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1. Preliminaries

We shall use the notations and terminologies of [1] and [2] in this paper. Let S be a regular
semigroup. An inverse subsemigroup S° of S is an inverse transversal if [V (z) N.S°| = 1 for each
x € S, where V() denotes the set of inverses of . In this case, the unique element of V(z)N S°
is denoted by z° and (2°)° is denoted by x°°. We have z°°° = z° for each x € S. E° denotes
the semilattice of idempotents of S°, while I(S) = {e € Slee® = e}, A(S) = {g € S|¢°9 = g},
R(S) = {x € S|z°z = z°2°°} and L(S) = {a € S|aa® = a°°a°}. The above signs are denoted by
I,A, R and L if no confusion is possible. For every x € S, we define x; = xx°, x5 = 2°x, 2 =
xx®x°® and zy, = 2°°2°z. Obviously, for each x € S,2r € R, 2 € L, (xg)° = 2° and (x)° = z°.
For every e € I,g € A,a € Rand z € L, we have e; = e,gp = g,agr = a and z;, = z. If an
inverse transversal S° of S is a quasi-ideal of S (that is S°5S5° C S°), S° is called a Q-inverse
transversal of S. Throughout this paper, S will denote a regular semigroup with a Q-inverse
transversal S° if no special mention is made. Each z in S can be written uniquely in the form

00 ,,.0

x = ea, where e € I,a € L. Thus there is a mapping  — (z2°,2°°2°z) from S onto the set

{(e,a) € I x L|e® = aa’}.
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By using this mapping, S can be coordinatized by pairs. A band B is left [resp. right] normal
if efg =egf [resp. efg = feg] for every e, f,g € B. A non-empty subset A of S is called a left
ideal [resp. right ideal] if SA C A [resp. AS C A]. A semigroup is called orthodox if it is regular
and if its idempotents form a subsemigroup.

We list several known results, which will be used frequently without special reference in this
paper.

(L)L (zy)° = (2°2y)°x° = y°(wyy°)° for every x,y € S.

(1.2)3:57=9 [(S) [resp. A(S)] is a left [resp. right] normal band with a Q-inverse transversal
E°. Furthermore, R(S) and L(S) are orthodox semigroups with a Q-inverse transversal S° which
is a right ideal of R and a left ideal of L.

(1.3)158 R(S)N L(S) = S°,1(S) N A(S) = E°, E(R(S)) = I(S) and E(L(S)) = A(S).

(1.4)1 S is orthodox if and only if for any z,y € S, (zy)° = y°z°.

(1.5)[9} For a regular semigroup S with an inverse transversal S°, S° is a (-inverse transversal
if and only if for every x,y € S, zp.y; € S°, and if and only if for any s,t € S°,x € S, szt = sz°°t,
and if and only if for any s,t € S°,z € S, (sxt)® = t°z°s°.

(1.6)!) For p € Con(S), let p° = p|so. Then for x,y € S, zpy implies z°py°.

(1.7)1' For any congruence 7 on S°, there exists p € Con(S) such that m = p|so.

For a regular semigroup S, E(S) denotes the set of idempotents. The complete lattice of
congruences on S is denoted by Con(S). For any p € Con(S), define p°, pr, pa, pr and pr, as

follows:

P’ =plse, pr=plr, pa=0rlr, pr=rlr, pL=0plL

If p € Con(S), then the trace of p is trp = p|g(s) and the kernel of p is kerp = {s € S|sps®}. We
present the following notions and results due to Pastijn and Petrich/. For any p,o € Con(S),
define T}, T,.,U and V as follows:

pTio < tr(pV L) =tr(oc VL), plho < tr(pVR) =tr(cVR),
pUoc & pNn<=0n<, pVo < pUo, pKo,

where ()’ denotes the greatest congruence on S contained in the relation ( ), < denotes
the natural partial order on E(S), and K is a relation on Con(S) such that pKo if and only
if kerp = kers. Then these relations are complete congruences on the lattice Con(S). The
congruence class pT,. [resp. pT}, pU, pV] is an interval of Con(S) with greatest and smallest
element to be denoted by p" [resp. pTt, pTV, pTV] and pr, [resp. p1,, p1y,, PTy |, Tespectively. Let
7 be a relation on S. The congruence generated by 7 is denoted by 7*.

