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Abstract In this note we first show that if H is a finite-dimensional Hopf algebra in a group
Yetter-Drinfel’d category ¥YD(7) over a crossed Hopf group-coalgebra L, then its dual H* is
also a Hopf algebra in the category f)}D(ﬂ'). Then we establish the fundamental theorem of
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1. Introduction

Hopf group-coalgebras which are generalizations of ordinary Hopf algebras, were introduced
by Turaevl!! and studied in [2] and [3]. On the one hand, crossed Hopf group-coalgebras play
key roles in the theory of constructing homotopical invariant of 3-manifold™). On the other
hand, the structure of a Hopf group-coalgebra is much more complicated than that of the usual

[4l is more

Hopf algebra. In particular, the group Yetter-Drinfel’d category introduced by Zunino
complicated than the ordinary Yetter-Drinfel’d category.

In the classical Hopf algebra theory, Sweedler showed that the dual of a finite-dimensional
Hopf algebra is still a Hopf algebra and obtained the fundamental theorem of Hopf modules!®. In
1998, Doilfl showed that if H is a finite-dimensional Hopf algebra in the Yetter-Drinfel’d category
LYD over a Hopf algebra L, then its dual H* is also a Hopf algebra in the category YD and
he proved the fundamental theorem of Hopf modules in #YD. We remark here that although a
lot of results of classical Hopf algebra theory can be generalized to Hopf group-coalgebras, we do
not know why it works. This stimulates that the people are interested in some topics related to
a Hopf group-coalgebra.

The main aim of this note is to generalize the Doi’s results in [6] to the setting of a group
Yetter-Drinfel’d category over a Hopf group-coalgebra.

The paper is organized as follows.

In Section 1, we will recall some basic notions related to a Hopf group coalgebra. In Section

2, we mainly show that if H is a finite-dimensional Hopf algebra in a group Yetter-Drinfel’d
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category %yD(w) over a crossed Hopf group-coalgebra L, then its dual H* is also a Hopf algebra
in the category 2YD(m) (cf. Theorem 3.3). In Section 3, we establish the fundamental theorem
of Hopf modules for H in the category £YD(r) (cf. Theorem 4.3).

2. Basic definitions and results

Throughout this paper, k denotes a fixed field. We will work over k. We always let m be a
discrete group, L a crossed Hopf group-coalgebra with a bijective antipode Si, and H a Hopf
algebra in the 7-Yetter-Drinfel’d category Y D(r).

We first recall from Turaev!! that a m-coalgebra is a family of k-spaces C' = {C\, }wer together
with a family of k-linear maps A = {A, 5 : Cap — Co ® Cla ger (called a comultiplication )
and a k-linear map € : C1 — k (called a counit), such that A is coassociative in the sense that,

(i) (Aap ®@idc,)Ausy = (idc, ® Ap~)Aq sy, for any o, 3,y € .

(i) (idc, ® €)Aa1 =idc, = (e ® idc, )A1,q, for all a € .

We use the Sweedler-like notation!?! for the comultiplication in the following way: for any

a,3 € and ¢ € Cog, we write

Aa,p(c) = Cc1,0) ® ¢(2,8)-

A Hopf m-coalgebra is a w-coalgebra L = ({ Ly}, A, ) endowed with a family of k-linear maps
S ={Sa: Lo — Ly-1}acr (called an antipode) such that

(a) each L, is an algebra with multiplication m, and unit element 1, € L,

(b) e:Li —kand Aqp: Lag — Lo ® Lg are algebra maps, for all o, 8 € 7,

(c) foreach a € T, ma(Sq-1 ®idr, )Ap-1, 4 =la = ma(idn, ® Sq-1)Ay 1.

