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Abstract In this paper, we obtain theorems of complete convergence and strong laws of large
numbers for weighted sums of sequences of independent random elements in a Banach space of
type p(1 < p < 2). The results improve and extend the corresponding results on real random
variables obtained by [1] and [2].
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1. Introduction

When {X, X,,,n > 1} is a sequence of i.i.d. random variables and {a,;,1 < i < n,n > 1}
is an array of real constants, the convergence of weighted sums > " ; a,; X; was studied by
many authors!’ =%, We recommend the paper of Rosalsky and Sreeharil® for more information.

Recently, Bai and Cheng!! proved the strong law of large numbers

n
n-l/a Zam-Xi —0 a.s. (1)
i=1
where {X, X,,,n > 1} is a sequence of i.i.d. random variables satisfying EX = 0, E|X|? < oo,
and {am-, 1<1<n,n> 1} is an array of real constants satisfying

1« ,
Agn = - Zl |anil®, Ao =1lm sup Ay, < 00, (2)
1=

n—oo

for some 1 < a,f < o00,1<¢g<2,and 1/g=1/a+1/3.

In this paper, we let {Q, S, P} be a complete probability space and B be a real separable
Banach space with norm || - ||. The Banach space B is called type p (1 < p < 2) if there exists a
C = C}p > 0 such that

E|Y xi|r<C> E|Xi|P,
i=1 i=1
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where the independent B-valued random elements X7, X, ..., X, have mean zero and E|| X;||? <
00,1 =1,2,...,n

Hereinafter in this paper, C' always stands for a positive constant which may differ from one
place to another; {X,,,n > 1} < X means sup,,»; P(||X,|| > z) < CP(X > x), where x > 0 and
X is a non-negative real-valued random variable.

In this paper, we shall extend the result of Bai and Cheng!*! and Cuzick® to independent
B-valued random elements, and remove the identical distribution condition. The method of
proof in this paper differs from that used by Bai and Cheng!! and it is simpler than Bai and
Cheng’sl!l. In addition, the complete convergence of independent B-valued random elements is
studied.

In order to prove our main results, we need the following lemmas. By Corollary 2.4 of Shaol®,

we immediately have the following:

Lemma 1 Let Banach space B be of type p(1 < p < 2) and {X,,,n > 1} be a sequence of

independent B-valued random elements with mean zero. Then for ¢ > p,

k n n
E max | Y X9 <O EIX)+ O EIX M), n>1.
i=1 = —

1<k<n
Where C' is a constant independent of n.

Lemma 2! Let {Xn,n > 1} be a sequence of independent symmetric B-valued random ele-

ments. Then for every integer j > 1 and every t > 0,

HZXH>3Jt)<CP(maX X > t) + Dy ( ||ZX||>t
=1

where C; and D; are positive depending only on j.
Lemma 38 Suppose that X, is a B-valued random element, and
P(|Xol > 2)) < CP(X > ), ¥z >0,
where X is a non-negative real-valued random variable. Then ¥Vt > 0,z > 0,

B Xo|"I(| Xo|| € 2) < C2'P(X > 2)+ CEX'I(X < z),

E||Xo|' (| Xo|| > z) < CEX'I(X > x).

2. Main results and proofs

Theorem 1 Assume 1 <p <2 0<q,f,v <00, a<vB,0<qg<pandl/g=1/a+1/5. Let
h(z) > 0 be a slowly varying function as x — 400, Banach space B be of type p, {an;,1 < i <
n,n > 1} be an array of constants satisfying (2) and {X,,,n > 1} be a sequence of independent
B-valued random elements with {X,,n > 1} < X, EX"Ph(X"”) < co. If @ > 1, moreover we
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assume that EX,, = 0,n > 1. Then for any ¢ > 0,

1<j<n

Zn”_lh(n) ( max || ZamX | > en'/) < c. (3)
n=1
Proof For any t:0 <t < a, by (2) and the Holder’s inequality, we get

i|am|t§(i|a ayt/e il 1=t/a < Cn. (4)
i=1 i=1 i=1

For any t : t > «, by (2) and the C,-inequality, we get

Z|am| _Z aytle < Zm ayt/e < optle, (5)