In [9], congruences were coordinatized abstractly by triples which consist of congruences on
S°, I and A satisfying certain conditions. Five complete congruences V, T, T,., T; and U on the
congruences lattices are discussed and their least and greatest elements are presented in terms
of congruence triples. We present the following notions and results due to Wang[®!. Let 7 be a

congruence on S°. Define relations p(7) on I as follows:

enr(m)f & (3p° € B%)ep® = fp°,pomemf°.
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Furthermore, puy(7) is a congruence on I and py(7)|ge = w|go. If @ = p|ge, then ur(n) C pr. A

congruence 7 on [ is normal if 7 satisfies the following condition:
(Ve, f € IN(Va € S®)erf = aea’Tafa’.

Denote by Cn(I) the set of normal congruences on I. Let 71 € Cn(I). Define a relation 7°¢ on
S° by
at®'b & (Ve® € E°)ae®a’Trbe’b°.

7°! is the greatest congruence in Con(S°) such that 7°|g. = TO|[E2]O. Furthermore, 7° C 7°. For
any p, A € Con(S), by Theorems 4.4, 4.9 and the dual of Theorem 4.9 in [9], we have

PVAS p° =X, pT A< pr =X, pTi\A S pa = M.

Shang and Wang!*% have shown that congruences on regular semigroups with Q-inverse transver-
sals can also be characterized abstractly by congruence pairs which consist of congruences on I

and L satisfying certain conditions.

Definition 1.10'% Let 7; and 7, be congruences on I and L, respectively. If they satisfy the
following conditions, (77, 7y,) is called a congruence pair for S.

(i) (m1)lee = (70)|Ee;

(ii)) (Ve,f € l,x € L)eryf = xerpaf, (Ve,y € L,e € IxTLy = xeTpye.

Clearly, (ii) is equivalent to the following condition (iii),

(iii) (Ye,f € I,x,y € L)errf,x1ry = werpyf. Define a relation p(, ,,) on S by the
following rule,

TP(rr, 7)Y < TITIYI, TLTLYL-

Lemma 1.11% For any p,o € Con(S), p C 0 < p; C o1, pr C or. Therefore, p= 0 < p; = oy,
PL =O0L.

Lemma 1.2[10

For every congruence pair (7,71) for S, the relation p(., ;) is the unique
congruence on S whose restrictions to I and L are 71 and 7y, respectively. Conversely, every
congruence on S can be represented in this way.

In this paper, we study the complete congruence ) on the congruence lattice of regular
semigroups with Q-inverse transversals. And we go one step further to give the least and the

greatest elements of complete congruence 7T;. in terms of congruence pairs.

2. The congruence relation  on Con(S)

In this section, we investigate the congruence relation @ on the lattice Con(S). The classes
of the congruence relation @) are intervals of Con(S). We present the least and the greatest
elements of each classes of the congruence relation @) clearly.

One may observe from Lemma 1.2 that for every p € Con(S), there exists a congruence pair
J, = (p1,pr) and vice versa for every congruence pair J, a congruence p;. By Lemma 1.2,

p+— (pr,pr) and J — p; are mutually inverse mappings satisfying p;, = p, J,, = J.
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Denote by C'P(S) the set of congruence pairs for S. Define an order < on C'P(S) by com-
ponentwise inclusion. It is clear that < is a partial order on CP(S). From Lemma 1.1, we

have
(7']77'L) < (T}aTi) < P(r1, 1) < P(zi, 1)

By Lemma 1.2, we know that Con(S) and C'P(S) are isomorphic as partially ordered sets and
therefore as (complete) lattices. In what follows we determine joins and meets in the lattice
CP(S).

