Reconstruction of Non-Bandlimited Functions by Multidimensional Sampling Theorem of Hermite Type

LI Yue Wu^{1,2}, FENG Guo³

- (1. Department of Mathematics, Hulunbeir University, Inner Mongolia 021008, China;
- 2. School of Mathematical Sciences, Beijing Normal University, Beijing 100859, China;
- 3. Department of Mathematics, Taizhou University, Zhejiang 317000, China)

(E-mail: yuewu1@126.com)

Abstract In this paper, we prove that under some restricted conditions, the non-bandlimited functions can be reconstructed by the multidimensional sampling theorem of Hermite type in the space of $L_p(\mathbb{R}^n)$, 1 .

Keywords multidimensional sampling theorem; non-bandlimited functions; Hermite cardinal series; entire functions of exponential type.

Document code A MR(2000) Subject Classification 41A05; 41A25; 46C99 Chinese Library Classification O174.41

1. Preliminaries and main result

First we introduce some definitions and notations.

Definition 1 Given a positive vector $v = (v_1, \ldots, v_n)$, i.e., $v_i > 0$, $i = 1, \ldots, n$. Let $g_v(z) = g_{v_1, \ldots, v_n}(z_1, \ldots, z_n)$ be an entire function on \mathbb{C}^n , and assume that for $\varepsilon > 0$, there exists a positive number $A = A_{\varepsilon}$, such that for all $z = (z_1, \ldots, z_n) \in \mathbb{C}^n$, $z_k = x_k + iy_k$, $k = 1, \ldots, n$, the inequality

$$\mid g_v(z) \mid \leq A \exp(\sum_{i=1}^n (v_i + \varepsilon) \mid z_j \mid)$$

is satisfied. Then the function $g_v(z)$ is called an entire function of exponential type v.

Denote by E_v the set of entire functions of exponential type v, and let $B_v(\mathbb{R}^n)$ be the collection of entire functions of exponential type v which are bounded on \mathbb{R}^n . Set

$$B_{v,p}(\mathbb{R}^n) := B_v(\mathbb{R}^n) \cap L_p(\mathbb{R}^n), \quad 1 \le p < \infty; \quad B_{v,\infty}(\mathbb{R}^n) := B_v(\mathbb{R}^n),$$

where $L_p(\mathbb{R}^n)$, $1 \leq p < \infty$, is the classical pth power Lebesgue integrable functions space with the usual norm. Then by the Schwartz theorem^[3, p10],

$$B_{v,p} = \{ f \in L_p(\mathbb{R}^n) : \operatorname{supp} \hat{f} \subset [-v, v]^n \},$$

Received date: 2006-10-23; Accepted date: 2007-03-22

Foundation item: the National Natural Science Foundation of China (No. 10671019); Research Project of Science and Technology of Higher Education of Inner Mongolia (No. NJzy08163); Research Project of Education Bureau of Zhejiang Province (No. 20070509).

350 LI Y W and FENG G

where \hat{f} is Fourier transform of f in the sense of generalized functions. As usual, a function on \mathbb{R}^n is said to be bandlimited if its Fourier transform \hat{f} vanishes off $[-v,v]^n$, otherwise it is said to be non-bandlimited.

The Shannon sampling theorem, especially multivariate sampling theorem, plays an important role in a purely mathematical as well as in a practical engineering sense. Many mathematicians have done their best to generalize the sampling theorem since the last century. Especially, some beautiful results [2],[4]-[12],[14] have been obtained in these directions. In this paper, we continue the previous work, studying reconstruction of non-bandlimited functions by interpolation of cardinal series of Hermite type in the space of $L_p(\mathbb{R}^n)$, 1 . First we recall a uniqueness theorem of interpolation on multivariate Hermite cardinal series.

