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Abstract Given two nuclear C∗-algebras A1 and A2 with states ϕ1 and ϕ2, we show that the

monotone product C∗-algebra A1 � A2 is still nuclear. Furthermore, if both the states ϕ1 and

ϕ2 are faithful, then the monotone product A1 �A2 is nuclear if and only if the C∗-algebras A1

and A2 both are nuclear.
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1. Introduction and preliminaries

Let H be a Hilbert space. C∗-algebras are self-adjoint normed-closed subalgebras of B(H)

which are the algebras of all bounded linear operators on H. In this paper, if without special

remark, we always assume that C∗-algebras are unital and the Hilbert spaces H are separable.

As a C∗-subalgebra of B(H), von Neumann algebras are closed with respect to the weak operator

topology. von Neumann algebras with trivial center are called factors.

In a series of papers, in order to solve the isomorphism problem of free group factors on

different number of generators, Voiculescu[7] introduced a noncommutative probability theory

(free probability theory) and free entropy in the framework of operator algebras. This new and

powerful tool is crucial in solving some longstanding open problems in the filed on von Neumann

algebras. In [8], Voiculescu defined a new concept which is called free entropy dimension. Using

the new concept as basic tool, Voiculescu, Ge and other persons have solved several longstanding

open problems in II1 factors. Parrelling to the free probability theory, Muraki also introduced

a monotone probability theory and the monotone product of C∗-algebras with respect to the

states[4,5].

Muraki has also shown that the monotone product parrels to the tensor product and the free

product of algebras. It is well known that the tensor product of two nuclear C∗-algebras is still
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nuclear but the free product of two nuclear C∗-algebras is not nuclear in general. How about the

monotone product of two nuclear C∗-algebras?

In [9], Wu and Wang have studied the structures of the monotone product of C∗-algebras and

von Neumann algebras. In this paper, by use of the results in [9] and the properties of nuclear

C∗-algebras, we show that the monotone product of two nuclear C∗-algebras is still nuclear.

Furthermore, if both given states ϕ1 and ϕ2 are faithful, we show that the monotone product

C∗-algebra A1 � A2 is nuclear if and only if both A1 and A2 are nuclear.

Now let us recall the construction of the monotone product of two C∗-algebras (for general

construction[4]).

Given two C∗-algebras A1 and A2 with states ϕ and ϕ2, respectively. Let (π1,H1, ξ1) and

(π2,H2, ξ2) be the GNS representations of (A1, ϕ1) and (A2, ϕ2) respectively. Then ξi is a

unit vector and πi(Ai)ξi is dense in the Hilbert space Hi (i = 1, 2). We denote the orthogonal

complements of Cξi in Hi as H◦
i (i = 1, 2). The monotone product (H, ξ) of (H1, ξ1) and (H2, ξ2)

is defined as follows

H = Cξ ⊕H◦
1 ⊕H◦

2 ⊕ (H◦
2 ⊗H◦

1)

and denoted by (H, ξ) = (H1, ξ1) ⊲ (H2, ξ2), where ξ is a fixed unit vector in H. It is easy to see

that H is isomorphic to the Hilbert space H2 ⊗H1 which maps ξ to ξ2 ⊗ ξ1. In fact, if we define

the bounded linear operator U from H onto H2 ⊗H1 as follows:

U : ξ → ξ2 ⊗ ξ1, H◦
1 ∋ η → ξ2 ⊗ η,

H◦
2 ∋ η → η ⊗ ξ1, U |H◦

2
⊗H◦

1
= I|H◦

2
⊗H◦

1
,

where I is the identity operator on the tensor product Hilbert space H2 ⊗ H1, then U is a

unitary operator. From now on, we will identify the Hilbert space monotone product (H, ξ) =

(H1 � H2, ξ1 � ξ2) with the tensor product (H2 ⊗H1, ξ2 ⊗ ξ1) through the operator U .

Let P2 be the one-dimensional orthogonal projection from H2 onto the closed subspace [Cξ2].

Define a representation π of A1 and A2 on the Hilbert space H by

π(A) =

{

P2 ⊗ π1(A) A ∈ A1

π2(A) ⊗ I1 A ∈ A2

.

Where I1 is the identity operator on H1.

Let A be the C∗-subalgebra of B(H) which is generated by π(A1) and π(A2). Let ϕ be the

vector state of A which is defined as ϕ(A) = 〈Aξ, ξ〉 for any A ∈ A. Then ϕ is called the monotone

product state of the states ϕ1 and ϕ2 and is denoted by ϕ1�ϕ2. We call (A, ϕ) as the C∗-algebra

monotone product of (A1, ϕ1) and (A2, ϕ2) and denote it by (A, ϕ) = (A1, ϕ1) ⊲ (A2, ϕ2).

2. Main results

The main result of this paper is the following theorem.

