said to be crossed if it is endowed

with a family of algebra isomorphisms Φ = {Φβ : Lα → Lβαβ−1}α,β∈π (the crossing) such that

each Φβ preserves the comultiplication and the counit, i.e., for all α, β, γ ∈ π,

(Φβ ⊗ Φβ) ◦ ∆α,γ = ∆βαβ−1, βγβ−1 ◦ Φβ , εΦβ = ε,

and Φ is multiplicative in the sense that Φαβ = Φα ◦ Φβ , for all α, β ∈ π.

Let L be a crossed Hopf π-coalgebra. Then one has that Φ1|Lα = idLα
, Φ−1

β = Φβ−1 for any

α ∈ π and Φ preserves the antipode, i.e., ΦβSα = Sβαβ−1Φβ for all α, β ∈ π.

Let C = {Cα}α∈π be a π-coalgebra and V a k-vector space. Then we recall from Wang[3] that

a left π-C-comodulelike object is a couple V = (V, ρV = {ρV
λ }), where for any λ ∈ π, ρV

λ : V →

Cλ ⊗V is a k-linear map (comodulelike structure), which is denoted by ρV
λ (v) = v(−1, λ) ⊗ v(0, 0),

such that the following conditions are satisfied:
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(I) The couple V is coassocitative in the sense that, for any λ1, λ2 ∈ π, we have

(idCλ1
⊗ ρV

λ2
) ◦ ρV

λ1
= (∆λ1, λ2

⊗ idV ) ◦ ρV
λ1,λ2

,

i.e., v(−1,λ1) ⊗ v(0,0)(−1,λ2) ⊗ v(0,0)(0,0) = v(−1,λ1λ2)(1,λ1) ⊗ v(−1,λ1λ2)(2,λ2) ⊗ v(0,0) , v(−2,λ1) ⊗

v(−1,λ2) ⊗ v(0,0), for any v ∈ V, λ1, λ2 ∈ π.

(II) The couple V is counitary in the sense that (ε ⊗ idV ) ◦ ρV
1 = idV .

Let L be a crossed Hopf π-coalgebra with a bijective antipode SL. Fix α ∈ π, a left-left

α-Yetter-Drinfel’d module[3] is a left π-L-comodulelike object V = (V, ρV = {ρV
λ }) where V is a

left Lα-module for all α ∈ π, satisfying the compatibility condition:

l(1,λ)v(−1,λ) ⊗ l(2,α) → v(0,0) = (l(1,α) → v)(−1,λ)Φα(l(2,α−1λα)) ⊗ (l(1,α) → v)(0,0), (1)

or equivalently,

ρV
λ (l → v) = l(1,λα)(1,λ)v(−1,λ)S̄λΦα(l(2,α−1λ−1α)) ⊗ l(1,λα)(2,α) → v(0,0), (2)

for all v ∈ V , l ∈ Lα.

We denote the category of left-left α-Yetter-Drinfel’d modules by L
LYDα. Let L

LYD(π) be the

disjoint union of the categories L
LYDα for all α ∈ π. The category L

LYD(π) admits a structure

of braided T -category and is called group Yetter-Drinfel’d category (simply π-Yetter-Drinfel’d

category)[4].

3. The dual in group Yetter-Drinfel’d categories

In this section, we mainly show that if H is a finite-dimensional Hopf algebra in a group

Yetter-Drinfel’d category L
LYD(π) over a crossed Hopf group-coalgebra L, then its dual H∗ is

also a Hopf algebra in the category L
LYD(π).

Definition 3.1 Let L be a crossed Hopf π-coalgebra with a bijective antipode SL. An object

H in L
LYD(π) is called a bialgebra in this category if it is both a k-algebra and a k-coalgebra

satisfying the following conditions:

∆(xy) = x1(x2(−1,λ) → y1) ⊗ x2(0,0)y2, ∆(1) = 1 ⊗ 1, ε(xy) = ε(x)ε(y), ε(1) = 1, (3)