Theorem A^[14] (a) Suppose that $y = \{y_k\}_{k \in \mathbb{Z}^n}$, $y'_j = \{y'_{jk}\}_{k \in \mathbb{Z}^n} \in \ell_p(\mathbb{Z}^n)$, $1 , <math>j = 1, \ldots, n$. Then there exists a unique $g \in B_{2v,p}(\mathbb{R}^n)$, $1 , such that <math>g(k\pi/v) = y_k$, $g'_j(k\pi/v) = y'_{jk}$, $k \in \mathbb{Z}^n$, $j = 1, \ldots, n$ and

$$g(x) = \sum_{k \in \mathbb{Z}^n} \{ y_k + \sum_{j=1}^n y'_{jk} (x_j - k_j \pi / v_j) \} \sin c_n^2 (v(x - k\pi / v)), \tag{1}$$

and the series on the right hand side of (1) converges absolutely and uniformly on \mathbb{R}^n .

(b) Conversely, let $y = \{y_k\}_{k \in \mathbb{Z}^n}$, $y'_j = \{y'_{jk}\}_{k \in \mathbb{Z}^n}$, j = 1, ..., n, and suppose that there exists a $g \in B_{2v,p}(\mathbb{R}^n)$, $1 , such that <math>g(k\pi/v) = y_k$, $g'_j(k\pi/v) = y'_{jk}$, $k \in \mathbb{Z}^n$, j = 1, ..., n. Then $y = \{y_k\}_{k \in \mathbb{Z}^n}$, $y'_j = \{y'_{jk}\}_{k \in \mathbb{Z}^n} \in \ell_p(\mathbb{Z}^n)$, 1 , <math>j = 1, ..., n, where $\sin cx = \sin x/x$, if $x \neq 0$, and 0, if x = 0; $\sin c_n x = \prod_{j=1}^n \sin cx_j$; $(\pi/v)^1 = (\pi/v) = \frac{\pi}{v_1} \cdots \frac{\pi}{v_n}$, $f(k\pi/v) = f(k_1\pi/v_1, ..., k_n\pi/v_n)$; $f'_j = \partial f/\partial x_j$ and $f'_j(k\pi/v) = f'_j(k_1\pi/v_1, ..., k_n\pi/v_n)$.

Remark 1 Let $f: \mathbb{R}^n \longrightarrow \mathbb{C}$ be a measurable function such that $\sum_{k \in \mathbb{Z}^n} |f(k\pi/v)|^p < \infty$, and $\sum_{k \in \mathbb{Z}^n} |f'_j(k\pi/v)|^p < \infty$, j = 1, ..., n. Then by Theorem A, there exists an operator $H_v(f, \cdot) \in B_{2v,p}(\mathbb{R}^n)$, 1 , which interpolates to <math>f at $\{k\pi/v\}_{k \in \mathbb{Z}^n}$, satisfying the following conditions

$$H_v(f, k\pi/v) = f(k\pi/v); \quad H'_{v,i}(f, k\pi/v) = f'_i(k\pi/v), \quad j = 1, \dots, n.$$

For convenience, we write also $H_v(f)$ for $H_v(f,\cdot)$.

Assume that $\Re(\mathbb{R}^n)$ is the set of Riemann integrable functions on any bounded fields in \mathbb{R}^n , and let

$$L_p^{\ell}(\mathbb{R}^n) = \{ f : f^{(s)} \in L_p(\mathbb{R}^n), |s| \leq \ell, \quad \ell \in \mathbb{N} \},$$
 where $f^{(s)}(x) = \frac{\partial^{|s|}}{\partial x_1^{s_1} \cdots \partial x_n^{s_n}} f(x_1, \dots, x_n), \ s = (s_1, \dots, s_n) \in \mathbb{N}^n, \ |s| = s_1 + \dots + s_n, \ 0 \leq s_i \leq 1, i = 1, \dots, n.$

Definition 2^[12] Let $f: \mathbb{R}^n \longrightarrow \mathbb{C}$ be a measurable function, and let $h(x) \in L_p(\mathbb{R}^n)$ be nonnegative, even and non-increasing on $[0,\infty)$ with respect to each x_i , $(i=1,\ldots,n)$. We say $f \in \Lambda_p(\mathbb{R}^n)$, $1 , if there exists a constant <math>C_0$ independent of x such that $|f(x)| \leq C_0 h(x)$.

