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Abstract In this paper, we introduce an iterative scheme for finding a common element of the
set of fixed points of a nonexpansive mapping and the set of solutions of the variational inclusion
for an inverse-strongly monotone mapping and a maximal monotone mapping in a real Hilbert
space. Then we show that the sequence converges strongly to a common element of two sets.
Using the result, we consider the problem of finding a common fixed point of a nonexpansive
mapping and a strictly pseudocontractive mapping in a real Hilbert space.
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1. Introduction

Let H be a real Hilbert space, A : H — H be a single-valued mapping and M : H — 2 be

a multivalued mapping. The variational inclusion problem is to find a u € H such that
0 € A(u) + M(u). (1.1)

The set of solutions of the variational inclusion(1.1) is denoted by VI(H, A, M).

Special Cases

(1) When M is a maximal monotone mapping and A is a strongly monotone and Lipschitz
continuous mapping, problem (1.1) has been studied by Huang!!.

(2) If M = O¢, where O¢ denotes the subdifferential of a proper, convex and lower semi-
continuous function ¢ : H — R|J{+o0}, then problem (1.1) reduces to the following problem:
find w € H, such that

(A(u),v —u) + ¢(v) — d(u) >0, Yv e H, (1.2)

which is called a nonlinear variational inequality and has been studied by many authors3!,
(3) If M = 9é, where dk is the indicator function of a nonempty, closed and convex subset

K of H, then problem (1.1) reduces to the following problem: find u € K, such that
(A(u),v —u) >0, YveK, (1.3)
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which is the classical variational inequality!*).

A single-valued mapping A of H into itself is called a-inverse-strongly monotone if there

exists a positive real number « such that
(@ —y, Av — Ay) > o Az — Ay|?,

for all z,y € HP®=9. A mapping S of H into itself is called nonexpansive if
1Sz = Syl| < ||z —yll, Va,y e H.

We denote by F(S) the set of fixed points of S.

In this paper, we introduce a new iterative scheme for finding a common element of the set
of fixed points of a nonexpansive mapping and the set of solutions of the variational inclusion
for an inverse-strongly monotone mapping and a maximal monotone mapping in a Hilbert space.
Then we show that the sequence converges strongly to a common element of two sets. The result
generalized Theorem 3.1 in [5] from variational inequality (1.3) to variational inclusion (1.1),
which not only makes the result of Theorem 3.1 in [5] become a special case of this paper, but
also remove a lot of assumptions. Using the result, we consider the problem of finding a common
fixed point of a nonexpansive mapping and a strictly pseudocontractive mapping in a real Hilbert

space.

2. Preliminaries

In what follows, we always let X be a real Banach space with dual space X*, H be a real
Hilbert space with inner product (-, -} and norm || - ||, and let C be a closed convex subset of H.
We write x,, — z to indicate that the sequence {x,,} converges weakly to x. x,, — = implies that
{z,} converges strongly to x. For every point x € H, there exists a unique nearest point in C,
denoted by Pox, such that ||z — Poz|| < ||l —y|| for all y € C. P¢ is called the metric projection
of H into C. We know that P is a nonexpansive mapping of H onto C. It is also known that
Po satisfies

(x — vy, Pox — Poy) > ||Pox — Peyl||?, Vz,y € H. (2.1)

A set-valued mapping M : H — 2 is called monotone if for all 2,y € H,u € Mz, v € My
imply (r —y,u —v) > 0. A monotone mapping M : H — 2 is maximal if (I + A\M)H = H, for
all A > 0, where I denotes the identity mapping on H. It is known that a monotone mapping
M is maximal if and only if for (z,u) € H x H, (x — y,u —v) > 0 for every (y,v) € G(M) (the
graph of M) implies u € Mz.

If A is an a-inverse-strongly monotone mapping of H into itself, then it is obvious that A is

é—Lipschitz continuous monotone mapping. We also have that for all z,y € H and A > 0,
I(I = AA)z — (I = AA)y|* = [z — y) — A(Az — Ay)|]?
= [lz = yl* = 2Mz — y, Az — Ay) + N?[| Az — Ay]|®
< llz =yl + AMX = 20)[|Az — Ay|*. (2.2)

So, if A < 2q, then I — AA is a nonexpansive mapping of H into itself.
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A Banach space is said to have the K — K property if a sequence {z,} — z and ||z, | — ||z,
then x,, — x. It is well known that if H is a Hilbert space, then H has the K — K property.