ρH
λ (xy) = x(−1,λ)y(−1,λ) ⊗ x(0,0) ⊗ y(0,0), ρH

λ (1) = 1λ ⊗ 1H , (4)

i.e., H is a left π-L-comodule algebra,

x(−1,λ) ⊗ (x(0,0))1 ⊗ (x(0,0))2 = x1(−1,λ)x2(−1,λ) ⊗ x1(0,0) ⊗ x2(0,0), (5)

x(−1,λ)εH(x(0,0)) = εH(x)1λ, i.e., H is a left π-L-comodule coalgebra,

l → (xy) = (l(1,α) → x)(l(2,β) → y), l → 1H = ε(l)1H , (6)

i.e., H is a left π-L-module algebra,

∆(l → x) = (l(1,α) → x1) ⊗ (l(2,β) → x2), ε(l → x) = ε(l)ε(x), (7)

i.e., H is a left π-L-module coalgebra.
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Furthermore, we call H a Hopf algebra in L
LYD(π) if there exists an antipode S : H → H (here

S is both left Lα-linear and colinear, i.e., S is a morphism in the category of L
LYD(π)), which is a

convolution inverse to idH . We easily see that S is anti-multiplicative and anti-comultiplicative.

That is, for all x, y ∈ H, λ ∈ π,

SH(xy) = (x(−1,λ) → SH(y))SH(x(0,0)) and SH(1) = 1, (8)

∆((SH(x)) = (x1(−1,λ) → SH(x2))SH(x1(0,0)), εHSH = εH . (9)

Assume that H is a Hopf algebra in L
LYD(π) and finite-dimensional over k. We will make its

dual H∗ = Hom(H, k) into a Hopf algebra in L
LYD(π). First, the dual H∗ has a left Lα-module

structure, that is,

(l → f)(h) = f(Sα(l) → h), for all l ∈ Lα, f ∈ H∗, h ∈ H. (10)

Also, since H is a finite-dimensional left π-L-comodulelike object, its dual H∗ has a left

π-L-comodulelike object via

ρH∗

λ : H∗ → Lλ ⊗ H∗, ρH∗

λ (f) = f(−1,λ) ⊗ f(0,0),

where

f(0,0)(h)f(−1,λ) = f(h(0,0))S̄λΦα(h(−1,α−1λ−1α)), for all h ∈ H. (11)

Then H∗ ∈L
L YD(π).

Proof We can easily prove that H∗ is a left Lα-module and a left π-L-comodulelike object.

Now we show the compatibility condition (1).

l(1,λ)f(−1,λ)(l(2,α) → f(0,0))(h)

= l(1,λ)f(−1,λ)f(0,0)(Sα(l(2,α)) → h)

(11)
= l(1,λ)f(y(0,0))S̄λΦα(y(−1,α−1λ−1α)) (here y = Sα(l(2,α)) → h)

= l(1,λ)f(Sα(l(3,α)) → h(0,0))S̄λΦα(Sα−1λα(l(4,α−1λα))h(−1,α−1λ−1α)Sα−1λαΦα−1Sλ−1(l(2,λ−1)))

= l(1,λ)Sλ−1(l(2,λ−1))f(Sα(l(3,α)) → h(0,0))S̄λΦα(h(−1,α−1λ−1α))Φα(l(4,α−1λα))

= f(Sα(l(1,α)) → h(0,0))S̄λΦα(h(−1,α−1λ−1α))Φα(l(2,α−1λα))

= (l(1,α) → f)(−1,λ)Φα(l(2,α−1λα))(l(1,α) → f)(0,0)(h).

Lemma 3.2 For any left π-L-comodulelike object V = {V, ρV
λ }, define θV : H∗ ⊗ V →

Hom(H, V ) by

θV (f ⊗ v)(h) = f(v(−1,λ−1) → h)v(0,0), f ∈ H∗, v ∈ V, h ∈ H.

Also, define θ(2) : H∗ ⊗ H∗ → (H ⊗ H)∗ and θ(3) : H∗ ⊗ H∗ ⊗ H∗ → (H ⊗ H ⊗ H)∗ by

θ(2)(f ⊗ g)(x ⊗ y) = f(S̄λ(y(−1,λ−1)) → x)g(y(0,0)), f, g, j ∈ H∗, x, y, z ∈ H, λ ∈ π,

θ(3)(f ⊗ g ⊗ j)(x ⊗ y ⊗ z) = f(S̄λ(y(−1,λ−1)z(−2,λ−1)) → x)g(S̄1(z(−1,1)) → y(0,0))j(z(0,0))

Then θV , θ(2) and θ(3) are bijective.