It is clear that if $f \in \Lambda_p(\mathbb{R}^n)$, then $\sum_{k \in \mathbb{Z}^n} |f(k\pi/v)|^p < +\infty$, for all $v \in \mathbb{R}^n_+$. Now we are ready to state our main result.

Theorem 1 Let $f \in L_n^{\ell}(\mathbb{R}^n)$, $\ell \geq n$, $f_j' \in \Lambda_p(\mathbb{R}^n) \cap \Re(\mathbb{R}^n)$, $1 , <math>j = 1, \ldots, n$. Then

$$|| f - H_v(f) ||_{p(\mathbb{R}^n)} \longrightarrow 0, \quad v \to \infty,$$

where $H_v(f) := \sum_{k \in \mathbb{Z}^n} \{f(k\pi/v) + \sum_{j=1}^n f'_j(k\pi/v)(x_j - k_j\pi/v_j)\} \sin c_n^2(v(x - k\pi/v))$, i.e, under the condition of the theorem, the non-band limited functions can be approximately reconstructed by the multivariate Hermite type cardinal series.

2. Proof of main result

In order to prove the theorem, we need also the several lemmas, where C_p , C_n ,... denote the positive constants depending only on p, n,..., respectively.

Lemma 1^[14] Let $f \in L_p^{\ell}(\mathbb{R}^n)$, $\ell \geq 1$, $\{f(k\pi/v)\}_{k\in\mathbb{Z}^n}$, $\{f'_j(k\pi/v)\}_{k\in\mathbb{Z}^n} \in \ell_p(\mathbb{Z}^n)$, $1 , <math>j = 1, \ldots, n$, and let $g \in B_{2v,p}(\mathbb{R}^n)$. Then there exists a constant C_p , such that

$$||f - H_v(f)||_{p(\mathbb{R}^n)} \le C_p((\pi/v) \sum_{k \in \mathbb{Z}^n} |f(k\pi/v) - g(k\pi/v)|^p)^{1/p} +$$

$$C_p \sum_{j=1}^n 1/v_j((\pi/v) \sum_{k \in \mathbb{Z}^n} |f'_j(k\pi/v) - g'_j(k\pi/v)|^p)^{1/p} +$$

$$||f - g||_{p(\mathbb{R}^n)}.$$

Let $K_r(t) = A_r(\sin c_n(t/2r))^{2r}$, $r \in \mathbb{N}$, $t \in \mathbb{R}^n$, where the constant A_r is chosen to satisfy the condition $\parallel K_r(t) \parallel_{1(\mathbb{R}^n)} = 1$, and let

$$K_{r,v}(t) = A_r(v)(\sin c_n(vt/2r))^{2r}, \quad v = (v_1, \dots, v_n) \in \mathbb{R}^n_+, \quad (v) = v_1 \cdots v_n.$$

Then $K_{r,v} \in B_{v,1}(\mathbb{R}^n)$, and $||K_{r,v}(t)||_{1(\mathbb{R}^n)} = 1$.

Lemma 2^[12] Let $h \in L_p(\mathbb{R}^n)$, $1 be nonnegative, even and non-increasing on <math>[0, \infty)$ with respect to every x_i , $i = 1, \ldots, n$, and let $g(x) = \int_{\mathbb{R}^n} h(x+t)K_{2,v}(t)dt$, v > 1 i.e., $v_i > 1$, $i = 1, \ldots, n$. Then $g \in B_{v,p}(\mathbb{R}^n) \cap \Lambda_p(\mathbb{R}^n)$.

