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1. Preliminaries

We shall use the notations and terminologies of [1] and [2] in this paper. Let S be a regular

semigroup. An inverse subsemigroup S◦ of S is an inverse transversal if |V (x)∩S◦| = 1 for each

x ∈ S, where V (x) denotes the set of inverses of x. In this case, the unique element of V (x)∩S◦

is denoted by x◦ and (x◦)◦ is denoted by x◦◦. We have x◦◦◦ = x◦ for each x ∈ S. E◦ denotes

the semilattice of idempotents of S◦, while I(S) = {e ∈ S|ee◦ = e}, Λ(S) = {g ∈ S|g◦g = g},

R(S) = {x ∈ S|x◦x = x◦x◦◦} and L(S) = {a ∈ S|aa◦ = a◦◦a◦}. The above signs are denoted by

I,Λ, R and L if no confusion is possible. For every x ∈ S, we define xI = xx◦, xΛ = x◦x, xR =

xx◦x◦◦ and xL = x◦◦x◦x. Obviously, for each x ∈ S, xR ∈ R, xL ∈ L, (xR)◦ = x◦ and (xL)◦ = x◦.

For every e ∈ I, g ∈ Λ, a ∈ R and x ∈ L, we have eI = e, gΛ = g, aR = a and xL = x. If an

inverse transversal S◦ of S is a quasi-ideal of S (that is S◦SS◦ ⊆ S◦), S◦ is called a Q-inverse

transversal of S. Throughout this paper, S will denote a regular semigroup with a Q-inverse

transversal S◦ if no special mention is made. Each x in S can be written uniquely in the form

x = ea, where e ∈ I, a ∈ L. Thus there is a mapping x 7−→ (xx◦, x◦◦x◦x) from S onto the set

{(e, a) ∈ I × L|e◦ = aa◦}.
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By using this mapping, S can be coordinatized by pairs. A band B is left [resp. right] normal

if efg = egf [resp. efg = feg] for every e, f, g ∈ B. A non-empty subset A of S is called a left

ideal [resp. right ideal] if SA ⊆ A [resp. AS ⊆ A]. A semigroup is called orthodox if it is regular

and if its idempotents form a subsemigroup.

We list several known results, which will be used frequently without special reference in this

paper.

(1.1)[9] (xy)◦ = (x◦xy)◦x◦ = y◦(xyy◦)◦ for every x, y ∈ S.

(1.2)[3,5,7−9] I(S) [resp. Λ(S)] is a left [resp. right] normal band with a Q-inverse transversal

E◦. Furthermore, R(S) and L(S) are orthodox semigroups with a Q-inverse transversal S◦ which

is a right ideal of R and a left ideal of L.

(1.3)[5,8] R(S) ∩ L(S) = S◦, I(S) ∩ Λ(S) = E◦, E(R(S)) = I(S) and E(L(S)) = Λ(S).

(1.4)[6] S is orthodox if and only if for any x, y ∈ S, (xy)◦ = y◦x◦.

(1.5)[9] For a regular semigroup S with an inverse transversal S◦, S◦ is aQ-inverse transversal

if and only if for every x, y ∈ S, xΛ.yI ∈ S◦, and if and only if for any s, t ∈ S◦, x ∈ S, sxt = sx◦◦t,

and if and only if for any s, t ∈ S◦, x ∈ S, (sxt)◦ = t◦x◦s◦.

(1.6)[9] For ρ ∈ Con(S), let ρ◦ = ρ|S◦ . Then for x, y ∈ S, xρy implies x◦ρy◦.

(1.7)[9] For any congruence π on S◦, there exists ρ ∈ Con(S) such that π = ρ|S◦ .

For a regular semigroup S,E(S) denotes the set of idempotents. The complete lattice of

congruences on S is denoted by Con(S). For any ρ ∈ Con(S), define ρ◦, ρI , ρΛ, ρR and ρL as

follows:

ρ◦ = ρ|S◦ , ρI = ρ|I , ρΛ = ρ|Λ, ρR = ρ|R, ρL = ρ|L.