Theorem 1 Suppose that A1 and A2 are C∗-algebras with states ϕ1 and ϕ2, respectively. Then

the monotone product C∗-algebra (A, ϕ) = (A1, ϕ1) � (A2, ϕ2) is still nuclear.
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Before we prove the above-mentioned result, firstly let us recall the concept of nuclear C∗-

algebra and some basic properties of it. Suppose that A and B are two C∗-algebras and that

A⊙ B is their algebraic tensor product. A⊙ B forms a ∗-algebra under the ∗-operation defined

as (A⊗B)∗ = A∗⊗B∗ for any A ∈ A and B ∈ B. A norm ‖·‖ is called a C∗-norm if (A⊙B, ‖·‖)

is a normed ∗-algebra and the norm satisfies ‖S∗S‖ = ‖S‖2 for any S ∈ A⊙B. Maybe there are

many C∗-norms on A⊙ B.

Definition 2 A C∗-algebra A is called a nuclear C∗-algebra if, for any C∗-algebra B, there is

only one C∗-norm on the algebraic tensor product A⊙ B.

There are lots of naturally occurring nuclear C∗-algebras. We list some classes and some

basic properties of nuclear C∗-algebras as follows.

Proposition 3[5] (1) All abelian C∗-algebras are nuclear;

(2) All finite dimensional C∗-algebras are nuclear;

(3) Either of two stably isomorphic C∗-algebras is nuclear, then so is the other;

(4) The tensor product of two nuclear C∗-algebras is still nuclear;

(5) Given a short exact sequence of C∗-algebras

0 → A1 → A2 → A3 → 0.

If any two of the three C∗-algebras are nuclear, then so is the third.

It is a nontrivial result to show that the free group factors are not nuclear. In fact, Connes[1]

showed that all separable amenable C∗-algebras are nuclear and Haagerup[3] has proved the

inverse implication. In a series of papers, Lance and other mathematicians have shown that a

C∗-algebra A is nuclear if and only if its bidual A∗∗ is an injective von Neumann algebra (W ∗-

algebra). The following result is well known. Here we just give a short proof of the first result.

Proposition 4 (1) If the dimension of the Hilbert space H is at most countably, then the ideal

K(H) of all compact operators, as a C∗-algebra (maybe non-unital), is nuclear.

(2)[8] Suppose that I is a closed two-sided ideal of a C∗-algebra A. Then A is nuclear if and

only if both I and the quotient algebras A/I are nuclear.

Proof (1) If dim(H) = n < +∞, then K(H) = B(H) ∼= Mn(C) is finite dimensional. Therefore

K(H) is nuclear by Proposition 3(2).

If dim(H) is countable, since the bidual K(H)∗∗ is isomorphic to B(H) and B(H) is an

injective W ∗-algebra, K(H) is nuclear by above-mentioned results. 2

According to the above proposition, we have the following result.

Corollary 5 Suppose that A is a nuclear C∗-algebra and B is also a C∗-algebra. If π : A → B

is a *-homomorphism, then the image of π is a nuclear C∗-algebra.

Proof It is known that π(A) is a C∗-subalgebra of B. The kernel ker(π) of π is a closed

two-sided ideal of A since π is a ∗-homomorphism. The quotient algebra A/ker(π) is a nuclear

C∗-algebra by Proposition 4.(2) since A is nuclear. Thus the range π(A) is also nuclear since it
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is ∗-isomorphic to A/ker(π). 2

Now let us recall the description of the structure of the monotone product of C∗-algebras.

Suppose that A1 and A2 are C∗-algebras with states ϕ1 and ϕ2. The GNS representations of

them are (π1,H1, ξ1) and (π2,H2, ξ2), respectively. In [9], we have shown the following important

results.

Theorem 6 With notations as the above, the C∗-algebra monotone product (A, ϕ) = (A1, ϕ1)�

(A2, ϕ2) is generated by K(H2) ⊗ π1(A1) and π2(A2) ⊗ CI1.

Here we do not give the complete argument and just list the brief sketch. In fact, the

monotone product A is generated by P2 ⊗ π1(A) for any A ∈ A1 and π2(A)⊗ I1 for any A ∈ A2.

But P2 is the one-dimensional orthogonal projection from H2 onto the closed subspace [Cξ2] and

ξ2 is a cyclic vector in H2 for the C∗-algebra π2(A2). Thus the C∗-subalgebra of B(H2) generated

by P2 and π2(A2) contains the set K(H2) of all compact operators. The rest is obvious.

From the above result, we have the following result.

Corollary 7[9] With notations as the above, K(H2) ⊗ π1(A1) is a closed two-sided ideal of the

monotone product C∗-algebra A = A1 � A2.

Now we can prove the main result of this article.

Proof of Theorem 1 According to Corollary 7, K(H2)⊗ π1(A1) is a closed two-sided ideal of

the monotone product A. Hence by Proposition 4(2), we just need to show that both the ideal

K(H2) ⊗ π1(A1) and the quotient algebra A/(K(H2) ⊗ π1(A1)) are nuclear.