Lemma 2.1 Let ¥ be a family of congruences on S. For p € ¥, denote J, = (pr, pr,). Then

Jrpewp = (Npewpr, Npew pL);  pewp = (Vocwpr, Vpew pr)-
Proof The first equality is obvious. In order to show the second, it suffices to prove (V,cwp)r =
Vocwpr and (Vpewp)r = Vpcwpr. Suppose e(V,ocwp)rf for e, f € I, then
e(Vpewp)rf = e(Vpcup)f
= (Fpi € ¥, gi € S)ep191p292p3--Pn—19n—1Pnf
= e = ee’p119191 P219293 P31 - Pr—119n—19pn_1Pn1 f[° = [
= e(Vpewpr)f
So (Vpewp)r € Vpcwpr. The reverse inclusion is obvious.
Next assume z(V,cwp)ry for z,y € L, then
z(Vpewp)rLy = x(Vpewp)y
= (Fpi € ¥, 2 € S)xp121p222P3.--Pr—1Zn—1PnY
= x = 2°°2°wp1127° 2] 21P2L.25° 253 22P3L - Prn—1L%p1%p—17n—1PnLY Y'Y =Y
= o(VpewprL)y-
Thus (V,yewp)r C Vpewpr. The reverse inclusion is obvious. O

Lemma 2.2 Let I" be a nonempty family of congruence pairs for S and denote J = (77, 71,) € I
Then

NJerpPs = P(nyerrr, Nyerrn)r VJIETPT = P(Vjerrr, Vaertr):
Proof Denote simply p = p; = p(+;, r,). From Lemma 2.1,
Jaserp = (NyerTr, Nier 7r)-
From Lemma 1.2, p;,, = Np. Hence the first equality holds. The second one may be proved

similarly.

Lemma 2.3 CP(9) is a lattice under the partial order < . The lattice operations in CP(S) are

given as follows:

(r7, T2) N (17, 1) = (71 077y 7L N7,

(7—17 TL) \ (Tlv TL) = (TI VT, TL \/TL)'
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Proof We omit the proof since it is easy. O

Lemma 2.4 Let m be a congruence on S°. Then we have
(Va,b € S°)(Ve € I,z € L)arb = xaemwxbe.

Proof Suppose and for a,b € S°. Then for e € I,z € L, by (1.5),

zae = z°°z°zaece® = 2°°x°2°°ae e’ x°x°°be® e’ = xbe.

Let 7 be a congruence on S°. Define a relation ;(7) on I with respect to 7 by
er(m)f & (Vo € L)zeraf.

We set
Cn(L) ={o € Con(L)|3p € Con(S), p|r = c}.
Theorem 2.1 Define a mapping v from Con(S) into C (L) by
Yipr— prL.
Then the following statements are true.
(i) % is a complete homomorphism from Con(S) onto Cn(L);

(ii)) The complete congruence @ on Con(S) induced by v is V N Ty;
(iii)  For any p € Con(S), the Q-class p@ is an interval of Con(S) such that

where pQ = pu;(p°), pr) and pQ = P(Er(p®), pr)

Proof (i) By the definition of Cn (L), 1 is surjective; ¢ is a complete homomorphism by Lemma
2.2.

(ii) We need to prove that Q = V N T,. If p(V N T;)o, then by Theorem 4.4 and the dual
of Theorem 4.9 in [9], p|se = o|go and p|pn = o|a. Let x,y € L with xpy. Then 2°py°, and so
2°°py°°. Hence x°xpy°y. Thus z°zoy®y and z°°oy°°, and so v = z°°x°zoy°°y°y = y. Therefore
pr C or. Similarly, the reverse inclusion holds. So pQo. That is to say, V N7T; C Q. Obviously,
the reverse inclusion also holds.

(iii) By Theorem 4.4 in [9], we have u;(p°)|ge = p°|go = (pr)|Ee. Assume eus(p°)f for
e, f € I. Since usr(p°) C pr, we have epf. For any x € L, by (1.3), we have zeprxf. Let x,y € L
with zpry. Then for any e € I, we have xzepye. So xeprye. Hence (ur(p°), pr) is a congruence
pair such that p(,,(pe), o) € pPQ. We have also p(,;(p0), pr) € P(pr, pr) = p- Since the definition
of p1(p°) depends only on p°, p(,,(p°), p.) is the smallest element of pQ.