If ρ ∈ Con(S), then the trace of ρ is trρ = ρ|E(S) and the kernel of ρ is kerρ = {s ∈ S|sρs2}. We

present the following notions and results due to Pastijn and Petrich[4]. For any ρ, σ ∈ Con(S),

define Tl, Tr, U and V as follows:

ρTlσ ⇔ tr(ρ ∨ L)♭ = tr(σ ∨ L)♭, ρTrσ ⇔ tr(ρ ∨R)♭ = tr(σ ∨R)♭,

ρUσ ⇔ ρ∩ ≤= σ∩ ≤, ρV σ ⇔ ρUσ, ρKσ,

where ( )♭ denotes the greatest congruence on S contained in the relation ( ), ≤ denotes

the natural partial order on E(S), and K is a relation on Con(S) such that ρKσ if and only

if kerρ = kerσ. Then these relations are complete congruences on the lattice Con(S). The

congruence class ρTr [resp. ρTl, ρU, ρV ] is an interval of Con(S) with greatest and smallest

element to be denoted by ρTr [resp. ρTl , ρTU , ρTV ] and ρTr
[resp. ρTl

, ρTU
, ρTV

], respectively. Let

τ be a relation on S. The congruence generated by τ is denoted by τ∗.

In [9], congruences were coordinatized abstractly by triples which consist of congruences on

S◦, I and Λ satisfying certain conditions. Five complete congruences V, T, Tr, Tl and U on the

congruences lattices are discussed and their least and greatest elements are presented in terms

of congruence triples. We present the following notions and results due to Wang[9]. Let π be a

congruence on S◦. Define relations µI(π) on I as follows:

eµI(π)f ⇔ (∃p◦ ∈ E◦)ep◦ = fp◦, p◦πe◦πf◦.
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Furthermore, µI(π) is a congruence on I and µI(π)|E◦ = π|E◦ . If π = ρ|E◦ , then µI(π) ⊆ ρI . A

congruence τ on I is normal if τ satisfies the following condition:

(∀e, f ∈ I)(∀a ∈ S◦)eτf ⇒ aea◦τafa◦.

Denote by CN (I) the set of normal congruences on I. Let τI ∈ CN (I). Define a relation τ◦t on

S◦ by

aτ◦tb⇔ (∀e◦ ∈ E◦)ae◦a◦τIbe
◦b◦.

τ◦t is the greatest congruence in Con(S◦) such that τ◦t|E◦ = τ◦|
[2]
E◦ . Furthermore, τ◦ ⊆ τ◦t. For

any ρ, λ ∈ Con(S), by Theorems 4.4, 4.9 and the dual of Theorem 4.9 in [9], we have

ρV λ⇔ ρ◦ = λ◦, ρTrλ⇔ ρI = λI , ρTlλ⇔ ρΛ = λΛ.

Shang and Wang[10] have shown that congruences on regular semigroups with Q-inverse transver-

sals can also be characterized abstractly by congruence pairs which consist of congruences on I

and L satisfying certain conditions.

Definition 1.1
[10] Let τI and τL be congruences on I and L, respectively. If they satisfy the

following conditions, (τI , τL) is called a congruence pair for S.

(i) (τI)|E◦ = (τL)|E◦ ;

(ii) (∀e, f ∈ I, x ∈ L)eτIf ⇒ xeτLxf , (∀x, y ∈ L, e ∈ I)xτLy ⇒ xeτLye.

Clearly, (ii) is equivalent to the following condition (iii),

(iii) (∀e, f ∈ I, x, y ∈ L)eτIf, xτLy ⇒ xeτLyf . Define a relation ρ(τI , τL) on S by the

following rule,

xρ(τI , τL)y ⇔ xIτIyI , xLτLyL.

Lemma 1.1
[10] For any ρ, σ ∈ Con(S), ρ ⊆ σ ⇔ ρI ⊆ σI , ρL ⊆ σL. Therefore, ρ = σ ⇔ ρI = σI ,

ρL = σL.

