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Abstract In this paper, we prove that under some restricted conditions, the non-bandlimited
functions can be reconstructed by the multidimensional sampling theorem of Hermite type in
the space of L,(R"™), 1 < p < 0.
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1. Preliminaries and main result
First we introduce some definitions and notations.

Definition 1 Given a positive vector v = (v1,...,0,), l.e,, v; > 0,1 =1,...,n. Let g,(z) =
Gvy....wn (21, - . ., 2n) be an entire function on C", and assume that for € > 0, there exists a positive

number A = A, such that for all z = (21, ..., 2,) € C", 2z, = xp+iyg, k = 1,...,n, the inequality
n
| gu(2) |< Aexp(> (vi+e) | 2 |)
j=1

is satisfied. Then the function g,(z) is called an entire function of exponential type v.
Denote by E, the set of entire functions of exponential type v, and let B, (R™) be the collection

of entire functions of exponential type v which are bounded on R™. Set
B, ,(R™) := B,(R")NL,(R"), 1<p<oo; Byw®R"):=B,(R"),

where L,(R™), 1 < p < o0, is the classical pth power Lebesgue integrable functions space with

the usual norm. Then by the Schwartz theorem![?> P10l

By, ={f € Ly,(R") : suppf C [~v,v]"},
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where f is Fourier transform of f in the sense of generalized functions. As usual, a function on
R” is said to be bandlimited if its Fourier transform f vanishes off [—v, v]™, otherwise it is said
to be non-bandlimited.

The Shannon sampling theorem, especially multivariate sampling theorem, plays an impor-
tant role in a purely mathematical as well as in a practical engineering sense. Many mathemati-
cians have done their best to generalize the sampling theorem since the last century. Especially,

some beautiful results [21[41-112],[14]

have been obtained in these directions. In this paper, we
continue the previous work, studying reconstruction of non-bandlimited functions by interpola-
tion of cardinal series of Hermite type in the space of L,(R™), 1 < p < co. First we recall a

uniqueness theorem of interpolation on multivariate Hermite cardinal series.

Theorem Al (a) Suppose that y = {yr}rezr, V) = {Ujptrezr € L(Z"), 1 < p < oo,
j =1,...,n. Then there exists a unique g € B, ,(R"), 1 < p < oo, such that g(kw/v) = yz,
g;(km/v) = y;-k, kez", j=1,...,n and

9(@) = Y {ye + D yplay = kym/vy)}sine] (v(x — km/v)), (1)
kezn j=1

and the series on the right hand side of (1) converges absolutely and uniformly on R™.
(b) Conversely, let y = {yr}rezn, ¥; = {Yjx}kezn, j = 1,...,n, and suppose that there
exists a g € Bayp(R"), 1 < p < oo, such that g(km/v) = yx, gj(km/v) = yly, k € Z", j =
L...,n. Then y = {yrtrezn, ¥; = {Yptrezn € Lp(Z7), 1 < p < o0, j = 1,...,n, where

since = sinz/x, if z # 0, and 0, if x = 0; sinc,z = [[}_, sincxy; (/o) = (x/v) = = -

v1 VU’

flkm/v) = f(kim/v1, ... knm/vn); fi = 0f [0z and fi(km/v) = fi (kim/v1, ... kn7/vn).

Remark 1 Let f : R® — C be a measurable function such that ), _,. [f(k7/v)[P < oo,
and ) e |fi(km/v)[P < oo, j = 1,...,n. Then by Theorem A, there exists an operator
H,(f,-) € Bayp(R™"), 1 < p < 00, which interpolates to f at {km/v}rezn, satisfying the following

conditions

H,(f, b fo) = f(kn /o), HL,(f,kn/v) = [i(kn /o), G=1,....n.

For convenience, we write also H,(f) for H,(f,-).