The antipode S = {S4 }aer of L is said to be bijective if each S, is bijective. The antipode

of a Hopf m-coalgebra is anti-multiplicative and anti-comultiplicative, i.e., we have
So(ab) = Sa(b)Sa(a), Sa(le) =14-1,
AB—I)Q—ISaﬁ = TLa—th—l (Sa X Sﬁ)Aaﬁ, eS1=¢

for all a, 8 € m,a,b € Ly,.
Furthermore, a Hopf m-coalgebra L = ({Ls}, A, ¢,S) is said to be crossed if it is endowed
with a family of algebra isomorphisms ® = {®g : L, — Lgas-1}a,per (the crossing) such that

each ®p preserves the comultiplication and the counit, i.e., for all o, 8,7 € m,
(Ps @ Pp) oAy = Dpag-1,pyp-1 0 Pp, P =e,

and @ is multiplicative in the sense that ®,3 = ®, o ®g, for all o, § € 7.

Let L be a crossed Hopf 7-coalgebra. Then one has that ®;|L, = idy,_, @El = ®g-1 for any
a € m and ® preserves the antipode, i.e., @3S, = Sgap-1Pg for all o, 8 € 7.

Let C = {C4}aer be a m-coalgebra and V' a k-vector space. Then we recall from Wangm that
a left m-C-comodulelike object is a couple V = (V, p¥" = {p}}), where for any A € 7,p} : V —
C®V is a k-linear map (comodulelike structure), which is denoted by py (v) = v(=1, 1) ®V(0,0),

such that the following conditions are satisfied:
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(I) The couple V is coassocitative in the sense that, for any A1, A2 € 7, we have
(z’ch ® PE\Q) © pyl = (AA17>\2 ® ZdV) © pyl)\y

e, V(1) @ Y(0,0)(-1.09) @ V(0,0)0,0) = Y(—10A) (LA © V- Lahe)(22e) @ V(0,0) = V(—2.a,) ®
V(—1,x2) @ V(0,0), for any v € V, A1, Ay € 7.

(IT) The couple V is counitary in the sense that (¢ ® idy) o p} = idy.

Let L be a crossed Hopf m-coalgebra with a bijective antipode Sy. Fix a € w, a left-left
a-Yetter-Drinfel’d modulel®! is a left 7- L-comodulelike object V = (V,p" = {pY }) where V is a

left L,-module for all o € 7, satisfying the compatibility condition:
Linv-1,0) @ L2,0) = 20,00 = (1,0) = V)(=1,0) Pall2,a-120)) @ (I(1,0) = 0)(0,0): (1)
or equivalently,
PX (1= v) = L1 )10 V(=105 Pall2,a-12-10)) @ l(1,3a)(2.0) = V(0,0 (2)

forallveV,l € L,.

We denote the category of left-left a-Yetter-Drinfel’d modules by f)}Da. Let %yD(w) be the
disjoint union of the categories YD, for all & € m. The category £YD(r) admits a structure
of braided T-category and is called group Yetter-Drinfel’d category (simply 7-Yetter-Drinfel’d
category)!4.

3. The dual in group Yetter-Drinfel’d categories

In this section, we mainly show that if H is a finite-dimensional Hopf algebra in a group
Yetter-Drinfel’d category £YD(7) over a crossed Hopf group-coalgebra L, then its dual H* is
also a Hopf algebra in the category £YD().

Definition 3.1 Let L be a crossed Hopf w-coalgebra with a bijective antipode Sr,. An object
H in £YD(r) is called a bialgebra in this category if it is both a k-algebra and a k-coalgebra

satisfying the following conditions:
A(ry) = 171(172(—1,,\) — Y1) ® T2(0,0)Y25 A(l) =1® 1,e(xy) = e(r)e(y),e(1) = 1, (3)
PN (TY) = T—1 0 Y(-1,0) @ Z(0,0) @ Y(0,0 Px (1) =1\ ® 1p, (4)
i.e., H is a left m-L-comodule algebra,
T(—1,3) @ (T(0,0)1 @ (T(0,0))2 = T1(—1,0)T2(—1,0) @ T1(0,0) ® T2(0,0) (5)
r—1,0EH(20,0)) = €r(x)1y, i.e., H is a left m-L-comodule coalgebra,
I — (zy) = (l(1,0) = 2)(l2,8) = ¥), | = 1g = e(l)1H, (6)
i.e., H is a left m-L-module algebra,
Al = ) = (la,a) = 1) @ (L2,8) = 12), €(l = x) = e(l)e(x), (7)

i.e., H is a left m-L-module coalgebra.
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Furthermore, we call H a Hopf algebra in £ YD(rr) if there exists an antipode S : H — H (here
S is both left L,-linear and colinear, i.e., S is a morphism in the category of 2YD(rr)), which is a
convolution inverse to idy. We easily see that S is anti-multiplicative and anti-comultiplicative.
That is, for all z,y € H, A € m,