Lemma 1.2
[10] For every congruence pair (τI , τL) for S, the relation ρ(τI , τL) is the unique

congruence on S whose restrictions to I and L are τI and τL, respectively. Conversely, every

congruence on S can be represented in this way.

In this paper, we study the complete congruence Q on the congruence lattice of regular

semigroups with Q-inverse transversals. And we go one step further to give the least and the

greatest elements of complete congruence Tr in terms of congruence pairs.

2. The congruence relation Q on Con(S)

In this section, we investigate the congruence relation Q on the lattice Con(S). The classes

of the congruence relation Q are intervals of Con(S). We present the least and the greatest

elements of each classes of the congruence relation Q clearly.

One may observe from Lemma 1.2 that for every ρ ∈ Con(S), there exists a congruence pair

Jρ = (ρI , ρL) and vice versa for every congruence pair J , a congruence ρJ . By Lemma 1.2,

ρ 7−→ (ρI , ρL) and J 7−→ ρJ are mutually inverse mappings satisfying ρJρ
= ρ, JρJ

= J .
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Denote by CP (S) the set of congruence pairs for S. Define an order ≤ on CP (S) by com-

ponentwise inclusion. It is clear that ≤ is a partial order on CP (S). From Lemma 1.1, we

have

(τI , τL) ≤ (τ ′I , τ
′

L) ⇔ ρ(τI , τL) ⊆ ρ(τ ′

I
, τ ′

L
).

By Lemma 1.2, we know that Con(S) and CP (S) are isomorphic as partially ordered sets and

therefore as (complete) lattices. In what follows we determine joins and meets in the lattice

CP (S).

Lemma 2.1 Let Ψ be a family of congruences on S. For ρ ∈ Ψ, denote Jρ = (ρI , ρL). Then

J∩ρ∈Ψρ = (∩ρ∈ΨρI , ∩ρ∈Ψ ρL), J∨ρ∈Ψρ = (∨ρ∈ΨρI , ∨ρ∈Ψ ρL).

Proof The first equality is obvious. In order to show the second, it suffices to prove (∨ρ∈Ψρ)I =

∨ρ∈ΨρI and (∨ρ∈Ψρ)L = ∨ρ∈ΨρL. Suppose e(∨ρ∈Ψρ)If for e, f ∈ I, then

e(∨ρ∈Ψρ)If ⇒ e(∨ρ∈Ψρ)f

⇒ (∃ρi ∈ Ψ, gi ∈ S)eρ1g1ρ2g2ρ3...ρn−1gn−1ρnf

⇒ e = ee◦ρ1Ig1g
◦

1ρ2Ig2g
◦

2ρ3I ...ρn−1Ign−1g
◦

n−1ρnIff
◦ = f

⇒ e(∨ρ∈ΨρI)f.

So (∨ρ∈Ψρ)I ⊆ ∨ρ∈ΨρI . The reverse inclusion is obvious.

Next assume x(∨ρ∈Ψρ)Ly for x, y ∈ L, then

x(∨ρ∈Ψρ)Ly ⇒ x(∨ρ∈Ψρ)y

⇒ (∃ρi ∈ Ψ, zi ∈ S)xρ1z1ρ2z2ρ3...ρn−1zn−1ρny

⇒ x = x◦◦x◦xρ1Lz
◦◦

1 z◦1z1ρ2Lz
◦◦

2 z◦2z2ρ3L...ρn−1Lz
◦◦

n−1z
◦

n−1zn−1ρnLy
◦◦y◦y = y

⇒ x(∨ρ∈ΨρL)y.

Thus (∨ρ∈Ψρ)L ⊆ ∨ρ∈ΨρL. The reverse inclusion is obvious. 2

Lemma 2.2 Let Γ be a nonempty family of congruence pairs for S and denote J = (τI , τL) ∈ Γ.

