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Abstract In this paper, we compute the crossing number of a specific graph Hn, and then by

contraction, we obtain the conclusion that cr(G13 × Sn) = 4⌊n

2
⌋⌊n−1

2
⌋ + ⌊n

2
⌋. The result fills

up the blank of the crossing numbers of Cartesian products of stars with all 5-vertex graphs

presented by Marián Klešč.
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1. Introduction

For definitions not explained in this paper, readers are referred to [1]. Let G be a simple

graph with vertex set V and edge set E. A drawing of an (undirected) graph G = (V, E) is a

mapping f that assigns to each vertex in V a distinct point in the plane and to each edge uv in

E a continuous arc (i.e, a homeomorphic image of a closed interval) connecting f(u) and f(v),

not passing through the image of any other vertex. As for the drawing we need the additional

assumptions: (i) No three edges have an interior point in common; (ii) If two edges share an

interior point p, then they cross at p; (iii) Any two edges of a drawing have only a finite number

of crossings (common interior points).

The crossing number, cr(G), of a graph G is the minimum number of edge crossings in

any drawing of G in the plane. Let φ be a drawing of graph G. We denote the number of

crossings in φ by crφ(G). The Cartesian product G1 × G2 of graphs G1 and G2 has vertex

set V (G1 × G2) = V (G1) × V (G2) and edge set E(G1 × G2) = {(ui, vj)(uh, vk)|ui = uh and

ujvk ∈ E(G2) or vj = vk and uiuh ∈ E(G1)}.

Generally, computing the crossing number of graphs is an NP-complete problem[2,3]. At

present, the classes of graphs whose crossing numbers have been determined are very scarce, and

there are only some classes of special graphs whose crossing numbers are known. For example,

these include the complete graph K
[4]
n and the complete bipartite graph Km,n for small m and

n[5], certain generalized Peterson graphs[6] and cyclic graphs[7] and so on.
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Recently, the crossing numbers of Cartesian products graphs become more interested. Let

Cn and Pn be the cycle and the path with n edges, and Sn the star K1,n. The crossing numbers

of the Cartesian products of all 4-vertex graphs with Cn, Pn and Sn are determined[8−11]. There

are several known exact results on the crossing number of Cartesian products of Cn, Pn and Sn

with 5-vertex graphs. In [12], Marián gave a description of the Cartesian products of all the

5-vertex graphs with Pn, Cn, Sn, where some results have been given, but in the blank of this

table, the crossing numbers have not been determined. In this paper, we obtain the crossing

number of G13 × Sn in Marián’s table which was in blank (the graph G13 is shown in Figure 1).

Figure 1 G13

2. Some lemmas

First, we give some useful results.

Lemma 1 Let A, B, C be mutually disjoint subsets of E. Then

crφ(A
⋃

B) = crφ(A) + crφ(B) + crφ(A, B);

crφ(A, B
⋃

C) = crφ(A, B) + crφ(A, C), (1)

where φ is a good drawing of E.

Proof By the definition, it is easy to obtain the conclusion.

On the crossing numbers of the complete bipartite graphs Km,n, Kleitmain obtained the

following result in [4].

Lemma 2 If K5,n is a complete bipartite graphs, then

cr(K5,n) = 4⌊
n

2
⌋⌊

n − 1

2
⌋. (2)

Let H be a graph isomorphic to G13. Consider a graph GH obtained by joining all vertices

of H to five vertices of a connected graph G such that every vertex of H will only be adjacent to

exactly one vertex of G. Let G∗

H be the graph obtained from GH by contracting the edges of H .

Lemma 3 The crossing number of G∗

H is no more than the crossing number of GH , i.e.,

cr(G∗

H) ≤ cr(GH).

Proof Let φ be an optimal drawing of GH . Since the plane is a normal space, for an edge e
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of the drawing φ there is an open set Me homeomorphic to the open disk such that Me contains

e, together with ends of edges incident with endpoints of e, and open arcs of edges which are

crossing e (see Figure 2(a)). All remaining edges of φ are disjoint with Me.

Let x denote the number of crossings of e in φ. If we draw in Me two edges e1 and e2 instead

of e, these two edges have 2x crossings (see Figure 2(b)).
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Figure 2 Open disks which contain edge

The subgraph H has six edges and let x1, x2, x3, x4, x5 and x6 denote the numbers of crossing

on the edges of H .