Let m be a congruence on S°. Clearly, () is an equivalence relation on I. Let e&;(w)f.

Then for any x € L,zerz f, and for any g € I, by Lemma 2.4, we have
reg = x°°x°xzegraxxfg = xfg
so eg€r(m) fg. We also have g°emrg® f. Since zg € S°, we get

rge = xgg°enxzgg’ f = xgf,
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and thus ge&;(m)gf. Hence &;() is a congruence on I. If for e°, f© € E° e°nf°, then for any
z € L, by Lemma 2.4, we have

ze® = zele’mxfe® = xe® fOmafCf° = xf°.
So e°&r(m) f°. Thus w|ge C (&1(m))|ge. Conversely, if e°(&7(m))|go f°, then
eO — eoeoﬂ_eofo — fOeOﬂ_fOfO — fo'

Thus (&7(m))|ge € 7|ge, and so (&7(7))|ge = 7|go. Let m = p°. Then &1 (p°)|ge = p°lre =
(pr)|Eo- Assume e&r(p°)f for e, f € I. For any x € L, by the definition of £;(p°) we have xep®z f.
Noticing xe, xf € S° C L, we get zeprxf. Ifforx,y € L, xpry, then xpy. For any e € I, we have
zepye, and thus xzeprye. Hence (§7(p°), pr) is a congruence pair such that p(¢, (), ) € PQ.
Noticing pr C &£1(p°), we also have p = p(,,. p.) € P(e;(p°), pr)- Since the definition of &7 (p°)
depends only on p°, it follows that pe,(pe) is the greatest element of pQ.

Therefore, the Q-class pQ is [pg, p@].

, PL)

3. The congruence relation 7, on Con(S)

Using congruence pairs, we present the least and the greatest element in each T;.— class in
this section, which is in a different approach to [9].

Let m be a congruence on S°. Define relations &1 (m) and vi(w) on L with respect to 7
respectively, as follows.

xér(m)y < (Ve € Izemye,
zvp(m)y < (Ip° € E°)p°en™p®y, p°rxz’my°°y°,

where 7* is the congruence generated by 7w on S. Noticing 7* is the smallest element of {p €
Con(S) : plge = w}. This is because m = 7|go C (7%)|so. By (1.7), there exists a £ € Con(S)
such that £|go = w. Thus (7%)|ge C £|go = 7, and so (7*)|go = 7. If p € Con(S), p|so = 7, then
™ Cp. So7m* Cp.

Let 71 € Cn(I) = {0 € Con(I)|Fp € Con(S),p|r = o}. Define a relation 7, on S° by
12 = (3*, where 8 = {(ze,xf)|eri f,x € L}.

Theorem 3.1 For p € Con(S), we have pr, = p(,;, v, (ps)) and P = Plor, €1 (00t))-

Proof Let m be a congruence on S°. We need to prove that vy (m) is a congruence on L. For
x € L, there is p° = x°°z° € E° such that z°°z°zn*2°°2°x and z°°z°mx®°x°m2°°x°. Hence
v (m) is reflexive. Clearly, vy (7) is symmetric. For z,y,z € L with zvy (7)y and yvp(7)z, there
exist p°, ¢° € E° such that

o * O o 0o _. O [elelge)
pxmpy, pTL TTY Y,
(o] * O (o] [eleage) 00 _ O
qgyrqz qmUYy ynz z,
OOZO

hence ¢°p°x7m*q°p°z and ¢°p°wy°°y° T’z . Therefore vy () is transitive, and so v ()

is an equivalence relation on L. Assume zvy (m)y for x,y € L. Then p°x7n*p°y for some p° € E°
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such that p°ra°°2°7my°°y°. For any z € L, we have z°°p°z°mz°°x°°x°2°m2°°y°°y°2°. Since L is

an orthodox semigroup with Q-inverse transversal S°, by (1.4) we have

OOOO oo, _0O _O oo, 0 _O0_o0o0o_,00_ O

0o _0 _,00,_ O * 00 _0_00_ O 0o, 0 _ 0 _OOo oo, 0 O

= 2%°2°2°°p° a2 2% 2 p°y = 2°°p°2° 2%y = 2°°p°2° .2y,
2°°p° 2% (zx)°° (zx)°m(2y)°° (2y)°.
Thus, by the definition of vy, (7), zzvy(m)zy. As p°ra°°z°wy°°y°, we have
PP 2 a0 w2020 = (12)°° (22)°,
POy 20 20y 20200 = (y2)°° (y2)°.
Since p° € E° and p°zxn*p°y, by (1.4) and (1.6), we have z°p° = z°p°°my°p°° = y°p°, hence