Assume that (R™) is the set of Riemann integrable functions on any bounded fields in R,
and let

LR ={f: f® eL,R"), [s| <t (N},

where f(S)(I) = Mla,‘,%inf(xlv"wxn)a s = (517"'7877.) € Nna |S| =81+ + Sn, 0 <s; < 15
1=1,...,n.
Definition 202 Let f : R* — C be a measurable function, and let h(z) € L,(R") be
nonnegative, even and non-increasing on [0, 00) with respect to each z;, (i = 1,...,n). We say
feA,R"),1<p< oo, if there exists a constant Cy independent of x such that | f(z)] < Coh(z).

It is clear that if f € A,(R™), then Y, . |f(km/v)|P < 400, for all v € R}. Now we are

ready to state our main result.
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Theorem 1 Let f € Lf,(R”), t>mn, fie Apy(R")NR(R"), 1 <p<oo,j=1,...,n. Then
H f_Hv(f) ”p(R")—)Oa v — 00,

where H,(f) := > e {f(kT/v) + Z?:l fikm/v)(xj — kyjm/v;) }sin e (v(x — km/v)), i.e, under
the condition of the theorem, the non-band limited functions can be approximately reconstructed

by the multivariate Hermite type cardinal series.

2. Proof of main result

In order to prove the theorem, we need also the several lemmas, where C,,, C,,, ... denote the

positive constants depending only on p, n, ... , respectively.

Lemma 10 Let f € LE(R™), € > 1, {f(kn/v)}kezn, {f](km/v)}rezn € 6(Z7), 1 < p < o0,
j=1,...,n, and let g € By, ,(R™). Then there exists a constant C,, such that

1f = Ho(F)llpgemy <Cpl(/v) D | (km/v) = glka/v)[P)"/P+

kezn
G Z Lvy((nfv) Y |k /v) = g (ko)) /7
keZr
I f AEDE
Let K,.(t) = A, (sinc,(t/2r))?", r € N, t € R", where the constant A, is chosen to satisfy the
condition || K,.(t) [[yrr)= 1, and let
o) = Ap (V) (sin e, (vt/20)?7, v = (v1,...,v,) ERY, (V) = vy vy,

Then K, € By1(R"), and || K,y (t) |1 = 1.

Lemma 2['2 Let h € L,(R"), 1 < p < oo be nonnegative even and non-increasing on [0, o)
with respect to every xz;, i = 1,...,n, and let g(x fRn x+t) Ko, (t)dt, v > 1 e, v; > 1,
i=1,...,n. Then g € B, ,(R")N AP(R").

Lemma 3['2 If f € Lf)(R"), £>n,1<p<oo, then

((W/U)ZIf(kW/v)lp) <y + 22 = gy +

’L

keznr 1<i<n
T 0?
L] Ol
< n Vi O0x;0x; ll p(R") v ll0xy -0y llp®r)

Let h = (h1,...,hy,) € R™, [h] = Zz 1hi =1, and wh(f, )p(R” denote the k-th modulus of
smoothness of f on L,(R™) along with the direction A3PHM0=149 je  wk(f,8),@n) = sup)yj<s ||
AR llp@ny - Assume f € LE(R™) and let

(1O 8)piar) = sup h (" Oy, £ = 30 FOm*
|s|=l

be the k-th continuity modulus of the ¢-th derivative of f(x).
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Lemma 402 Let f € LI(R™), £ > n, 1 < p < oo, k € N. Then there exists a g € B, ,(R"),
v = (v1,...,v,) € R, and a constant C, such that

” f -9 ||p(R")§ CQHICW (f? 1/5)p(R")7 0 = min {UZ}

1<i<n

Haxl axz <CQ§n(f<f>,1/5)p(Rn), i=1,....n,

H 851+ Ay

W(f_g)H < CQD]%"(f(£1+...+£n)71/5)P(R7l)7 0 Sgl < 17 1= 17"'7”'

p(R™)

Proof of Theorem 1 For notational convenience, we only prove the case n = 2. Let f €
LL(R?), £ > 2, f1, f5 € AR?) N R(R?). Then from Lemma 2 and the definition of A(R?),
{f(km/v)}rez € 6(2%), {fj(km/v)}heze € 6,(Z%), j = 1,2. Let

g(l‘) = - f(LL' + t)Kg)gv(t)dt.