Lemma 3^[12] If $f \in L_p^{\ell}(\mathbb{R}^n)$, $\ell \geq n$, $1 \leq p < \infty$, then

$$\left((\pi/v) \sum_{k \in \mathbb{Z}^n} |f(k\pi/v)|^p \right)^{1/p} \le \|f\|_{p(\mathbb{R}^n)} + \sum_{1 \le i \le n} \frac{\pi}{v_i} \|f_i'\|_{p(\mathbb{R}^n)} + \sum_{1 \le i \le n} \frac{\pi}{v_i} \frac{\pi}{v_j} \left\| \frac{\partial^2 f}{\partial x_i \partial x_j} \right\|_{p(\mathbb{R}^n)} + \dots + \left(\frac{\pi}{v} \right) \left\| \frac{\partial^n}{\partial x_1 \cdots \partial x_n} f \right\|_{p(\mathbb{R}^n)}.$$

Let $h=(h_1,\ldots,h_n)\in\mathbb{R}^n$, $|h|=\sum_{i=1}^nh_i=1$, and $\omega_h^k(f,\delta)_{p(\mathbb{R}^n)}$ denote the k-th modulus of smoothness of f on $L_p(\mathbb{R}^n)$ along with the direction $h^{[3,\,\mathrm{pl}40-149]}$. i.e., $\omega_h^k(f,\delta)_{p(\mathbb{R}^n)}=\sup_{|t|\leq\delta}\|\Delta_{th}^kf\|_{p(\mathbb{R}^n)}$. Assume $f\in L_p^\ell(\mathbb{R}^n)$ and let

$$\Omega_{\mathbb{R}^n}^k(f^{(\ell)},\delta)_{p(\mathbb{R}^n)} = \sup_{h \in \mathbb{R}^n} \omega_h^k(f_h^{(\ell)},\delta)_{p(\mathbb{R}^n)}, \quad f_h^{(\ell)} := \sum_{|s|=l} f^{(s)} h^s$$

be the k-th continuity modulus of the ℓ -th derivative of f(x).

352 LI Y W and FENG G

Lemma 4^[12] Let $f \in L_p^{\ell}(\mathbb{R}^n)$, $\ell \geq n$, $1 \leq p < \infty$, $k \in \mathbb{N}$. Then there exists a $g \in B_{v,p}(\mathbb{R}^n)$, $v = (v_1, \ldots, v_n) \in \mathbb{R}_+^n$, and a constant C, such that

$$\| f - g \|_{p(\mathbb{R}^n)} \le C\Omega_{\mathbb{R}^n}^k(f, 1/\delta)_{p(\mathbb{R}^n)}, \quad \delta = \min_{1 \le i \le n} \{v_i\},$$

$$\| \frac{\partial f}{\partial x_i} - \frac{\partial g}{\partial x_i} \|_{p(\mathbb{R}^n)} \le C\Omega_{\mathbb{R}^n}^k(f^{(\ell)}, 1/\delta)_{p(\mathbb{R}^n)}, \quad i = 1, \dots, n,$$

$$\dots$$

$$\| \frac{\partial^{\ell_1 + \dots + \ell_n}}{\partial x_1^{\ell_1} \dots \partial x_n^{\ell_n}} (f - g) \|_{p(\mathbb{R}^n)} \le C\Omega_{\mathbb{R}^n}^k(f^{(\ell_1 + \dots + \ell_n)}, 1/\delta)_{p(\mathbb{R}^n)}, \quad 0 \le \ell_i \le 1, \quad i = 1, \dots, n.$$