Definition 2.11"3 If M is a maximal monotone operator on H, then the resolvent operator
associated with M is defined by

Jua(u) = (I +AM) " u, Yue H,
where A\ > 0 is a constant and I is the identity operator.
Definition 2.2 A single-valued operator A : H — H is said to be hemi-continuous if for any

fixed z,y,z € H, the function t — (A(z + ty), z) is continuous at 0. It is well known that a

continuous mapping must be hemi-continuous.
Definition 2.3 A set-valued operator A : X — 2X" is said to be bounded if A(B) is bounded
for every bounded subset B of X.

(13]

Lemma 2.1 The resolvent operator Jys,y is single-valued and nonexpansive, that is,

[Tma(u) = I (@) < flu—vll, Vu,v € H.
Lemma 2.2 The resolvent operator Jy x is inverse-strongly monotone, that is
(Jvpu — Jpav,u—v) > || Jaau — JM))\’UHQ, Yu,v € H. (2.3)

Proof Let u,v be any given points in H, let = Jyzu,y = Jarav. It follows from Definition

2.1 that u —x € AMx and v — y € AMy. Since M is maximal monotone, we have

0<((u—=2)—(v—y)hr—y) =(u-—v)—(x—-y),z—y).
It follows that
(u—v,z—y) > |lz—yl?

Lemma 2.31'% There holds the identity in a real Hilbert space H:

lu =l = [lull* = [o]|* = 2w — v,v), Yu,ve H.

15]

Lemma 2.4/ Let C be a closed convex subset of a real Hilbert space H and let S : C' — C

be a nonexpansive mapping such that F(S) # 0. If a sequence {z,,} in C is such that x, — z

and x,, — Sx,, — 0, then z = Sz.

Lemma 2.5!"% Let H be a real Hilbert space. Given a closed convex subset C' C H and points
x,y,z € H, given also a real number a € R. The set

D:={veC:lly—vl* <llz —v|* + (w,v) + a}
is convex (and closed).

Lemma 2.6016] If T : X — 2X" js a maximal monotone mapping and P : X — X* is a hemi-

continuous bounded monotone operator with D(P) = X, then the sum S =T + P is a maximal
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monotone mapping.

Lemma 2.7'5 Let K be a closed convex subset of real Hilbert space H and let Px be the metric
projection from H onto K (i.e, for x € H, Pxx is the only point in K such that ||z — Pxx| =
inf{||x — z|| : z € K}). Givenz € H and z € K, then z = Pk if and only if there holds the
relation: (x — z,y—z) <0, for ally € K.

3. Strong convergence theorem

Lemma 3.1 The function u € H is a solution of variational inclusion (1.1) if and only if u € H

satisfies the relation
u = Jpa[u— AAu,

where \ > 0 is a constant, M is a maximal monotone mapping and Jyrx = (I + AM)~! is the

resolvent operator.

Theorem 3.1 Let H be a real Hilbert space. Let A be an a-inverse-strongly monotone mapping
of H into itself and M : H — 2H be a maximal monotone mapping. Let T be a nonexpansive
mapping of H into itself such that F(T)\VI(H,A, M) # 0. Assume that {t,} C (0,1), such
that lim, . tn, = 0, let {A\,}52 Is a sequence in [0,2«] such that A\, € [a,b] for some a,b with

0 < a < b< 2a. Define a sequence {x,}°2 in H by the algorithm:

xo € H,

Yn = Jmn, (Tn — AnAzy),

Zn = tnxo + (1 — t)TYn,

Cn={v€H: |z — vl < [lzn — 0| + ta([[zol? + 2(zs — w0, v))},
Qn={veH: (x,—v,x, —2x0) <0},

Tni1 = Po, 0 q.%o-

(3.1)

Then {x,} converges strongly to Pp(ryn vi(#,a,Mm)%0

Proof It follows from Lemma 3.1 that VI(H, A, M) = F(Jy (I — AA)) (the set of fixed points
of Jya(I —AA) ). By Lemma 2.1 and formula (2.2), we have Jy A(I — AA) is a nonexpansive
mapping of H into itself. Thus, VI(H, A, M) is closed and convex. From the definition of C,,
and @y, it is obvious that C), is closed and @, is closed and convex for each n € N |J{0}. By
Lemma 2.5, we observe that C,, is also convex. Next, we show that F(T)\VI(H,A, M) C C,
for all n. Indeed, for all p € F(T)\VI(H, A, M), we have

2 = plI? = lltn(zo — p) + (1 = tn)(Tyn — p)|I?
< tullzo — plI? + (1 — ta) | Tyn — pl|?
< tnllzo = plI* + (1 = ta) |y — oIl
<tnllzo = pl* + (1 = tn) lzn — pl?
= ||lzn — plI* + tn(llzo — plI* — |20 — p[|?)
< lwn = plI* + tallzol|® + 2{xn — m0, p)). (3.2)
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So, p € C,, for all n. Next, we show that