Then g € Ba, ,(R?). By the definition of A(R?), there exist h;(z) € L,(R?), i = 1,2, satisfying
the following conditions:

|fz/($)| < COi|hi(x)|= i = 1727 (2)

where Cy;, ¢ = 1,2, are two positive constants. In view of the Lebesgue dominated convergence

theorem

= / filx + 1)Ko g, (t)dt, i=1,2, (3)
R2
consequently, gi(z) € Bay »(R?*) N A(R?), i =1,2. It follows from (2) and (3),

19.(2)] < Cor / hi(w + O Kaou(H)dt, = 1,2,
R2

By the definition of A(R?), there exist functions ¢;, i = 1,2, and two positive constants C, ,,

i =1, 2, such that

|g;($)| < COiC;DWi'wi(x)'v Vo € sz =12
In view of Lemma 1,

1f = Ho(H)llpgezy <Cpl(w/v) D |f(km/v) — glkm/v)[P) 7+

keZ?
2
Cp Y 1/vi((m/v) Y |fjlkm/v) = gk /v)[?) /P +
Jj=1 kez?
I f =9 llpw2) - (4)
We first estimate the second term on the right hand side of the above inequality. Since h;(z),
¥i(z) € L,(R?), i = 1,2, for given € > 0 there exists 7o > 0, such that for r > r¢

1/
CQiCp(/ |hz($)|pd$) : S 8/16,
R2\Q(r)

1/p
COZ-CW(/ |¢i(x)|de) <e/16, i=1,2,
MR\
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where Q(r) := {z = (z1,32) : |z;| <m0 =1,2}.
Set a(v;) = [“X] + 1, i = 1,2, where [a] denotes the integer part of a. Then from the

relation between integral and series, for v = (v, v2) > 1, we get

(w/v Z Z ) fi(km/v) |p)

keZ?  |ki|<a(v)
1/
< CoCy( ) P "< /16, (5)
R2\Q(r)

similarly

(w/v S - Y )lgikn/v) |p) <e/16, i=1,2. (6)

keZ?  |ki|<a(vy)

On the other hand, in view of the fact that f/ € R(R?), g} € Bay ,(R?), i = 1,2, then there

exists vop = (v, 1Y), such that for v > vy,

1/p
(/o) > itk /o) = gilkn /o)) <11 = gillpe) + /16
|ki| <a(vs)
By the definitions of g(z) and K, ,(t), we have

@) =gla) = [ (@) = fo ) Ko (),
fi) = gita) = [ (fi@) = Flla+ O)Kan(Bidt, i=1,2

Accordingly, there exists vog = (v9?,v9°) > 0, for v > vgp, such that

Cyllf = lhisey < Cp [ I(7(&) = £+ D)l K ()

< Cy0m(f, 2 ) /R(1+6|t|)K22U()d

< C*Cy s (f, g)p(Rz) <e/4, §=minfvr,vs) ®)
and
Coll = ilbize) < €, [ 10FH@) = ile -+ ) s Ko ()1
< 0 (f! §>p<Rz> [ a8t DKo
< C*Cy Qs (f, %)p@@) <c/16, i=1,2. )

Now we turn to estimate the first term on the right hand side of (4). By Lemmas 3 and 4, we
get
Cy((mfv) 3 |f(km/v) = glkm/v)[")!/7
kez?

v T
Co(IIf = gllprey + a”f{ — 91llpre) + v—2||f2 93l p(r2) + ——||f — 915 llp®2))
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1 1 1
< (s, 1/6) + 39081, 1/6) + 5085, 1/60) + 5508 (712,1/9))
1
< Gy ea(f7.1/5) < </ (10)
Combining (10) with (4)—(9) gives
€ € € e €
_ 2y < — R J— JR— — =
If = Ho(f)|lpw2)y < 4—|—4>< 16—i—2>< 16—i—2>< 16+4 g,
where v > max{1, vy, voo}. The proof of Theorem 1 is completed. |
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