Then

∩J∈ΓρJ = ρ(∩J∈ΓτI , ∩J∈ΓτL), ∨J∈ΓρJ = ρ(∨J∈ΓτI , ∨J∈ΓτL).

Proof Denote simply ρ = ρJ = ρ(τI , τL). From Lemma 2.1,

J∩J∈Γρ = (∩J∈ΓτI , ∩J∈Γ τL).

From Lemma 1.2, ρJ∩ρ
= ∩ρ. Hence the first equality holds. The second one may be proved

similarly.

Lemma 2.3 CP (S) is a lattice under the partial order ≤ . The lattice operations in CP (S) are

given as follows:

(τI , τL) ∩ (τ
′

I , τ
′

L) = (τI ∩ τ
′

I , τL ∩ τ
′

L),

(τI , τL) ∨ (τ
′

I , τ
′

L) = (τI ∨ τ
′

I , τL ∨ τ
′

L).
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Proof We omit the proof since it is easy. 2

Lemma 2.4 Let π be a congruence on S◦. Then we have

(∀a, b ∈ S◦)(∀e ∈ I, x ∈ L)aπb⇒ xaeπxbe.

Proof Suppose aπb for a, b ∈ S◦. Then for e ∈ I, x ∈ L, by (1.5),

xae = x◦◦x◦xaee◦ = x◦◦x◦x◦◦ae◦◦e◦πx◦◦x◦x◦◦be◦◦e◦ = xbe.

Let π be a congruence on S◦. Define a relation ξI(π) on I with respect to π by

eξI(π)f ⇔ (∀x ∈ L)xeπxf.

We set

CN (L) = {σ ∈ Con(L)|∃ρ ∈ Con(S), ρ|L = σ}.

Theorem 2.1 Define a mapping ψ from Con(S) into CN (L) by

ψ : ρ 7−→ ρL.

Then the following statements are true.

(i) ψ is a complete homomorphism from Con(S) onto CN (L);

(ii) The complete congruence Q on Con(S) induced by ψ is V ∩ Tl;

(iii) For any ρ ∈ Con(S), the Q-class ρQ is an interval of Con(S) such that

ρQ = [ρQ, ρ
Q],

where ρQ = ρ(µI (ρ◦), ρL) and ρQ = ρ(ξI(ρ◦), ρL).

Proof (i) By the definition of CN (L), ψ is surjective; ψ is a complete homomorphism by Lemma

2.2.

(ii) We need to prove that Q = V ∩ Tl. If ρ(V ∩ Tl)σ, then by Theorem 4.4 and the dual

of Theorem 4.9 in [9], ρ|S◦ = σ|S◦ and ρ|Λ = σ|Λ. Let x, y ∈ L with xρy. Then x◦ρy◦, and so

x◦◦ρy◦◦. Hence x◦xρy◦y. Thus x◦xσy◦y and x◦◦σy◦◦, and so x = x◦◦x◦xσy◦◦y◦y = y. Therefore

ρL ⊆ σL. Similarly, the reverse inclusion holds. So ρQσ. That is to say, V ∩ Tl ⊆ Q. Obviously,

the reverse inclusion also holds.

(iii) By Theorem 4.4 in [9], we have µI(ρ
◦)|E◦ = ρ◦|E◦ = (ρL)|E◦ . Assume eµI(ρ

◦)f for

e, f ∈ I. Since µI(ρ
◦) ⊆ ρI , we have eρf. For any x ∈ L, by (1.3), we have xeρLxf. Let x, y ∈ L

with xρLy. Then for any e ∈ I, we have xeρye. So xeρLye. Hence (µI(ρ
◦), ρL) is a congruence

pair such that ρ(µI(ρ◦), ρL) ∈ ρQ. We have also ρ(µI(ρ◦), ρL) ⊆ ρ(ρI , ρL) = ρ. Since the definition

of µI(ρ
◦) depends only on ρ◦, ρ(µI(ρ◦), ρL) is the smallest element of ρQ.