270 SHEN B L and WANG S H

Proof Define β : H∗⊗V → H∗⊗V by β(f ⊗v) = (S̄λ(v(−1,λ−1)) → f)⊗v(0,0) and γ : H∗⊗V →

Hom(H, V ) by γ(f ⊗ v)(h) = f(h)v. It is easy to check that γ ◦ β = θV . Note that β is bijective

and the inverse is given by β−1(f ⊗ v) = (v(−1,λ) → f) ⊗ v(0,0).

ββ−1(f ⊗ v) = β((v(−1,λ) → f) ⊗ v(0,0))

= (S̄λ(v(−1,λ−1))v(−2,λ) → f) ⊗ v(0,0)

= ε(v(−1,1))f ⊗ v(0,0) = f ⊗ v.

Similarly, we can prove β−1β = id. The map γ is also bijective since H is finite-dimensional.

Hence θV is bijective. The maps θ(2) and θ(3) are also bijective. We can refer to Lemma in [6].2

Theorem 3.3 If H is a finite-dimensional Hopf algebra in L
LYD(π), then H∗ is a Hopf algebra

in L
LYD(π), with multiplication mH∗ = (∆H)∗ ◦ θ(2), unit uH∗ = εH , comultiplication ∆H∗ =

(θ(2))−1 ◦ (mH)∗, counit εH∗ : f → f(1H), and antipode (SH)∗. Explicitly, multiplication is

given by

(fg)(x) = f(g(−1,λ−1) → x1)g(0,0)(x2) = f(S̄λ(x2(−1,λ−1)) → x1)g(x2(0,0)), (12)

for all f, g ∈ H∗, x ∈ H . Comultiplication ∆(f) = f1 ⊗ f2 is given by

f(xy) = f1(f2(−1,λ−1) → x)f2(0,0)(y) = f1(S̄λ(y(−1,λ−1)) → x)f2(y(0,0)), (13)

or equivalently

f1(x)f2(y) = f((y(−1,λ−1) → x)y(0,0)), for all x, y ∈ H, λ ∈ π. (14)

In particular H∗∗ is a Hopf algebra in L
LYD. If (SLα

)2 = idLα
, then the canonical map

ι : H → H∗∗(π) given by ι(h)(f) = f(h) is a Hopf algebra isomorphism.

Proof It is easy to see that H∗ becomes an algebra. To show the coassociativity, we use the

isomorphism θ(3). For f ∈ H∗ and x, y, z ∈ H we compute

f((xy)z)
(13)
= f1(S̄λ(z(−1,λ−1)) → (xy))f2(z(0,0))

=f1((S̄λ(z(−1,λ−1)) → x)(S̄1(z(−2,1)) → y))f2(z(0,0))

(6)(13)
= f11(S̄λ(z(−4,λ−1))S̄λ(y(−1,λ−1))S̄λ(z(−1,λ−1)S̄λ−1(z(−2,λ))) → x)

f12(S̄1(z(−3,1)) → y(0,0))f2(z(0,0))

=f11(S̄λ(y(−1,λ−1)z(−2,λ−1)) → x)f12((S̄1(z(−1,1)) → y(0,0)))f2(z(0,0))

=θ(3)(f11 ⊗ f12 ⊗ f2)(x ⊗ y ⊗ z),

and

f(x(yz))
(13)
= f1(S̄λ((yz)(−1,λ−1)) → x)f2((yz)(0,0))

(5)
=f1(S̄λ(y(−1,λ−1)z(−1,λ−1)) → x)f2(y(0,0)z(0,0))

(13)
= f1(S̄λ(y(−1,λ−1)z(−2,λ−1)) → x)f21(S̄1(z(−1,1)) → y(0,0))f22(z(0,0))