Proof of Theorem 1 For notational convenience, we only prove the case n=2. Let $f \in L_p^{\ell}(\mathbb{R}^2)$, $\ell \geq 2$, f_1' , $f_2' \in \Lambda(\mathbb{R}^2) \cap \Re(\mathbb{R}^2)$. Then from Lemma 2 and the definition of $\Lambda(\mathbb{R}^2)$, $\{f(k\pi/v)\}_{k\in\mathbb{Z}^2} \in \ell_p(\mathbb{Z}^2), \{f_j'(k\pi/v)\}_{k\in\mathbb{Z}^2} \in \ell_p(\mathbb{Z}^2), j=1,2$. Let

$$g(x) := \int_{\mathbb{R}^2} f(x+t) K_{2,2v}(t) dt.$$

Then $g \in B_{2v,p}(\mathbb{R}^2)$. By the definition of $\Lambda(\mathbb{R}^2)$, there exist $h_i(x) \in L_p(\mathbb{R}^2)$, i = 1, 2, satisfying the following conditions:

$$|f_i'(x)| \le C_{0i}|h_i(x)|, \quad i = 1, 2,$$
 (2)

where C_{0i} , i = 1, 2, are two positive constants. In view of the Lebesgue dominated convergence theorem

$$g_i'(x) := \int_{\mathbb{R}^2} f_i'(x+t) K_{2,2v}(t) dt, \quad i = 1, 2,$$
(3)

consequently, $g_i'(x) \in B_{2v,p}(\mathbb{R}^2) \cap \Lambda(\mathbb{R}^2)$, i = 1, 2. It follows from (2) and (3),

$$|g_i'(x)| \le C_{0i} \int_{\mathbb{R}^2} h_i(x+t) K_{2,2v}(t) dt, \quad i = 1, 2.$$

By the definition of $\Lambda(\mathbb{R}^2)$, there exist functions ψ_i , i = 1, 2, and two positive constants C_{p,ψ_i} , i = 1, 2, such that

$$|q_i'(x)| < C_{0i}C_{n,i/i}|\psi_i(x)|, \quad \forall x \in \mathbb{R}^2, \quad i = 1, 2.$$

In view of Lemma 1,

$$||f - H_{v}(f)||_{p(\mathbb{R}^{2})} \leq C_{p}((\pi/v) \sum_{k \in \mathbb{Z}^{2}} |f(k\pi/v) - g(k\pi/v)|^{p})^{1/p} +$$

$$C_{p} \sum_{j=1}^{2} 1/v_{j}((\pi/v) \sum_{k \in \mathbb{Z}^{2}} |f'_{j}(k\pi/v) - g'_{j}(k\pi/v)|^{p})^{1/p} +$$

$$||f - g||_{p(\mathbb{R}^{2})}.$$

$$(4)$$

We first estimate the second term on the right hand side of the above inequality. Since $h_i(x)$, $\psi_i(x) \in L_p(\mathbb{R}^2)$, i = 1, 2, for given $\varepsilon > 0$ there exists $r_0 > 0$, such that for $r > r_0$

$$C_{0i}C_p \left(\int_{\mathbb{R}^2 \setminus Q(r)} |h_i(x)|^p dx \right)^{1/p} \le \varepsilon/16,$$

$$C_{0i}C_{p\psi_i} \left(\int_{\mathbb{R}^2 \setminus Q(r)} |\psi_i(x)|^p dx \right)^{1/p} \le \varepsilon/16, \quad i = 1, 2,$$

where $Q(r) := \{x = (x_1, x_2) : |x_i| < r, i = 1, 2\}.$

Set $\alpha(v_i) = \left[\frac{v_i r_0}{\pi}\right] + 1$, i = 1, 2, where [a] denotes the integer part of a. Then from the relation between integral and series, for $v = (v_1, v_2) > 1$, we get

$$C_p\Big((\pi/v)\Big(\sum_{k\in\mathbb{Z}^2} - \sum_{|k_i| < \alpha(v_i)}\Big)|f_i'(k\pi/v)|^p\Big)^{1/p}$$

$$\leq C_0 C_p\Big(\int_{\mathbb{R}^2 \setminus Q(r)} |h_i(x)|^p dx\Big)^{1/p} \leq \varepsilon/16,$$
(5)

similarly

$$C_p\Big((\pi/v)\Big(\sum_{k\in\mathbb{Z}^2} - \sum_{|k_i| < \alpha(v_i)}\Big)|g_i'(k\pi/v)|^p\Big)^{1/p} \le \varepsilon/16, \quad i = 1, 2.$$
 (6)