The ideal K(H2)⊗ π1(A1) is nuclear since K(H2) is nuclear by Proposition 4(1) and π1(A1)

is nuclear by Corollary 5 and the fact that A1 is nuclear. To prove that the quotient C∗-algebra

A/(K(H2) ⊗ π1(A1)) is nuclear, we just need to show that the following claim holds.

Claim The quotient C∗-algebra A/(K(H2)⊗π1(A1)) is ∗-isomorphic to the C∗-algebra π2(A2)/

(π2(A2) ∩K(H2)).

Firstly, π2(A2) ∩ K(H2) is a closed and self-adjoint algebra since it is the intersection of

two closed and self-adjoint algebras. For any A ∈ π2(A2) and T ∈ π2(A2) ∩ K(H2), then

AT, TA ∈ π2(A2) since π2(A2) is an algebra and AT, TA ∈ K(H2) since K(H2) is an ideal of

B(H2). Hence AT, TA ∈ π2(A2)∩K(H2). Therefore, π2(A2)∩K(H2) is a closed two-sided ideal

of π2(A2).

Suppose that σ is the canonical quotient mapping from A into the quotient A/(K(H2) ⊗

π1(A1)). For any A ∈ A, there are sequences of operators {An : n ∈ N} in π2(A2) ⊗ CI1 and

{Bn : n ∈ N} in K(H2) ⊗ π1(A1) such that An + Bn → A in norm as n → +∞. Thus by the

continuity of the mapping σ and since Bn is in the kernel of σ, we have

σ(An + Bn) = σ(An) → σ(A), n → +∞.

Hence for any B ∈ A/(K(H2) ⊗ π1(A1)), there is a sequence of An ∈ π2(A2) ⊗ CI1 such that

σ(An) → B as n → +∞. Now the restriction σ|π2(A2)⊗CI1 of σ on the C∗-subalgebra π2(A2)⊗CI1

of A is still a ∗-homomorphism between C∗-algebras. Thus the range σ(π2(A2) ⊗ CI1) is closed
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in norm. Then we have

σ(A) = A/(K(H2) ⊗ π1(A1)) = σ(π2(A2) ⊗ CI1).

Therefore by the basic rules in C∗-algebras,

(π2(A2) ⊗ CI1)/(ker(σ|π2(A2)⊗CI1))
∼= σ(π2(A2) ⊗ CI1).

According to the definition of the quotient mapping σ, we have

ker(σ|π2(A2)⊗CI1) = (π2(A2) ⊗ CI1) ∩ (K(H2) ⊗ π1(A1))

= (π2(A2) ∩ K(H2)) ⊗ CI1.

Therefore the claim holds, i.e.,

A/(K(H2) ⊗ π1(A1)) ∼= π2(A2)/(π2(A2) ∩ K(H2)).

Summarizing the above-mentioned results, we see that the monotone product C∗-algebra A

is nuclear since the quotient A/(K(H2) ⊗ π1(A1)) is also nuclear by the claim. 2

As a natural corollary of Theorem 1, under the condition that the states are faithful, we

can show that the monotone product C∗-algebra is nuclear if and only if both components C∗-

algebras are nuclear.

Theorem 8 Suppose that ϕ1 and ϕ2 are faithful states of the separable C∗-algebras A1 and

A2, respectively. Then the monotone product C∗-algebra

(A, ϕ) = (A1, ϕ1) � (A2, ϕ2)

is nuclear if and only if A1 and A2 are nuclear.

Proof Firstly, according to Theorem 1, the result holds if both A1 and A2 are nuclear C∗-

algebras.

Conversely, suppose that both states ϕ1 and ϕ2 are faithful and the monotone product C∗-

algebra A1�A2 is nuclear. Suppose that (Hi, ξi, πi) is the GNS representation of Ai with respect

to the state ϕi (i = 1, 2). The representations π1 and π2 are faithful.

Since K(H2)⊗π1(A1) is a closed two-sided ideal of A = A1�A2 (Corollary 7), K(H2)⊗π1(A1)

is nuclear and the quotient C∗-algebra A/(K(H2) ⊗ π1(A1)) is also nuclear. Then π1(A1) is

nuclear since it is stably isomorphic to K(H2) ⊗ π1(A1). In the proof of Theorem 1, we have

shown that A/(K(H2) ⊗ π1(A1)) is ∗-isomorphic to the C∗-algebra π2(A2)/(π2(A2) ∩ K(H2)).

Hence π2(A2)/(π2(A2) ∩ K(H2)) is nuclear. At the same time, π2(A2) ∩ K(H2) is a non-unital

C∗-algebra generated by some compact operators. Thus by the structure theorem of the C∗-

algebras which are generated by compact operators[2], π2(A2) ∩ K(H2) is nuclear. Thus π2(A2)

is nuclear.

By the faithfulness of the states ϕ1 and ϕ2 and the faithfulness of π1 and π2, A1 and A2 are

nuclear. 2
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