F(T)(\VI(H,A,M) C Q, forall n>0. (3.3)
We prove this by induction. For n = 0, we have F(T)(\VI(H,A, M) C H = Q. Assume that
F(T)YNVI(H,A, M) C Q. Since 41 is the projection of zy onto Cy, [ Qn, we have

(X0 — Tpt1,Tnt1 — 2) >0, VzeCy ﬂQn

As F(T)NVI(H,A,M) C C,[\Qxn by the induction assumption, the last inequality holds, in
particular, for all z € F(T)(\VI(H, A, M). This together with the definition of Q.41 implies
that F(T)YNVI(H,A, M) C Qn+1. Hence (3.3) holds for all n > 0.

Now since x,, = Pg, zo (by the definition of Q,) and F(T)\VI(H,A, M) C Q,, we have
lxn — zo]| < |lp — zol| for all p e F(T)\VI(H, A, M). In particular, {x,} is bounded and

[n — @oll < llg — @0l (3.4)
where ¢ = Prryn vi(a,a,mTo- Hence {z,}, {yn} are also bounded. The fact that z,11 € Q,
implies that (2,41 — @pn, Tn — @) > 0. This together with Lemma 2.3 implies

[ Zn+1 — xn”2 = [[(#nt1 — z0) = (T0 — $0)||2

= |#ns1 = @0l = l|lzn — ol* — 2(@ns1 — Tn, 20 — @0)
< et = zol* = |2 — 20
It follows that
[#n1 — 2| — 0. (3.5)
That z,41 € C, implies that
20 = Zps1ll? < ll2n = ZngalI® + talllzol® + 2(zn — 20, Znt1)) — 0. (3.6)

Therefore, we have

2 = 2nll < |20 — Zaga || + [Zn41 — 20l — 0. (3.7)
20 = Tynll = tnllzo — Tyn| — 0. (3.8)
For pe F(T)VI(H, A, M), by formula (2.2), we obtain

l2n = pII* < tallwo = plI* + (1 = ta)| Ty — pII?

—tn)

<tnllxo — plI* + (1 = tw)llyn — pl?

L —tp)[|wn — AnAzn — (p — AnAp)”Q

L —tn)[l| s —p||2 + A (A = 20)[| Az, — Ap||2]
)

1= tn)lllzn = plI* + a(b — 20)[| Az, — Ap]?].

+(
+(
< tnllzo —p||2 + (
< tallzo — pl|* + (
< tallzo — pl|* + (
Therefore, we have

—(1 = tn)a(b = 20)|| Azy — Apl|* <tn]zo = plI* = Iz = pII* + (1 = t)llzn — pl®

=tn(llzo = pI? = 20 = pI*) + (1 = ta) (|2 — pI* — Iz — pII)
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=tn(llzo = plI* = 20 — pI*)+
(1 = tn)(lzn = pll + llzn — Pz — Pl = ll2n — pIl)
<tu(llwo = plI* = llzn — pII*)+
(1= tn)([lzn = pll + 20 = pIDll2n = 2ul-

Since {z,},{zn} are bounded, t, — 0 and ||z, — z,|| — 0, we obtain that ||Ax, — Ap|| — 0. By

formula (2.3), we have
[yn = plI* =07, (@0 = AnAzn) = Tazx, (0 — A Ap)||®
<{(@n — AnAzn) — (p = AnAp), yn — p)
=510~ AnAza) = (p = An )P + 1y — 9l
(2 — AnAzn) — (p = A Ap) — (yn — p)II°}
<50z = 1P+ g = Pl = 1 = g0 = A A — Ap)|}
Therefore, we obtain

||yn _p||2 < Hxn _p||2 - ”xn = Yn — M (Axp — Ap)||2.

Hence
1z = pII* <tullzo — plI* + (1 — ta) [ Tyn — plI
<tnllzo — plI* + (1 — tn)llyn — plI?
<tnllzo — plI? + (1 = tn)llzn — plI* = (1 = ) |20 — yn — An(Azy — Ap)||
=tnllzo — plI* + (1 = tn)lzn — 2> = (1 = tn) 20 — yul*~