On the other hand, in view of the fact that $f'_i \in \Re(\mathbb{R}^2)$, $g'_i \in B_{2v,p}(\mathbb{R}^2)$, i = 1, 2, then there exists $v_0 = (v_1^0, v_2^0)$, such that for $v \geq v_0$,

$$\left((\pi/v) \sum_{|k_i| < \alpha(v_i)} |f_i'(k\pi/v) - g_i'(k\pi/v)|^p \right)^{1/p} \le \|f_i' - g_i'\|_{p(Q)} + \varepsilon/16$$

$$\le \|f_i' - g_i'\|_{p(\mathbb{R}^2)} + \varepsilon/16, \quad i = 1, 2. \tag{7}$$

By the definitions of g(x) and $K_{r,v}(t)$, we have

$$f(x) - g(x) = \int_{\mathbb{R}^2} (f(x) - f(x+t)) K_{2,2v}(t) dt,$$

$$f'_i(x) - g'_i(x) = \int_{\mathbb{R}^2} (f'_i(x) - f'_i(x+t)) K_{2,2v}(t) dt, \quad i = 1, 2.$$

Accordingly, there exists $v_{00} = (v_1^{00}, v_2^{00}) > 0$, for $v > v_{00}$, such that

$$C_{p} \| f - g \|_{p(\mathbb{R}^{2})} \leq C_{p} \int_{\mathbb{R}^{2}} \| (f(x) - f(x+t)) \|_{p(\mathbb{R}^{2})} K_{2,2v}(t) dt$$

$$\leq C_{p} \Omega_{\mathbb{R}^{2}} (f, \frac{1}{\delta})_{p(\mathbb{R}^{2})} \int_{\mathbb{R}^{2}} (1 + \delta | t |) K_{2,2v}(t) dt$$

$$\leq C^{*} C_{p} \Omega_{\mathbb{R}^{2}} (f, \frac{1}{\delta})_{p(\mathbb{R}^{2})} \leq \varepsilon / 4, \quad \delta = \min\{v_{1}, v_{2}\}$$
(8)

and

$$C_{p} \| f_{i}' - g_{i}' \|_{p(\mathbb{R}^{2})} \leq C_{p} \int_{\mathbb{R}^{2}} \| (f_{i}'(x) - f_{i}'(x+t)) \|_{p(\mathbb{R}^{2})} K_{2,2v}(t) dt$$

$$\leq C_{p} \Omega_{\mathbb{R}^{2}} (f_{i}', \frac{1}{\delta})_{p(\mathbb{R}^{2})} \int_{\mathbb{R}^{2}} (1 + \delta \mid t \mid) K_{2,2v}(t) dt$$

$$\leq C^{*} C_{p} \Omega_{\mathbb{R}^{2}} (f_{i}', \frac{1}{\delta})_{p(\mathbb{R}^{2})} \leq \varepsilon / 16, \quad i = 1, 2.$$
(9)

Now we turn to estimate the first term on the right hand side of (4). By Lemmas 3 and 4, we get

$$C_{p}((\pi/v)\sum_{k\in\mathbb{Z}^{2}}|f(k\pi/v)-g(k\pi/v)|^{p})^{1/p}$$

$$\leq C_{p}(\|f-g\|_{p(\mathbb{R}^{2})}+\frac{\pi}{v_{1}}\|f'_{1}-g'_{1}\|_{p(\mathbb{R}^{2})}+\frac{\pi}{v_{2}}\|f'_{2}-g'_{2}\|_{p(\mathbb{R}^{2})}+\frac{\pi}{v_{1}}\frac{\pi}{v_{2}}\|f''_{12}-g''_{12}\|_{p(\mathbb{R}^{2})})$$