0,00 0,,00

p°x°°mp°y°°. Noticing x

092°°2°x° € E°, we also have

o _,00 _0O0_O_,O0 o,0_,00_0OO_O .0

p°x®°2°°2%2° = p°p°x°°2°° 2%

o_,00 _o0O0_oO,_O0_ O o, 00 _0O0_O_ O_O o, 00 _O0O0 _O, O

= p°x 2% mp°y 2% 2%y p° = p°y° 2% 2%y .
Hence, by the proof above and the definition of 7*,

pO‘rOOZOOZOxO‘rZ7pO$OOZOOZOIO$Z 2 Z7pOIOOZOOZO$O$OOZOOZOzip:Z: 2

*_ O, 00 o, 00 _,00_O_ O o, 00 _0O0_O_ O O *_ O _,00 _00_O_,O0_ O o,,00_o0OO _oO O

T Yz = p°y°°2°°2 %y yz = p°y° 22 Y p Yz p° a0 2°°2°x°p°yz = p°x°°2°°2°x°yz,
p°x®° 222w (x2)°° (x2)°m(y2)°° (y2)°.

Thus zzvp(m)yz. Therefore vp(m) is a congruence on L. Assume zvp(m)y for z,y € S°.
*,.0

00 ,,,0 0o, ,0

Then p°zm*p°y for some p° € E° such that p°mx®°x°nwy°°y°. Thus xap®xr*p°yry, and so

[e]e) O ) 00,,0

( )|se C w. For z,y € S° with xmy, we have x°7y°. Thus z = xx’myy°® = y°°y°, and so

x°y°°y°my°°y°. Noticing 7*|so = 7 and zmy, we also have

0o ,_,0_ 00, O *,,00_,0 0O0_ O

s A TR TRl 7 Gl Al A TR TR T

:Z:‘OO:Z;‘OZJOOZJOTLr ‘r 7Ty y ,

and thus zvp (m)y. Hence m C v (m)|ge, so m = v (m)|ge. Let m = p2. Then v (ps)|se = p2. We
need to prove that (pr)|ge = pS|go. For €°, f° € E° with e®prf°, by the definition of pS we
have e® = e®e®Be® f° = f°e°Bf°f° = f°. So e°pS f°. Thus (pr)|ge C p3|Ee. To get the reverse
inclusion, assume e°p f° for e°, f> € E°. Then there exist e;, f; € I,z; € L,s;, t; € S (i =
1,2,...,n) such that

60 = slxleltl, 81$1f1t1 = nggeztg, s Snl'nfntn = fo, eipffi.

By e;prfi, we get e;pfi, and thus e®pf°. Hence e®(pr)|go f°, and so p2|go C (pr)|ge. Thus

vr(pp)lee = polee = (pr)|Eo-

Therefore (pr, v (p3)) satisfies Definition 1.1(i). For e, f € I,z € L with ep; f, by the definition
of po, we have zepSaf. By we,xf € S° and v, (pg)|se = p5, we get xevy, (p2 )z f. Assume zvr (p2)y
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for x,y € L. Then ¢°x(pS,)*¢°y for some ¢° € E° such that ¢°px°°z°pdy°°y°. Thus
2(pn) e (py)"a°y(p7)"y,
and so z(p2)*y. For any e € I, we have ze(p?)*ye. By ze,ye € S° and (p3))*|se = p2 = vr.(p3)|se,

we get wevr,(py,)ye. Therefore (pr, vz (p;,)) is a congruence pair such that p(,; ., (ps)) € pTr. For
a,b € S° with apSb, there exist e;, f; € I,x; € L, s;,t; € S° (i=1,2,...,n) such that

a = sirieit, s171fity = samaeats, ..., SpZnfatn = b, eiprfi.