Let π be a congruence on S◦. Clearly, ξI(π) is an equivalence relation on I. Let eξI(π)f.

Then for any x ∈ L, xeπxf, and for any g ∈ I, by Lemma 2.4, we have

xeg = x◦◦x◦xegπx◦◦x◦xfg = xfg

so egξI(π)fg. We also have g◦eπg◦f. Since xg ∈ S◦, we get

xge = xgg◦eπxgg◦f = xgf,
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and thus geξI(π)gf. Hence ξI(π) is a congruence on I. If for e◦, f◦ ∈ E◦, e◦πf◦, then for any

x ∈ L, by Lemma 2.4, we have

xe◦ = xe◦e◦πxf◦e◦ = xe◦f◦πxf◦f◦ = xf◦.

So e◦ξI(π)f◦. Thus π|E◦ ⊆ (ξI(π))|E◦ . Conversely, if e◦(ξI(π))|E◦f◦, then

e◦ = e◦e◦πe◦f◦ = f◦e◦πf◦f◦ = f◦.

Thus (ξI(π))|E◦ ⊆ π|E◦ , and so (ξI(π))|E◦ = π|E◦ . Let π = ρ◦. Then ξI(ρ
◦)|E◦ = ρ◦|E◦ =

(ρL)|E◦ . Assume eξI(ρ
◦)f for e, f ∈ I. For any x ∈ L, by the definition of ξI(ρ

◦) we have xeρ◦xf.

Noticing xe, xf ∈ S◦ ⊆ L, we get xeρLxf . If for x, y ∈ L, xρLy, then xρy. For any e ∈ I, we have

xeρye, and thus xeρLye. Hence (ξI(ρ
◦), ρL) is a congruence pair such that ρ(ξI(ρ◦), ρL) ∈ ρQ.

Noticing ρI ⊆ ξI(ρ
◦), we also have ρ = ρ(ρI , ρL) ⊆ ρ(ξI (ρ◦), ρL). Since the definition of ξI(ρ

◦)

depends only on ρ◦, it follows that ρ(ξI(ρ◦), ρL) is the greatest element of ρQ.

Therefore, the Q-class ρQ is [ρQ, ρ
Q].

3. The congruence relation Tr on Con(S)

Using congruence pairs, we present the least and the greatest element in each Tr− class in

this section, which is in a different approach to [9].

Let π be a congruence on S◦. Define relations ξL(π) and νL(π) on L with respect to π

respectively, as follows.

xξL(π)y ⇔ (∀e ∈ I)xeπye,

xνL(π)y ⇔ (∃p◦ ∈ E◦)p◦xπ∗p◦y, p◦πx◦◦x◦πy◦◦y◦,

where π∗ is the congruence generated by π on S. Noticing π∗ is the smallest element of {ρ ∈

Con(S) : ρ|S◦ = π}. This is because π = π|S◦ ⊆ (π∗)|S◦ . By (1.7), there exists a ξ ∈ Con(S)

such that ξ|S◦ = π. Thus (π∗)|S◦ ⊆ ξ|S◦ = π, and so (π∗)|S◦ = π. If ρ ∈ Con(S), ρ|S◦ = π, then

π ⊆ ρ. So π∗ ⊆ ρ.

Let τI ∈ CN (I) = {σ ∈ Con(I)|∃ρ ∈ Con(S), ρ|I = σ}. Define a relation τ◦n on S◦ by

τ◦n = β∗, where β = {(xe, xf)|eτIf, x ∈ L}.

Theorem 3.1 For ρ ∈ Con(S), we have ρTr
= ρ(ρI , νL(ρ◦

n)) and ρTr = ρ(ρI , ξL(ρ◦t)).