354 LI Y W and FENG G

$$\leq C_{p} \left(\Omega_{\mathbb{R}^{2}}^{3}(f, 1/\delta) + \frac{1}{\delta} \Omega_{\mathbb{R}^{2}}^{3}(f'_{1}, 1/\delta) + \frac{1}{\delta} \Omega_{\mathbb{R}^{2}}^{3}(f'_{2}, 1/\delta) + \frac{1}{\delta^{2}} \Omega_{\mathbb{R}^{2}}^{3}(f''_{12}, 1/\delta) \right) \\
\leq C_{p} \frac{1}{\delta^{2}} \Omega_{\mathbb{R}^{2}}(f'', 1/\delta) \leq \varepsilon/4. \tag{10}$$

Combining (10) with (4)–(9) gives

$$||f - H_v(f)||_{p(\mathbb{R}^2)} \le \frac{\varepsilon}{4} + 4 \times \frac{\varepsilon}{16} + 2 \times \frac{\varepsilon}{16} + 2 \times \frac{\varepsilon}{16} + \frac{\varepsilon}{4} = \varepsilon,$$

where $v > \max\{1, v_0, v_{00}\}$. The proof of Theorem 1 is completed.

References

- [1] LEVI B Y. Lectures on Entire Functions [M]. American Mathematical Society, Providence, RI, 1996.
- [2] RAHMAN Q I, VÉRTESI P. On the L^p convergence of Lagrange interpolating entire functions of exponential type [J]. J. Approx. Theory, 1992, 69(3): 302–317.
- [3] NIKOLSKI S M. Approximation of Functions of Several Variables and Imbedding Theorem [M]. Springer-Verlag, New York-Heidelberg. 1975.
- [4] HIGGINS J R. Five short stories about the cardinal series [J]. Bull. Amer. Math. Soc. (N.S.), 1985, 12(1): 45–89.
- [5] BUTZER P L. A survey of the Whittaker-Shannon sampling theorem and some of its extensions [J]. J. Math. Res. Exposition, 1983, 3(1): 185–212.
- [6] SPLETTSTÖSSER W. Error estimates for sampling approximation of nonbandlimited functions [J]. Math. Methods Appl. Sci., 1979, 1(2): 127–137.
- [7] BUTZER P L, STENS R L. Sampling theory for not necessarily band-limited functions: a historical overview
 [J]. SIAM Rev., 1992, 34(1): 40-53.
- [8] FANG Gensun. Cardinal spline interpolation from H¹(Z) to L₁(R) [J]. Proc. Amer. Math. Soc., 2000, 128(9): 2597–2601.
- [9] FANG Gensun. Recovery of band limited functions via cardinal splines [J]. Sci. China Ser. A, 2001, 44(9): 1126-1131.
- [10] FANG Gensun. Recovery of functions via their irregular sampling values [J]. Chinese Sci. Bull., 1998, 43(4): 268–271.
- [11] FANG Gensun. Whittaker-Kotelnikov-Shannon sampling theorem and aliasing error [J]. J. Approx. Theory, 1996, 85(2): 115–131.
- [12] WANG Jianjun, FANG Gensun. A multidimensional sampling theorem and an estimate of the aliasing error [J]. Acta Math. Appl. Sinica, 1996, 19(4): 481–488. (in Chinese)
- [13] CHEN Guanggui, FANG Gensun. Discrete characterization of the Paley-Wiener space with several variables
 [J]. Acta Math. Appl. Sinica, 2000, 16(4): 396–404.
- [14] FANG Gensun, LI Yuewu. Multidimensional sampling theorem of Hermite type and estimates for aliasing error on Sobolev classes [J]. Chinese Ann. Math. Ser. A, 2006, 27(2): 217–230. (in Chinese)