Hence apb, so ap®b. Therefore pS, C p°. Thus, by the definition of v (7), v (p5) C vi(p°) C pr.
Hence pp;.00(09)) € Plpr,pr) = p- Since the definition of vy (p;,) depends only on p;, and the
definition of p;, depends only on pr, p(p; v, (pe)) is the smallest element of pT.

From Theorem III. 2.5 in [2], p° is the greatest congruence in Con(S°) such that p°t|g. =
p°|go. Let m be a congruence on S°. £1,(w) is also an equivalence relation on L. Let x&y (m)y.

Then for any e € I, zemye, and for any z € L, by Lemma 2.4, we have
zwe = zxee’mwzyee® = zye
so zxy,(m)zy. Noticing x2°°2°7myz°°2° and ze € S°, we have
xze = x2°°2°zemyz°°2°ze = yze,
and thus zz&, (m)yz. Hence £, (7) is also a congruence on L.

If for z°,y° € S°, z°my°, then for any e € I, by Lemma 2.4, we have

o _,00 O o _,00,_ O ©o_,00, O 0O, O o, 00 __O_,O0O0_ O o, 00, O, OO, O

x’e = x°x°xCenax’xy°e = x°x°°y°y°°y°e = Yy x°x°°y eny°y°y°y°°y°e = y°e.

So x°¢p(m)y°. Thus m C (&(m))|so. Conversely, if x°(&(m))|soy°, then 2°°(&(7))]soy°°, and
s0 2°°x° (&L, (m))|sey°°y°. Thus, by the definition of &1, (),

o o, ,00_ 0 o0,,00_.0 o, 0o, O _,00_.O o,_,00,_0_ 00O O o, 0o, O_ 0O O )

x° =222 my°xx® = y°y°y°xx® = ¢z 2y Yy my°y Yy y°°y° = y°.
Hence (£1(m))|se C m. Consequently (¢4(7))|se = 7. Let m = p°'. Then

EL(p)|pe = p°|Ee = p°|Ee = p1lEo-

For e, f € I,ep;f, then for any x € L, we have xepzf. As p° C p° and &1(p°)|s0 = p°
we have xefy (p°)zf. Assume z€(p°)y for z,y € L. Then for any e € I, by the definition
of &1,(p°t), wep®tye. Since we,ye € S° and &1(p°)|se = p°t, we have zelr(p°t)ye. Therefore
(p1,€L(p°")) is a congruence pair and p(,,, ¢, (pot)) € pIr. By the definition of £z (), we have
pr C&L(p®) € EL(p®) and

P = Plor. pr) S Plor, €(o°0)-

Since the definition of £1,(p°") depends only on p° and the definition of p°* depends only on
(pr)|Eos Ppr, €1 (pot)) 18 the greatest element of pT.

With respect to any congruence p on .S, there exist two congruence classes containing p, and
there are four extremal values related to these congruence classes. Further, we describe the fine

relations among these extremal congruences for a fixed congruence on S.
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Theorem 3.2 Let p be a congruence on S. Then T N Q = €con(s), P = pr,. V PQ = pr N p@,
(o™ = p™, (pr,)1, = prs (P71 = prys (p1,) ™ = ™7, (p9)9 = p%, (p@)q = pa, (9o =
P (pQ)? = p@.

Proof Ouly p = pr, V pg = pl* N p% and (p?*)Tr = pT* are proved below.

vr,(ps) C pr, has been shown in the proof of Theorem 3.1. Combining p;(p°) C pr, Lemma
2.2, Theorems 2.1 and 3.1, we have p = pr, V pg. Similarly, pr C &7(p°), pr C €1(p°!), and then
p=pmNpQ. Finally, (07)1 = p(y, e, ((pot)or)) = p*" from the fact that (p™); = pr,€L(p°)|se =
p°t and (p°1)°F = p°.
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