Let x1 + x2 ≤ x4 + x6. Figure 3 shows that H can be contracted to the vertex b without

x3
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Figure 3 H is contracted to the vertex b

x3

x1

x2 x4
-

x5

x6

x3

2x4

x5

x6

a

b

c d

e e

Figure 4 H is contracted to the vertex e

increasing the number of crossings.

Let x4 ≤ x1 +x2. Figure 4 shows that H can be contracted to the vertex e without increasing

the number of crossing. This completes the proof, because for nonnegative integers the system

of inequalities

x1 + x2 > x4 + x6,

x4 > x1 + x2

holds only for x6 < 0. This is impossible because x6 is a nonnegative integer. The Lemma 3 has

been proved. 2
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3. The main theorem and proof

Let us denote by Hn the graph obtained by G13 ∪ K5,n, where the five vertices of degree n

in K5,n, and the vertices of G13 are the same. Let, for i = 1, 2, . . . , n, ti denote the vertex which

belongs to one of the n of K5,n, and T i denote the subgraph of K5,n which consists of the five

edges incident with ti. Thus, we have

Hn = G13 ∪ K5,n = G13 ∪ (
n⋃

i=1

T i). (3)

Theorem 1 For n ≥ 1, we have cr(Hn) = 4⌊n
2 ⌋⌊

n−1
2 ⌋ + ⌊n

2 ⌋.

Figure 5 A good drawing of Hn

Proof The drawing in Figure 5 shows that

cr(Hn) ≤ cr(K5,n) + ⌊
n

2
⌋ = 4⌊

n

2
⌋⌊

n − 1

2
⌋ + ⌊

n

2
⌋

and that the theorem is true if equality holds. We prove the reverse inequality by induction on

n. The case n = 1 and 2 are trivial. Suppose now that for n ≥ 3

cr(Hn−2) ≥ 4⌊
n − 2

2
⌋⌊

n − 3

2
⌋ + ⌊

n − 2

2
⌋ (4)

and consider such a drawing φ that

crφ(Hn) < 4⌊
n

2
⌋⌊

n − 1

2
⌋ + ⌊

n

2
⌋. (5)

Our next analysis depends on whether or not there are different subgraphs T i and T j that do

not cross each other in each good drawing φ.

Case 1 We suppose that every pair of T i cross each other. Using (1), (2) and (3), we have

crφ(Hn) = crφ(K5,n) + crφ(G13) + crφ(K5,n, G13)

≥ 4⌊
n

2
⌋⌊

n − 1

2
⌋ + crφ(G13) + crφ(

n⋃

i=1

T i, G13). (6)

This, together with our assumption (5), implies that

crφ(

n⋃

i=1

T i, G13) < ⌊
n

2
⌋.

So, we can see that in φ, there are no more than ⌊n
2 ⌋ subgraphs T i which cross G13, and at least

⌊n
2 ⌋ subgraphs T i which do not cross G13. Now, we consider T i, which satisfy crφ(G13, T

i) = 0.
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Without loss of generality, we denote T 1, crφ(G13, T
1) = 0.

Consider the subgraphs φ∗ and φ∗∗ of G13 and G13 ∪ T 1, respectively, induced by φ. Since

crφ(G13, T
1) = 0, the subdrawing φ∗ divides the plane in such a way that all vertices are on the

boundary of one region. Thus, G13 have the following cases (see Figure 6).

(i) G13 do not intersect, as in case (a).

(ii) The quadrangle intersect, but the triangle do not cross with quadrangle, as in case (b).

(iii) The quadrangle do not intersect, but the triangle cross with quadrangle, as in cases (c)

and (d).

(iv) The quadrangle intersect, and the triangle cross with quadrangle, as in cases (e),(f),

and (g). So G13 ∪ T 1 have the following cases (see Figure 7).

(a) (b) (c) (d)

(e) (f) (g)

Figure 6 All possibilities of the subdrawing φ∗

(a) (b) (c) (d)

(e) (f) (g)

t1
t1

t1 t1

t1
t1

t1

1

Figure 7 All possibilities of the subdrawing φ∗∗

Now consider the subdrawing of T i ∪ G ∪ T 1 for some i ∈ {2, 3, . . . , n}.