=1
Putting v = min{«, p}, since a < v, we have EX" < 0.
When 0 < v < 1, by the C,-inequality and (4), we have

P(| ZamXiH > enl/?) < Cn7/4 Z lani|VE|| X4]|” < Cn1—/0), (6)
i=1 =1
When v > 1, since Banach space B is of type p, it is of type 7. So, it follows from Lemma 1
and (4),
P> aniXill > en'/?) < Cn 9 " ag [T E|| X, < Cn /9. (7)
i=1 i=1

By (6) and (7) and ¢ < ~y, we have

n
_ p
n~1/a g an;i X; — 0.
i=1

Hence by the Ottaviani inequality[w] we have

> enl/?) < 1/q
P(lrilax HZamX || > en'/?) < CP( ||ZlamX ||> 5" ).

By symmetrization inequality'®, in order to prove (3), it suffices to prove that

va Yh(n HZamXS||> Sty < oo, (8)

i=1
where {X2,n > 1} is a symmetrized version of {X,,,n > 1}. So we assume {X,,,n > 1} is a
sequence of independent symmetric B-valued random elements.
Define X,,; = X;I(||X;|| < n'/?) and V,,; = X;I(||X;|| > n'/?) for 1 <i<nandn > 1.

Case 1 a<p.
Taking ¢ > max (p,v(), by Lemma 1, Lemma 3, (5) and the C,-inequality we have

Zn” Yh(n ||ZLLm Xnil > nl/q)
_ij v (n, ZEHam Xnil?) ”MZEHam Xl
n=1
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<CY AR EXTI(X < nt/P) 4+ nPP(X > n'/P)]

n=1

=C> nTORm)EXT(X < /)4
n=1

Y n''h(n)P(X > n'/?) £ A+ B 9)
n=1

Since t > vf3, by the property of slowly varying function and Lemma 1 of Bai and Sul®, we

have

A=Cy" > alTARm)EXTI(X < n'/P)

=0 2i <p<2itl

<C+CY 20 DRYEXT(X < 2041/F)
i=0

<C+CY 207Dy EXI(2/P < X < 2UFD/F)
i=0 =0

<CH+CY EX'T(2/P < X < 20t/8) N " oil=t/B 91

Jj=0 i=J

<C+ CZ2j(v—t/ﬁ)h(2j)EXtI(2j/ﬁ < X< 2(j+1)/ﬁ)
=0

SCHCY Yh(2)P(2P < X < 20T1/8)
=0

< C+CEX"Ph(XP) < 0. (10)
Similar to the proof of (10), we have
B < C+CEX"Ph(XP) < . (11)

Since a < v3, we have @ < (v+ 1)g. When 1 < @ < p by Lemma 1 or 0 < o < 1 by the
C,-inequality, the property of slowly varying function and Lemma 1 of Bai and Sul), similar to

the proof of (10), we have

)P i Yoi| > <0
320 P Y aniYol > Gt/

i=1
<CY nlTIDR(n) > BllanYnil* < C + CEX"Ph(X?) < oc. (12)

n=1 i=1

Therefore, if o < p, by (9)—(12), (8) holds.

Case 2 a > p.
By Lemma 2, we have
P(H Z amXiH > Enl/q) < C]P( max HaleH > 37j€n1/q)+Dj(P(H Z aleH > 37j€’n1/q))2j,

; 1<i<n :
i=1 i=1
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where C; and D; are positive depending only on j. We can choose integer j such that v + (1 —
v/q)27 < 0. So by (7), in order to prove (8), it is enough to show that

i ““1h(n iP(HamXiH > 377en!/) < . (13)
n=1 i=1
Define ¢; = 377¢/2, by Lemma 3 and the Markov’s inequality, similar to the proof of (10),
we have
i v“Ih(n znjp(uamymn > ent/?) < Cin@—l—a/q)h(n) zn:EHamYmHa
n—1 i=1 n=1 i=1
<C i n=Dp(n) EXI(X > n'/P) < C + CEX"Ph(X") < cc. (14)