Su(zy) = (w(—1,n) — Su(y))Su(x©,0) and Sp(l) =1, (8)
A((Su(2)) = (w1(-1,0) — Su(22))SH(71(0,0)), €HSH = €H. 9)

Assume that H is a Hopf algebra in YYD(7) and finite-dimensional over k. We will make its
dual H* = Hom(H, k) into a Hopf algebra in £YD(7). First, the dual H* has a left L,-module

structure, that is,
(I — f)(h) = f(Sa(l) = h), forall leL,, f€H* heH. (10)

Also, since H is a finite-dimensional left m-L-comodulelike object, its dual H* has a left

m-L-comodulelike object via

P H = L@ HY, U (f) = fe1n) © foo,
where
fo.0(h) fin = f(h0,0)53Pa(h(—1,a-1x-14)), forall he H. (11)

Then H* €} YD(x).
Proof We can easily prove that H* is a left L,-module and a left m-L-comodulelike object.
Now we show the compatibility condition (1).
Lanf-10 Uz = f0,0)(R)

=lanf(=1,0f0,0)(Salli2,a)) — 1)

B0 00053y 1aia 1) (Bere y = Sallig) = 1)

=10 (Sall3,0)) = 7(0,0))53Pa(Sa-13a(lig,0-130) ) 2(—1,0-13-10) Sa-13aPa-19r-1 (L2, x-1)))

=lanSxr-1(ea1))f(Sallz.a) = h©0,0)S3Pa(P(-1.0-12-10))Pal4.0-12a))

= f(Sa(l(1,0)) = h(0,0))53Pa(h(—1,0-13-10))Pa(l(2,a-12a))

= (l(t,0) = H=c1nPallz,a-120)) U100 = 0,0y ().
Lemma 3.2 For any left m-L-comodulelike object V. = {V,p\'}, define 6y : H* @ V. —
Hom(H,V) by

Ov(f@v)(h) = f(v1r-1) = h)vee), fEH  veEV.heH.
Also, define 6 : H* @ H* — (H @ H)* and 0®) : H* @ H* @ H* — (H ® H ® H)* by
0 (f @ g)(x®y) = F(Sray1a1) = 2)9(W00)s f9.5 € H wy.z€ HAE,
0 (fogoj)(rtey®z) = FO (W1 a-1)2(—2,3-1)) = 2)9(S1(2(=1,1)) = Y(0,0))7 (2(0,0))

Then 6y,0®3 and §®) are bijective.
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Proof Define 3: H*®V — H*®V by B(f®v) = (Sx(vi—1,0-1)) = [)®v(0,0) and v : H* @V —
Hom(H, V) by v(f ® v)(h) = f(h)v. It is easy to check that o 8 = 6. Note that 3 is bijective
and the inverse is given by 871(f @ v) = (v_1,5) — f) @ v(0,0)-
BB f @v) = B((v—1,n — f) ®v0,0))
= (5'/\(“(—1,,\*1))“(—2,A) — ) @wv,0)
=e(v—1,1)f ® (0,0 = f @ 0.
Similarly, we can prove $~'3 = id. The map + is also bijective since H is finite-dimensional.

Hence 6y is bijective. The maps 62 and 6(3) are also bijective. We can refer to Lemma in [6].0

Theorem 3.3 If H is a finite-dimensional Hopf algebra in *YD(r), then H* is a Hopf algebra
in LYD(m), with multiplication mpy- = (Ag)* o 02 unit ug- = g, comultiplication Ap~ =
(0@ ~=1 o (my)*, counit e~ : f — f(1g), and antipode (Sg)*. Explicitly, multiplication is
given by

(fg)(z) = f(g(—l)ﬁl) - 901)9(0,0)(952) = f(gk($2(—l,)ﬁ1)) - 951)9(902(0,0))7 (12)

for all f,g € H*, x € H. Comultiplication A(f) = f1 ® f2 is given by

F@y) = filfaicia-1) = ) f200,0) ) = 1O (y(—1.3-1)) = 2) f2(4(0,0))5 (13)

or equivalently

fi@) f2(y) = F((W=1.2-1) = 2)Y0,0)), forall z,ye€ H, \em. (14)

In particular H** is a Hopf algebra in £YD. If (Sp.)?> = idy,, then the canonical map
v: H— H**(m) given by «(h)(f) = f(h) is a Hopf algebra isomorphism.