In case (a), except the region 1, no matter which region ti lies in, using crφ(T i, T 1) ≥ 1, we

have crφ(T i, G13 ∪ T 1) ≥ 3. When ti lies in the region 1, we have crφ(T i, G13 ∪ T 1) ≥ 2, where

crφ(T i, G13) ≥ 1. We suppose the sum of vertex ti lying in the region 1 is x. So we have

crφ(
n⋃

i=2

Ti, G13 ∪ T 1) ≥ 2x + 3(n − 1 − x). (7)

Using (1), (2), (3), (7), and the fact that x is no more than ⌊n
2 ⌋, we have

crφ(Hn) = crφ(K5,n−1) + crφ(G13 ∪ T 1) + crφ(G13 ∪ T 1, K5,n−1)
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= crφ(K5,n−1) + crφ(G13 ∪ T 1) + crφ(G13 ∪ T 1,

n⋃

i=2

Ti)

≥ 4⌊
n − 1

2
⌋⌊

n − 2

2
⌋ + 2x + 3(n − 1 − x) ≥ 4⌊

n

2
⌋⌊

n − 1

2
⌋ + ⌊

n

2
⌋.

In cases (b), (c), (d), (e), (f), (g), no matter what region ti lies in, using crφ(T i, T 1) ≥ 1, we

have crφ(T i, G13 ∪ T 1) ≥ 3. So using (1) (2) (3) gives

crϕ(Hn) = crφ(K5,n−1) + crφ(G13 ∪ T 1) + crφ(G13 ∪ T 1, K5,n−1)

= crφ(K5,n−1) + crφ(G13 ∪ T 1) + crφ(G13 ∪ T 1,

n⋃

i=2

T i)

≥ 4⌊
n − 1

2
⌋⌊

n − 2

2
⌋ + 3(n − 1)

≥ 4⌊
n

2
⌋⌊

n − 1

2
⌋ + ⌊

n

2
⌋

which contradicts our assumption of (5).

Case 2 There are at least two different subgraphs T i and T j that do not cross each other in φ.

Without loss of generality, we may assume that crφ(T 1, T 2) = 0. The subgraph G13 ∪ T 1 ∪ T 2

of Hn contains a subgraphs K3,3, whose crossing number is 1. As cr(K3,5) = 4, for all i, i =

3, 4, . . . , n, crφ(T i, T 1 ∪ T 2) ≥ 4. This implies that

crφ(Hn−2, T
1 ∪ T 2) ≥ 4(n − 2) + 1 = 4n− 7. (8)

Since Hn = Hn−2 ∪ (T 1 ∪ T 2), using (1),(8) and (4), we have

crφ(Hn) = crφ(Hn−2) + crφ(T 1 ∪ T 2) + crφ(Hn−2) + crφ(Hn−2, (T
1 ∪ T 2))

≥ 4⌊
n − 2

2
⌋⌊

n − 3

2
⌋ + ⌊

n − 2

2
⌋ + 4n − 7

≥ 4⌊
n

2
⌋⌊

n − 1

2
⌋ + ⌊

n

2
⌋.

This contradicts (5) and the proof is completed. 2

G0
13G1

13

G2
13

Figure 8 An optimal drawing of G13 × Sn
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Theorem 2 For n ≥ 1, we have cr(G13 × Sn) = 4⌊n
2 ⌋⌊

n−1
2 ⌋ + ⌊n

2 ⌋.

Proof The drawing in Figure 8 shows that cr(G13 × Sn) ≤ 4⌊n
2 ⌋⌊

n−1
2 ⌋ + ⌊n

2 ⌋. Then, we only

prove the reverse inequality for each good drawing φ. Use Lemma 3, and contract the copy of

Gi
13(i = 1, 2, . . . , n) to the vertex ti. Then, we obtain a graph isomorphic to Hn. So, for each

good drawing φ, we have crφ(G13 ×Sn) ≥ cr(Hn) = 4⌊n
2 ⌋⌊

n−1
2 ⌋+ ⌊n

2 ⌋. This completes the proof.

2
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