(1 = t) N2 || Az — Ap||? + 200 (1 =ty — Y, Az, — Ap).
Therefore, we get
(1= ta)llzn = ynll® <tnllzo — plI* = llzn — plI> + (1 = tu) |20 — pl*—
(1- tn)/\leA:z:n - Ap||2 + 20 (1 — tp){xn — Yn, Az, — Ap)
<tn(llzo = plI* = 120 — PI?) + (1 = ta) (|20 — pll + 120 — P20 — 20ll—
(1 = to) N2 || Az, — Ap|)* 4 220 (1 — t) {2z — Y, Az, — Ap).
Since {zn}, {yn}, {zn} are bounded and ¢, — 0, ||z, — 2z, || — 0 and ||Az,, — Ap|| — 0, we obtain
[n = ynl — 0. (3.9)
By (3.7), (3.8) and (3.9), we have
|zn — Ton|l < |20 — 2ull + |20 — Tynll + | Tyn — Ty
< zn = zull + 120 = Tynll + [|yn — zall — 0. (3.10)

Assume {x,,} is a subsequence of {x,} such that z,, = w. By Lemma 2.4, w € F(T).
As ||xy, — yn|| — 0, we obtain y,, — w. We now prove that w € VI(H, A, M). Since A is a
é—Lipschitz continuous monotone mapping and D(A) = H, by Lemma 2.6, M + A is a maximal
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monotone mapping. Let (v, f) € G(M + A). Since f — Av € Mv and ﬁ(zn —Yn; — An; Ap,) €
My,,,, we have
1
<’U — Ynis (f - A’U) - )\_(Inl — Yn; — /\mAInz» = 0.

Uz

Therefore, we obtain

1
<’U - yn17f> 2<1} - yniaAv + )\_(‘Tm —Yn; — )‘nzAxm»

:<v_yni5Av_A'rni> =+ <v_ynia (Inl _ym»

1
An;
1
=(U = Yo A0 = Ay ) + (U = Yy, AYng — Ani) + (0 = Yoy 7 (Tn; — Yn,))
1

2<1} - yniaAym - AIH1> + <’U — Yn,, )\_(‘Tm - ynz)>
Let i — oo, we obtain (v — w, f) > 0. Since A + M is maximal monotone, we have 0 €
Aw + Mw and hence w € F(T)\VI(H, A, M). We now show that w = Ppr)n vi(m,4,Mm)T0
and z, — w. Put W = Pprynvi(a,a,m)To and consider the sequence {zg — xy,}. Then we
have g — z,, — 29 — w. By the weak lower semicontinuity of the norm and the fact that
lzo — 2ny1|l < ||wo — ]| for all n > 0 which is implied by the fact that z,11 = Pc, o, zo and
F(T)OVIH,A M) C C,(Qn, we obtain

lzo = @l < [lwo — wl| < liminf [[zo — &y, || < limsup [z — @, || < |20 —@]-

11— 00
This implies that ||zg —@|| = ||zo —w|| (hence @ = w by the uniqueness of the nearest point of zg
onto F(T)NVI(H, A, M).) and that ||zg — 2n,|| — ||zo — w]||. Using the K — K property of H,
we obtain xg — x,, — o — w, hence, x,, — w. Since {zy,} is an arbitrary (weakly convergent)

subsequence of {x,,}, we conclude that x, — w and w = Pp () vi(H,A4,M)T0-

4. Applications

In this section, we prove a strong convergence theorem for finding a common fixed point of
a nonexpansive mapping and a strictly pseudocontractive mapping in a real Hilbert space H by
using Theorem 3.1. A mapping T : H — H is called k-strictly pseudocontractive if there exists
k with 0 < k < 1 such that

T2 = Ty|* < llo = yl* + k(I = T)z — (I = T)y]*

for all z,y € H. If Kk = 0, then T is nonexpansive. Put A =1 —T, where T : H — H is a

k-strictly pseudocontractive mapping. Then A is %-inverse—strongly monotonel?]

Theorem 4.1 Let H be a real Hilbert space. Let S be a nonexpansive mapping of H into itself
and let T' be a k-strictly pseudocontractive mapping of H into itself such that F(S)( F(T) # 0.
Assume that {t,} C (0,1), such that lim, o t, = 0. Let {\,}32, be a sequence in [0,1 — k]
such that A, € [a,b] for some a,b with 0 < a < b < 1 — k. Define a sequence {z,}5>, in H by
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the algorithm:

rg € H,

Yn = (1 = An)xn + ATy,

Zn =tnxo + (1 —tn)SYn,

Cn=A{v € H :|lzn —v||” < lzn — vl + tu(llzoll> + 2{@n — @0,v))},
Qn={veH: (x,—v,x,—x0) <0},

Tny1 = Po, 0 @, %o

Then {x,} converges strongly to Pp(s)n r()%0-

Proof Put A=1—T and M =0, then A is %—inverse—strongly monotone mapping. We have
F(T)=VIH,A,M) and Jp », (zn — MAzy) = (1 — M)z + ATy, So, by Theorem 3.1, we

obtain the desired result.
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