Proof It is easy to see that H* becomes an algebra. To show the coassociativity, we use the
isomorphism 6®). For f € H* and ,y, 2 € H we compute

F(ay)z) D ho Sx(z(—1a-1)) = (@y)) f2(2(0,0))

=f1((Sx(zc1.a-1)) = 2)(S1(z(—2,1)) = ¥))f2(20,0))
6)(13)

95]]

fi2 1(2( 31))—’y00)f2( ))
=f11(Sr (Y1 a-1)2(—2.-1)) = ) [12((S1(2=1,1)) = ¥(0,0)))f2(2(0,0))
=0 (f11® f2© fo)(z R Y ® 2),

(
J11(Sa(zcan-1) S (Y1 2-1))SA(Zc1.a-1)Sr-1 (2(—2,n))) — @)
(
(

and
Fa(2) B 1 G 2) 1) = 2)f(2)0.0)
(5=)f1 (5',\ (y(fl,Afl)Z(fl,Afl)) — ) fa (y(o,o)z(o,o))

D 1 (Sr (1a-122a-1) = D) (51 (210) = Bo.0) f22(200)
:9(3)(f1 ® fo1 @ fa2)(x @Y ® 2).
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Thus f11 ® f12® fo = f1® fo1 ® faa (we write it by f1 ® fo® f3). The property of counit is easily
checked. We next prove Ag-(fg) = fi(fa—1,0) — 91) ® fa0,0092 € H* ® H* by using 6. For
all z,y € H,

9(2)(f1(f2(—1,,\) — 91) ® f2(0,0092)(z @ y)
= (fi(fa-1,0 = 90))(SA(—1.-1) = 2)(fa0.0)92) (Y(0,0))
(12) Y (fl(fz - 91))(5',\(yl(—l,,\*l)y2(—2,,\*1)) - x)fz(o,o)
(S (y2(-1 )) - yl(o,o))gz(y2(o,0))
(: fa( A(332( LA—DY1(—2,20-1)Y2(-3,A—1) ) — $1)(f2 - 91)(51(91(—1,1)92(—2,1)) - 1’2(0,0))
f2(00 ( ( - ) — Y1(o, 0))92(?/2( ))
A(l“z —1,A-HY1(=3,2— )y2(—5,>\*1)) - $1)f2(51(y2(—2,1)) - yl(o,o))

Il
[y
i

1

A~ 1(3/2( 1 ,\))y1( 1,2~ )y2(73,)\*1)S)\(y1(72,)\*1)y2(74,)\*1)) - 952(0,0))92(342(0,0))

02) |

(

91(

= f1(
(S

g1

Mo -1y Y1 1 -1 Y2(—3.a-1)) = 21) f2(S1 (Y2(-2,1)) = Y1(0,0))

2]

(92( 1 A)) - 5102(0,0))92(3/2(0,0))-
On the other hand,

0P An-(f9))(x @y) = (fg)(xy)
2 FGr(@)a1a) = @0)Dg((Ev)z0, o>>
= f(S‘ (fE —1, A" H)Y2(—1,A- 1)) (71 To(— - yl)))g(ﬂﬁz(o,o)yz(o,o))
f(
f(

(
)\( —1, A" H)Y2(—1,A1 ) 1) 51(332( 2,1)Y2(-2 1))332( 3,1) — y1))g(w2 2(0,0)Y2(o, 0))
1)