Il
-

n

Choosing t > max («,v3), by Lemma 3 and the Markov’s inequality, similar to the proof of
(10), we have

n’"'h(n) Z P(||ani Xnil| > ein/?) < C Z n=I=t D () Z E|lani X"
i=1 i=1

n=1

[M]8

3
Il
-

n

<CY D) (Y la | EXT(X < nt/P) + 0P P(X > n'/P)]
n=1

i=1
<CY YO EXT(X < /%) + 0P P(X > 0!/
n=1
< C+ CEX"h(X") < 0. (15)
Therefore by (14)—(15), (13) holds, so (3) holds.

Theorem 2 Assumel <p<20<a,f<00,0<qg<pandl/q=1/a+1/B. Let Banach space
B be of type p, {ani,1 <i <mn,n > 1} be an array of constants satisfying (2) and {X,,,n > 1}
be a sequence of independent B-valued random elements with {X,,n > 1} < X, EX® < co. If

min{«, S} > 1, moreover we assume that EX,, =0, n > 1. Then

lim n~ Y9 max ||ZamX =0, a.s. (16)

n—00 1<j<n

Proof Define X,,; = X;I(||X;|| < i'/P), Yy; = XiI(||X;|| > i'/P), 1 <i < n,n > 1. To prove
(16), we only need to prove that

lim n~1/4 max H Zam Xnil =0, a.s., (17)
1/q —
nlingon max, I Z aniYnil =0, a.s.. (18)

Noting that EX? < oo <= 377 | P(X > n'/#) < 0o, we have > o0 | P(|| X,| > n!/?) < occ.
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Hence by the Borel-Cantelli lemma, we can get P(||X,,|| > n'/?,i.0.) = 0. It follows that

“1/4 max HZamYmH <n V4 [max |am|Z||YmH < A, nn’l/[’ZHYmH —0 as. (19)

1<j<n
=1 =1

Therefore, (18) holds.
Putting v = min{«, 3, p}, as in Theorem 1, we have

P[> aniXnill > e37/n/7) < Cnt=7/9), (20)

i=1
Therefore, we can get
n
Tl_l/q Z am-Xi £> 0.
i=1
To prove (17), by the Ottaviani inequality!’®l, the symmetrization inequality!'®l and the Borel-

Cantelli lemma, it is enough to show that
ZP(H Zam-an-H > en/?) < 0o, Ve>0, (21)

where {X?#

ni’

1 <i<mn,n>1}is a symmetrized version of {X,,;,1 < i <n, n > 1}. So we

assume {X,;,1 <i <mn, n> 1} is symmetric B-valued random elements. By Lemma 2, we have
n
P(H Z am-Xm-H > enl/q)
i=1

< C. X —inl/a . X > €37 In /4 2j'
< OJP(@&SX” (@i Xni|| > €379n/9) + D;(P(]| ;ameH > e377n1/1)) (22)
We can choose integer j such that 2/(y/q — 1) > 1. So by (20) and (22), in order to prove
(21), it is enough to show that

ZP max Ham Xl > €379nY9) < co. (23)

n=1
In fact, choosing ¢ > max (a, 3), by the Markov’s inequality, the C,-inequality and (5), we can
get

oo

oo n
Z max lan: Xn:|| > €3™ ]nl/q ZZ (lani Xni|| > €3~ ]nl/q)
n=11=1

< Czn 1 Z Jan| B Xl T(1 X < nt/)

i=1

<CZn7t/qZ|a FEX'I(X <n'/?) +nt/PP(X > n'/P)]

§C+CEXﬁ<oo.

So (23) holds, therefore (16) holds.

Remark Noting that the real space R is of type 2, we see that Theorems 1 and 2 improve
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and extend the corresponding results of Bai and Cheng!*) and Cuzick® to B-valued random
elements, and remove the identical distribution condition. The method of proof differs from Bai

and Cheng’s!!! and it is simpler than Bai and Cheng’s!/.
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