Proof Let π be a congruence on S◦. We need to prove that νL(π) is a congruence on L. For

x ∈ L, there is p◦ = x◦◦x◦ ∈ E◦ such that x◦◦x◦xπ∗x◦◦x◦x and x◦◦x◦πx◦◦x◦πx◦◦x◦. Hence

νL(π) is reflexive. Clearly, νL(π) is symmetric. For x, y, z ∈ L with xνL(π)y and yνL(π)z, there

exist p◦, q◦ ∈ E◦ such that

p◦xπ∗p◦y, p◦πx◦◦x◦πy◦◦y◦,

q◦yπ∗q◦z, q◦πy◦◦y◦πz◦◦z◦,

hence q◦p◦xπ∗q◦p◦z and q◦p◦πy◦◦y◦πx◦◦x◦πz◦◦z◦. Therefore νL(π) is transitive, and so νL(π)

is an equivalence relation on L. Assume xνL(π)y for x, y ∈ L. Then p◦xπ∗p◦y for some p◦ ∈ E◦
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such that p◦πx◦◦x◦πy◦◦y◦. For any z ∈ L, we have z◦◦p◦z◦πz◦◦x◦◦x◦z◦πz◦◦y◦◦y◦z◦. Since L is

an orthodox semigroup with Q-inverse transversal S◦, by (1.4) we have

z◦◦p◦z◦.zx = z◦◦p◦z◦zx◦◦x◦x = z◦◦p◦z◦z◦◦x◦◦x◦x

= z◦◦z◦z◦◦p◦xπ∗z◦◦z◦z◦◦p◦y = z◦◦p◦z◦z◦◦y = z◦◦p◦z◦.zy,

z◦◦p◦z◦π(zx)◦◦(zx)◦π(zy)◦◦(zy)◦.

Thus, by the definition of νL(π), zxνL(π)zy. As p◦πx◦◦x◦πy◦◦y◦, we have

p◦x◦◦z◦◦z◦x◦πx◦◦z◦◦z◦x◦ = (xz)◦◦(xz)◦,

p◦y◦◦z◦◦z◦y◦πy◦◦z◦◦z◦y◦ = (yz)◦◦(yz)◦.

Since p◦ ∈ E◦ and p◦xπ∗p◦y, by (1.4) and (1.6), we have x◦p◦ = x◦p◦◦πy◦p◦◦ = y◦p◦, hence

p◦x◦◦πp◦y◦◦. Noticing x◦◦z◦◦z◦x◦ ∈ E◦, we also have

p◦x◦◦z◦◦z◦x◦ = p◦p◦x◦◦z◦◦z◦x◦

= p◦x◦◦z◦◦z◦x◦p◦πp◦y◦◦z◦◦z◦y◦p◦ = p◦y◦◦z◦◦z◦y◦.

Hence, by the proof above and the definition of π∗,

p◦x◦◦z◦◦z◦x◦xz = p◦x◦◦z◦◦z◦x◦xz◦◦z◦z = p◦x◦◦z◦◦z◦x◦x◦◦z◦◦z◦z = p◦x◦◦z

π∗p◦y◦◦z = p◦y◦◦z◦◦z◦y◦yz = p◦y◦◦z◦◦z◦y◦p◦yzπ∗p◦x◦◦z◦◦z◦x◦p◦yz = p◦x◦◦z◦◦z◦x◦yz,

p◦x◦◦z◦◦z◦x◦π(xz)◦◦(xz)◦π(yz)◦◦(yz)◦.

Thus xzνL(π)yz. Therefore νL(π) is a congruence on L. Assume xνL(π)y for x, y ∈ S◦.

Then p◦xπ∗p◦y for some p◦ ∈ E◦ such that p◦πx◦◦x◦πy◦◦y◦. Thus xπp◦xπ∗p◦yπy, and so