(
(S1 (312( 3 1)) - yl))gl(S,\ 1(3/2( 1 ,\)) — Z2(0, o))gz(y2(o o))

i

(

(Sx(x2 -1, A" 1H)Y2(—2,2-1 ) 1

= fi( >\($2( LAY (11 Ya(—32-1)) = 1) f2(S1(Y2(—2,1)) = Y1(0,0))
(Sx

g1 ~1(y2 —1,,\)) - 132(0,0))92(242(0,0))-

We show (f9)(~1,a) @ (f9)0,0) = f(-1.0)9(~1,0) @ f(0,009(0,0) in Lo ® H*, for any x € H,

(f(0,0090,0) () f(—1,0)9(~1,0)

(12)
= fo.0(S

(11)

($2(—1,o¢*1)) - 351)9(0,0) ($2(0,0))f(—1,a)9(—1,a)
(Sa($2(—l,a*1)) - xl(O,O))g(xQ(O,O))Saq)a(xl(fl,a)xﬂfla))u

and

(F9)0.0) (@) (FD) 1.0 2 F9((0.0))Sa®ar(@(1,0)
(12) f( ( (0,0)2(=1,a— 1))—’513(0,0)) (1’(00)2 0,0) )S @, ( ,a))

: f(SOt(I2(—l,a*1)) - 351(0,0))9($2(0,0))Sa‘1)a(331(—1,a)1132(—2,a))-
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We check that f(_1)® (f(0,0)1 ® (f(0,0)2 = fi(—1,0)f2(~1,a) @ f1(0,0) ® f2(0,0) In Lo @ H* @ H*,
Ji—1,0) f2(-1, a)9(2) (f1(0,0) ® f2(0,0))(x ® y)
= f1( 1 a)fQ( 1 a)fl 0,0) ( (y( 1,0~ 1)) - x)fz(o 0)(y(0 0))
@ fl(Sa(y(f&arl)) — 2(0,0))2(4(0,0))Sa Pa (1,096 (Y(—2,0-1))T(~1,0) Pa (Y (~4,0)))
= fl(‘g ( Y—1 orl)) — Z(o 0))f2(y(o,o))ga@a(x(—l,a)y(—za))
= f(x (0,0)Y(o, 0))5 @, ( 1,a)y(fl,a)) = f(—l,a)f(o,o)(fcy)

(13)

= fer.m® P ((f0.0)1 ® (fo,0)2) (@ @ ).

It is easy to see that | — (fg) = (lq,a) — f)U@2p — g), for all I € Lag, f,g € H* and
Al — f) = (la,a) — f1) ® (2,3 — f2) in H* ® H* (by using 6®). We compute that
S+ (f1)fo = f(Auw)eq = fLSu-(f2), f € H*, for all x € H,

(S (f1) fo) (@)

”N

S (f1 )(S,\(UCQ( 1,A— 1)) - wl)f2($2(o 0))
Fi(Sa(za—1a-1y) = S(21)) f2(22(0,0))
f

((332( La-1) S (Ta(—2a-1)) = S(21))Z2(0,0))
f(S(z1)x2) = f(1m)e(z),

(14)

and

12)

J1Su-(f2)(x ) (362( 1a-1)) = 21)Su(f2)(7200,0))

fi(S
= f1(Sx(za(—12-1)) = 21) f2(S(22(0,0)))
= f((fvz)(—l,x—l)gx(w2<72xl>)) — 21)8(@2(0,)))
= f(@18(z2)) = f(1m)e(z).
Thus H* is a Hopf algebra in ¥)D.

Finally it follows from S%a = idy,, that the canonical map ¢ is both L,-linear and colinear, since

(I = @) (f) = @) (Sall) = f) = F(S2() = z) = f(I = ) = u(l = z)(f),
4(55)(—1 a)L(I)(O 0)(f) = L(x)(f(o,o))gaq’a(f(—1,a)) = ga(f(fc(o,o))ga(gc(—l,a)))
= f( 00)) ( (—1,a)) = f(I(O,O))x(—l,a) = x(—l,a)L(I(O,O))(f)'

It is easy to see that the map ¢ is multiplicative and comultiplicative. O

4. The fundamental theorem in group Yetter-Drinfel’d categories

In this section, we mainly establish the fundamental theorem of Hopf modules for H in the

category £YD(r).