=θ(3)(f1 ⊗ f21 ⊗ f22)(x ⊗ y ⊗ z).
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Thus f11 ⊗ f12⊗ f2 = f1⊗ f21⊗ f22 (we write it by f1⊗ f2⊗ f3). The property of counit is easily

checked. We next prove ∆H∗(fg) = f1(f2(−1,λ) → g1) ⊗ f2(0,0)g2 ∈ H∗ ⊗ H∗ by using θ(2). For

all x, y ∈ H ,

θ(2)(f1(f2(−1,λ) → g1) ⊗ f2(0,0)g2)(x ⊗ y)

= (f1(f2(−1,λ) → g1))(S̄λ(y(−1,λ−1) → x)(f2(0,0)g2)(y(0,0))

(12)(5)
= (f1(f2(−1,λ) → g1))(S̄λ(y1(−1,λ−1)y2(−2,λ−1)) → x)f2(0,0)

(S̄1(y2(−1,1)) → y1(0,0))g2(y2(0,0))

(2)
= f1(S̄λ(x2(−1,λ−1)y1(−2,λ−1)y2(−3,λ−1)) → x1)(f2(−1,λ) → g1)(S̄1(y1(−1,1)y2(−2,1)) → x2(0,0))

f2(0,0)(S̄1(y2(−1,1)) → y1(0,0))g2(y2(0,0))

= f1(S̄λ(x2(−1,λ−1)y1(−3,λ−1)y2(−5,λ−1)) → x1)f2(S̄1(y2(−2,1)) → y1(0,0))

g1(S̄λ−1(y2(−1,λ))y1(−1,λ−1)y2(−3,λ−1)S̄λ(y1(−2,λ−1)y2(−4,λ−1)) → x2(0,0))g2(y2(0,0))

= f1(S̄λ(x2(−1,λ−1)y1(−1,λ−1)y2(−3,λ−1)) → x1)f2(S̄1(y2(−2,1)) → y1(0,0))

g1(S̄λ−1(y2(−1,λ)) → x2(0,0))g2(y2(0,0)).

On the other hand,

(θ(2)∆H∗(fg))(x ⊗ y) = (fg)(xy)

(12)
= f(S̄λ((xy)2(−1,λ−1)) → (xy)1)g((xy)2(0,0))

= f(S̄λ(x2(−1,λ−1)y2(−1,λ−1)) → (x1(x2(−2,λ) → y1)))g(x2(0,0)y2(0,0))

= f((S̄λ(x2(−1,λ−1)y2(−1,λ−1)) → x1)(S1(x2(−2,1)y2(−2,1))x2(−3,1) → y1))g(x2(0,0)y2(0,0))

= f((S̄λ(x2(−1,λ−1)y2(−2,λ−1)) → x1)(S1(y2(−3,1)) → y1))g1(S̄λ−1(y2(−1,λ)) → x2(0,0))g2(y2(0,0))

= f1(S̄λ(x2(−1,λ−1)y1(−1,λ−1)y2(−3,λ−1)) → x1)f2(S̄1(y2(−2,1)) → y1(0,0))

g1(S̄λ−1(y2(−1,λ)) → x2(0,0))g2(y2(0,0)).

We show (fg)(−1,α) ⊗ (fg)(0,0) = f(−1,α)g(−1,α) ⊗ f(0,0)g(0,0) in Lα ⊗ H∗, for any x ∈ H ,

(f(0,0)g(0,0))(x)f(−1,α)g(−1,α)

(12)
= f(0,0)(S̄α(x2(−1,α−1)) → x1)g(0,0)(x2(0,0))f(−1,α)g(−1,α)

(11)
= f(S̄α(x2(−1,α−1)) → x1(0,0))g(x2(0,0))S̄αΦα(x1(−1,α)x2(−2,α)),

and

(fg)(0,0)(x)(fg)(−1,α)
(11)
= fg(x(0,0))S̄αΦα(x(−1,α))

(12)
= f(S̄α(x(0,0)2(−1,α−1)) → x(0,0))g(x(0,0)2(0,0))S̄αΦα(x(−1,α))

(5)
= f(S̄α(x2(−1,α−1)) → x1(0,0))g(x2(0,0))S̄αΦα(x1(−1,α)x2(−2,α)).
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We check that f(−1,α) ⊗ (f(0,0))1 ⊗ (f(0,0))2 = f1(−1,α)f2(−1,α) ⊗ f1(0,0) ⊗ f2(0,0) in Lα ⊗H∗⊗H∗,

f1(−1,α)f2(−1,α)θ
(2)(f1(0,0) ⊗ f2(0,0))(x ⊗ y)