νL(π)|S◦ ⊆ π. For x, y ∈ S◦ with xπy, we have x◦πy◦. Thus x◦◦x◦ = xx◦πyy◦ = y◦◦y◦, and so

x◦◦x◦y◦◦y◦πy◦◦y◦. Noticing π∗|S◦ = π and xπy, we also have

x◦◦x◦y◦◦y◦.xπ∗x◦◦x◦y◦◦y◦.y,

x◦◦x◦y◦◦y◦πx◦◦x◦πy◦◦y◦,

and thus xνL(π)y. Hence π ⊆ νL(π)|S◦ , so π = νL(π)|S◦ . Let π = ρ◦n. Then νL(ρ◦n)|S◦ = ρ◦n. We

need to prove that (ρI)|E◦ = ρ◦n|E◦ . For e◦, f◦ ∈ E◦ with e◦ρIf
◦, by the definition of ρ◦n we

have e◦ = e◦e◦βe◦f◦ = f◦e◦βf◦f◦ = f◦. So e◦ρ◦nf
◦. Thus (ρI)|E◦ ⊆ ρ◦n|E◦ . To get the reverse

inclusion, assume e◦ρ◦nf
◦ for e◦, f◦ ∈ E◦. Then there exist ei, fi ∈ I, xi ∈ L, si, ti ∈ So1 (i =

1, 2, . . . , n) such that

e◦ = s1x1e1t1, s1x1f1t1 = s2x2e2t2, . . . , snxnfntn = f◦, eiρIfi.

By eiρIfi, we get eiρfi, and thus e◦ρf◦. Hence e◦(ρI)|E◦f◦, and so ρ◦n|E◦ ⊆ (ρI)|E◦ . Thus

νL(ρ◦n)|E◦ = ρ◦n|E◦ = (ρI)|E◦ .

Therefore (ρI , νL(ρ◦n)) satisfies Definition 1.1(i). For e, f ∈ I, x ∈ L with eρIf, by the definition

of ρ◦n, we have xeρ◦nxf. By xe, xf ∈ S◦ and νL(ρ◦n)|S◦ = ρ◦n, we get xeνL(ρ◦n)xf. Assume xνL(ρ◦n)y
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for x, y ∈ L. Then q◦x(ρ◦n)∗q◦y for some q◦ ∈ E◦ such that q◦ρ◦nx
◦◦x◦ρ◦ny

◦◦y◦. Thus

x(ρ◦n)∗q◦x(ρ◦n)∗q◦y(ρ◦n)∗y,

and so x(ρ◦n)∗y. For any e ∈ I, we have xe(ρ◦n)∗ye. By xe, ye ∈ S◦ and (ρ◦n)∗|S◦ = ρ◦n = νL(ρ◦n)|S◦ ,

we get xeνL(ρ◦n)ye. Therefore (ρI , νL(ρ◦n)) is a congruence pair such that ρ(ρI ,νL(ρ◦
n)) ∈ ρTr. For

a, b ∈ S◦ with aρ◦nb, there exist ei, fi ∈ I, xi ∈ L, si, ti ∈ So1 (i = 1, 2, . . . , n) such that

a = s1x1e1t1, s1x1f1t1 = s2x2e2t2, . . . , snxnfntn = b, eiρIfi.

Hence aρb, so aρ◦b. Therefore ρ◦n ⊆ ρ◦. Thus, by the definition of νL(π), νL(ρ◦n) ⊆ νL(ρ◦) ⊆ ρL.

Hence ρ(ρI ,νL(ρ◦
n)) ⊆ ρ(ρI ,ρL) = ρ. Since the definition of νL(ρ◦n) depends only on ρ◦n and the

definition of ρ◦n depends only on ρI , ρ(ρI ,νL(ρ◦
n)) is the smallest element of ρTr.

From Theorem III. 2.5 in [2], ρ◦t is the greatest congruence in Con(S◦) such that ρ◦t|E◦ =

ρ◦|E◦ . Let π be a congruence on S◦. ξL(π) is also an equivalence relation on L. Let xξL(π)y.

Then for any e ∈ I, xeπye, and for any z ∈ L, by Lemma 2.4, we have

zxe = zxee◦πzyee◦ = zye

so zxξL(π)zy. Noticing xz◦◦z◦πyz◦◦z◦ and ze ∈ S◦, we have

xze = xz◦◦z◦zeπyz◦◦z◦ze = yze,

and thus xzξL(π)yz. Hence ξL(π) is also a congruence on L.