Definition 4.1 Let H be a Hopf algebra in YYD(r). A right H-Hopf module in YYD(r) is
an object M € LYD(r) such that it is both a right H-module and a right H-comodule via
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pym: M — M®H, ppr(m) = mo ® my and the following (15)—(19) hold.

15
16

py(mh) = mo(mi—1,0) = h1) @ my,00he, m € M, he€H,
px (mh) = m_1 k1) ® me,0ho0), mEDM, heH,

18 [ — (mh) = (l(l,a) — m)(l(gﬁ) — h), le Lag, mée M,h e H,

(15)
(16)
(A7) m(—1,x) ® M0,000 @ M(0,0)1 = Mo(—1,0)M1(—1,x) @ Mo(0,0) @ M1(0,0) € Lx ® M @ H,
(18)
(19)

pM(l — m) = (l(l,a) — mo) ® (l(g)ﬁ) — ml), le Laﬁ, m € M.

Example 4.2 (1) H itself is a right H-Hopf module (in £YD(r)) in the natural way. If V is
an object in £YD(r), then so is V @ H by log — (v @ h) = (I(1,0) — v) @ (l2,3) — h) and
p;/@H = v, 01,0 @ V(0,00 @ h(0,0)- It is also both a right H-module and a right H-comodule
by (v® h)zr = v® hx and pygu(v ® h) = v ® hy @ he. One can easily check that V@ H is a
right H-Hopf module in £YD(r).

(2) If H is a finite dimensional Hopf algebra in £YD(r). We can show that H* becomes a
right H-Hopf module in ?YD(). First, the right H-module structure is (f - h)(z) = f(hx), f €
H* h,x € H. Second, H* is a right H-comodule using the identification 0y : H* @ H =
Hom(H, H) in Lemma 3.2 as follows:

pu« : H* — Hom(H,H) 2 H* ® H, pg~(f)(x) = f(z1)Su(x2).
That is, pg~(f) = fo ® f1 means
f(@1)Su(z2) = fo(fi(~1,a) = @) f1(0,0), forallf e H",z € H.
Theorem 4.3 If H is a Hopf algebra in £YD(n) and M a right H-Hopf module in £YD(r),

then

a) Mt ={m e M| pyp(m) =m®1g} is both a L,-submodule and a m-L-subcomodulelike
object. So M" € LyD(r).

b) Let P(m) = moS(m1),m € M. Then P(m) € M". Ifn € M°" and h € H, then
pu(nh) = nhi ® he and P(nh) = ne(h).

¢) The map F: M**® H — M, F(n ® h) = nh is an isomorphism of Hopf modules. The
inverse map is given by G(m) = P(mg) ® m;. Here M" @ H is a right H-Hopf module in
LYD(n) by Example 4.2, and the structure is given by

(m@h)z=mQhx; ppengr(Mmh) =m®e hi & hs,
for allm € M°", h,x € H.

Proof a) Let n € M®". Then py(l — n) = (l1,0) — 1) ® (lo1) — 1) = lga = 1 ®
e(ley)lg =1 — n®1ly. Hence l — n € MeP, We also have n(—1,2) ® N,000 @ N(0,01 =
n(—1,n) ®n,0) ® 1g. This implies that n_1 ) ® ng,0) € Lx ® Meob,
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b) Since hy—1,x)ha(—1,5) © hi(0,0)SH (ha(0,0)) = pX (h1S(h2)) = 1x ® e(h)1m, we have

pu (P(m)) = par(moS(ma))
9)(15
( )L ) mO(ml(fl,a)m2(71,a) - SH(m3)) ® m1(0,0)SH(m2(0,0))

= mOSH(ml) ®R1lyg = P(m) ®1g.

The other is easy.
¢) The map F is left L-linear, since F(I — (n® h)) = (lq,a) = )2, = h) =1 — nh =
I — F(n®h). And F is also left L-colinear by (16). Now we have

GF(n® h) = G(nh) = P(nh1) @ hg = ne(h1) @ ha =n® h,

and
FG(m) = F(P(mg) ® m1) = P(mo)m1 = meS(mq)ma = m.
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