= f1(−1,α)f2(−1,α)f1(0,0)(S̄α(y(−1,α−1)) → x)f2(0,0)(y(0,0))

(2)
= f1(S̄α(y(−3,α−1)) → x(0,0))f2(y(0,0))S̄αΦα(y(−1,α)S̄α(y(−2,α−1))x(−1,α)Φα(y(−4,α)))

= f1(S̄α(y(−1,α−1)) → x(0,0))f2(y(0,0))S̄αΦα(x(−1,α)y(−2,α))

= f(x(0,0)y(0,0))S̄αΦα(x(−1,α)y(−1,α)) = f(−1,α)f(0,0)(xy)

(13)
= f(−1,α)θ

(2)((f(0,0))1 ⊗ (f(0,0))2)(x ⊗ y).

It is easy to see that l → (fg) = (l(1,α) → f)(l(2,β) → g), for all l ∈ Lαβ, f, g ∈ H∗ and

∆(l → f) = (l(1,α) → f1) ⊗ (l(2,β) → f2) in H∗ ⊗ H∗ (by using θ(2)). We compute that

SH∗(f1)f2 = f(1H)εH = f1SH∗(f2), f ∈ H∗, for all x ∈ H ,

(SH∗(f1)f2)(x)
(12)
= SH∗(f1)(S̄λ(x2(−1,λ−1)) → x1)f2(x2(0,0))

= f1(S̄λ(x2(−1,λ−1)) → S(x1))f2(x2(0,0))

(14)
= f((x2(−1,λ−1)S̄λ(x2(−2,λ−1)) → S(x1))x2(0,0))

= f(S(x1)x2) = f(1H)ε(x),

and

f1SH∗(f2)(x)
(12)
= f1(S̄λ(x2(−1,λ−1)) → x1)SH∗(f2)(x2(0,0))

= f1(S̄λ(x2(−1,λ−1)) → x1)f2(S(x2(0,0)))

(14)
= f((x2(−1,λ−1)S̄λ(x2(−2,λ−1))) → x1)S(x2(0,0)))

= f(x1S(x2)) = f(1H)ε(x).

Thus H∗ is a Hopf algebra in L
LYD.

Finally it follows from S2
Lα

= idLα
that the canonical map ι is both Lα-linear and colinear, since

(l → ι(x))(f) = ι(x)(Sα(l) → f) = f(S2
α(l) → x) = f(l → x) = ι(l → x)(f),

ι(x)(−1,α)ι(x)(0,0)(f) = ι(x)(f(0,0))S̄αΦα(f(−1,α)) = S̄α(f(x(0,0))S̄α(x(−1,α)))

= f(x(0,0))S̄
2
α(x(−1,α)) = f(x(0,0))x(−1,α) = x(−1,α)ι(x(0,0))(f).

It is easy to see that the map ι is multiplicative and comultiplicative. 2

4. The fundamental theorem in group Yetter-Drinfel’d categories

In this section, we mainly establish the fundamental theorem of Hopf modules for H in the

category L
LYD(π).

Definition 4.1 Let H be a Hopf algebra in L
LYD(π). A right H-Hopf module in L

LYD(π) is

an object M ∈ L
LYD(π) such that it is both a right H-module and a right H-comodule via
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ρM : M → M ⊗ H, ρM (m) = m0 ⊗ m1 and the following (15)–(19) hold.

(15) ρM (mh) = m0(m1(−1,α) → h1) ⊗ m1(0,0)h2, m ∈ M, h ∈ H,

(16) ρM
λ (mh) = m(−1,λ)h(−1,λ) ⊗ m(0,0)h(0,0), m ∈ M, h ∈ H,

(17) m(−1,λ) ⊗ m(0,0)0 ⊗ m(0,0)1 = m0(−1,λ)m1(−1,λ) ⊗ m0(0,0) ⊗ m1(0,0) ∈ Lλ ⊗ M ⊗ H,

(18) l → (mh) = (l(1,α) → m)(l(2,β) → h), l ∈ Lαβ, m ∈ M, h ∈ H,

(19) ρM (l → m) = (l(1,α) → m0) ⊗ (l(2,β) → m1), l ∈ Lαβ, m ∈ M.