If for x◦, y◦ ∈ S◦, x◦πy◦, then for any e ∈ I, by Lemma 2.4, we have

x◦e = x◦x◦◦x◦eπx◦x◦◦y◦e = x◦x◦◦y◦y◦◦y◦e = y◦y◦◦x◦x◦◦y◦eπy◦y◦◦y◦y◦◦y◦e = y◦e.

So x◦ξL(π)y◦. Thus π ⊆ (ξL(π))|S◦ . Conversely, if x◦(ξL(π))|S◦y◦, then x◦◦(ξL(π))|S◦y◦◦, and

so x◦◦x◦(ξL(π))|S◦y◦◦y◦. Thus, by the definition of ξL(π),

x◦ = x◦x◦◦x◦πy◦x◦◦x◦ = y◦y◦◦y◦x◦◦x◦ = y◦x◦◦x◦y◦◦y◦πy◦y◦◦y◦y◦◦y◦ = y◦.

Hence (ξL(π))|S◦ ⊆ π. Consequently (ξL(π))|S◦ = π. Let π = ρ◦t. Then

ξL(ρ◦t)|E◦ = ρ◦t|E◦ = ρ◦|E◦ = ρI |E◦ .

For e, f ∈ I, eρIf, then for any x ∈ L, we have xeρ◦xf. As ρ◦ ⊆ ρ◦t and ξL(ρ◦t)|S◦ = ρ◦t,

we have xeξL(ρ◦t)xf. Assume xξL(ρ◦t)y for x, y ∈ L. Then for any e ∈ I, by the definition

of ξL(ρ◦t), xeρ◦tye. Since xe, ye ∈ S◦ and ξL(ρ◦t)|S◦ = ρ◦t, we have xeξL(ρ◦t)ye. Therefore

(ρI , ξL(ρ◦t)) is a congruence pair and ρ(ρI , ξL(ρ◦t)) ∈ ρTr. By the definition of ξL(π), we have

ρL ⊆ ξL(ρ◦) ⊆ ξL(ρ◦t) and

ρ = ρ(ρI , ρL) ⊆ ρ(ρI , ξL(ρ◦t)).

Since the definition of ξL(ρ◦t) depends only on ρ◦t and the definition of ρ◦t depends only on

(ρI)|E◦ , ρ(ρI , ξL(ρ◦t)) is the greatest element of ρTr.

With respect to any congruence ρ on S, there exist two congruence classes containing ρ, and

there are four extremal values related to these congruence classes. Further, we describe the fine

relations among these extremal congruences for a fixed congruence on S.
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Theorem 3.2 Let ρ be a congruence on S. Then Tr ∩Q = ǫCon(S), ρ = ρTr
∨ ρQ = ρTr ∩ ρQ,

(ρTr )Tr = ρTr , (ρTr
)Tr

= ρTr
, (ρTr )Tr

= ρTr
, (ρTr

)Tr = ρTr , (ρQ)Q = ρQ, (ρQ)Q = ρQ, (ρQ)Q =

ρQ, (ρQ)Q = ρQ.

Proof Only ρ = ρTr
∨ ρQ = ρTr ∩ ρQ and (ρTr )Tr = ρTr are proved below.

νL(ρ◦n) ⊆ ρL has been shown in the proof of Theorem 3.1. Combining µI(ρ
◦) ⊆ ρI , Lemma

2.2, Theorems 2.1 and 3.1, we have ρ = ρTr
∨ ρQ. Similarly, ρI ⊆ ξI(ρ

◦), ρL ⊆ ξL(ρ◦t), and then

ρ = ρTr∩ρQ. Finally, (ρTr )Tr = ρ(ρI ,ξL((ρ◦t)◦t)) = ρTr from the fact that (ρTr )I = ρI , ξL(ρ◦t)|S◦ =

ρ◦t and (ρ◦t)◦t = ρ◦t.
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