Example 4.2 (1) H itself is a right H-Hopf module (in L
LYD(π)) in the natural way. If V is

an object in L
LYD(π), then so is V ⊗ H by lαβ → (v ⊗ h) = (l(1,α) → v) ⊗ (l(2,β) → h) and

ρV ⊗H
λ = v(−1,λ)h(−1,λ) ⊗ v(0,0) ⊗h(0,0). It is also both a right H-module and a right H-comodule

by (v ⊗ h)x = v ⊗ hx and ρV ⊗H(v ⊗ h) = v ⊗ h1 ⊗ h2. One can easily check that V ⊗ H is a

right H-Hopf module in L
LYD(π).

(2) If H is a finite dimensional Hopf algebra in L
LYD(π). We can show that H∗ becomes a

right H-Hopf module in L
LYD(π). First, the right H-module structure is (f · h)(x) = f(hx), f ∈

H∗, h, x ∈ H. Second, H∗ is a right H-comodule using the identification θH : H∗ ⊗ H ∼=

Hom(H, H) in Lemma 3.2 as follows:

ρH∗ : H∗ → Hom(H, H) ∼= H∗ ⊗ H, ρH∗(f)(x) = f(x1)SH(x2).

That is, ρH∗(f) = f0 ⊗ f1 means

f(x1)SH(x2) = f0(f1(−1,α) → x)f1(0,0), for all f ∈ H∗, x ∈ H.

Theorem 4.3 If H is a Hopf algebra in L
LYD(π) and M a right H-Hopf module in L

LYD(π),

then

a) M coh = {m ∈ M | ρM (m) = m⊗1H} is both a Lα-submodule and a π-L-subcomodulelike

object. So M coh ∈ L
LYD(π).

b) Let P (m) = m0S(m1), m ∈ M. Then P (m) ∈ M coh. If n ∈ M coh, and h ∈ H , then

ρM (nh) = nh1 ⊗ h2 and P (nh) = nε(h).

c) The map F : M coh ⊗ H → M, F (n ⊗ h) = nh is an isomorphism of Hopf modules. The

inverse map is given by G(m) = P (m0) ⊗ m1. Here M coh ⊗ H is a right H-Hopf module in
L
LYD(π) by Example 4.2, and the structure is given by

(m ⊗ h)x = m ⊗ hx; ρMcoh⊗H(m ⊗ h) = m ⊗ h1 ⊗ h2,

for all m ∈ M coh, h, x ∈ H .

Proof a) Let n ∈ M coh. Then ρM (l → n) = (l(1,α) → n) ⊗ (l(2,1) → 1H) = l(1,α) → n ⊗

ε(l(2,1))1H = l → n ⊗ 1H . Hence l → n ∈ M coh. We also have n(−1,λ) ⊗ n(0,0)0 ⊗ n(0,0)1 =

n(−1,λ) ⊗ n(0,0) ⊗ 1H . This implies that n(−1,λ) ⊗ n(0,0) ∈ Lλ ⊗ M coh.
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b) Since h1(−1,λ)h2(−1,λ) ⊗ h1(0,0)SH(h2(0,0)) = ρH
λ (h1S(h2)) = 1λ ⊗ ε(h)1H , we have

ρM (P (m)) = ρM (m0S(m1))

(9)(15)
= m0(m1(−1,α)m2(−1,α) → SH(m3)) ⊗ m1(0,0)SH(m2(0,0))

= m0SH(m1) ⊗ 1H = P (m) ⊗ 1H .

The other is easy.

c) The map F is left L-linear, since F (l → (n ⊗ h)) = (l(1,α) → n)(l(2,β) → h) = l → nh =

l → F (n ⊗ h). And F is also left L-colinear by (16). Now we have

GF (n ⊗ h) = G(nh) = P (nh1) ⊗ h2 = nε(h1) ⊗ h2 = n ⊗ h,

and

FG(m) = F (P (m0) ⊗ m1) = P (m0)m1 = m0S(m1)m2 = m.
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