Journal of Mathematical Research & Exposition July, 2009, Vol. 29, No. 4, pp. 599–606 DOI:10.3770/j.issn:1000-341X.2009.04.004 Http://jmre.dlut.edu.cn

Locally Inverse Semigroups with Inverse Transversals

SHAO Yong¹, ZHAO Xian Zhong^{1,2}

(1. Department of Mathematics, Northwest University, Shaanxi 710127, China;

2. College of Mathematics and Information Science, Jiangxi Normal University, Jiangxi 330022, China)

(E-mail: yongshaomath@126.com)

Abstract Let S be a locally inverse semigroup with an inverse transversal S° . In this paper, we construct an amenable partial order on S by an R-cone. Conversely, every amenable partial order on S can be constructed in this way. We give some properties of a locally inverse semigroup with a Clifford transversal. In particular, if S is a locally inverse semigroup with a Clifford transversal, then there is an order-preserving bijection from the set of all amenable partial orders on S to the set of all R-cones of S.

Keywords locally inverse semigroup; inverse transversal; amenable partial order; orderpreserving bijection.

Document code A MR(2000) Subject Classification 31B05; 47B35 Chinese Library Classification 0174.56

1. Introduction and preliminary

A semigroup S is said to be a p.o. semigroup, or to be partially ordered, if it admits a compatible ordering \leq ; that is, \leq is a partial order on S such that

$$(\forall a, b \in S, x \in S^1) \ a \leq b \Longrightarrow xa \leq xb \text{ and } ax \leq bx.$$

Let S be a regular semigroup with set E(S) of idempotent elements. As usual, we use \leq to denote the natural partial order on S. That is, for any $a, b \in S$,

$$a \leq b \iff (\exists e, f \in E(S)) a = eb = bf.$$

By Corollary II.4.2 in [1], the natural partial order \leq on S is compatible with the multiplication if and only if S is a locally inverse semigroup. Thus a locally inverse semigroup equipped with the natural partial order is a p.o. semigroup. Particularly, an inverse semigroup is a p.o. semigroup under the natural partial order.

The amenable partial orders on an inverse semigroup were introduced and studied by McAlister in [3]. We now give this concept in the following definition.

Definition 1.1^[3] Let (S, \cdot, \leq) be a p.o. inverse semigroup. The partial order \leq is said to be

Received date: 2007-09-08; Accepted date: 2008-01-04

Foundation item: the National Natural Science Foundation of China (No. 10471112); the Natural Science Foundation of Education Committee of Shaanxi Province (No. 07JK413).

left(right) amenable if it coincides with \leq on idempotents and for every $a, b \in S, a \leq b$ implies $a^{-1}a \leq b^{-1}b (aa^{-1} \leq bb^{-1})$. If \leq is both left amenable and right amenable on S, then \leq is said to be amenable and S is called an amenable p.o. inverse semigroup.

It is easy to see that the natural partial order on inverse semigroup is amenable. For an inverse semigroup S, McAlister in [3] introduced the notion of a cone as the full subsemigroup Q of the subsemigroup $R(E(S)) = \{x \in S | (\forall e \in E(S)), exe = xe\}$ with the properties that $Q \bigcap Q^{-1} = E(S)$ and $xQx^{-1} \subseteq Q$ for all $x \in S$. He showed that there exists an order-preserving bijection between the set of cones in S and the set of left amenable partial orders on S.

Blyth and Almeida generalized (left) amenable partial orders on an inverse semigroup to a regular semigroup with an inverse transversal in [4]. Let S be a regular semigroup, for any $a \in S$, and let V(a) denote the set of all inverses of a. An inverse transversal of a regular semigroup S is an inverse subsemigroup S° with the property that $|S^{\circ} \cap V(a)| = 1$ for every a in S. The unique inverse of a in $S^{\circ} \cap V(a)$ is written by a° and $(a^{\circ})^{\circ}$ is written by $a^{\circ \circ}$. The set of idempotents in S° is denoted by $E(S^{\circ})$. We formulate the following definition.

Definition 1.2^[4] Let (S, \cdot, \leq) be a p.o. regular semigroup with an inverse transversal S° . If \leq coincides with \leq on idempotents and \leq has the following property

$$(\forall a, b \in S) \ a \le b \Longrightarrow a^{\circ}a \preceq b^{\circ}b,$$

then \leq is said to be left amenable on S. Dually, if $a \leq b$ implies $aa^{\circ} \leq bb^{\circ}$, then \leq is said to be right amenable on S. If \leq is both left amenable and right amenable on S, then \leq is said to be amenable and S is called an amenable p.o. regular semigroup with an inverse transversal S° .

Let (S, \cdot) be a regular semigroup with an inverse transversal S° . Then Blyth and Almeida pointed out in [5] that S satisfies the following equalities.

$$(\forall a, b \in S) (ab)^{\circ} = (a^{\circ}ab)a^{\circ} = b^{\circ}(ab^{\circ}b)^{\circ} = b^{\circ}(a^{\circ}abb^{\circ})^{\circ},$$
$$(a^{\circ}b)^{\circ} = b^{\circ}a^{\circ\circ}, (ab^{\circ})^{\circ} = b^{\circ\circ}a^{\circ}.$$
(1)

According to Blyth and Almeida in [5], if S is locally inverse, then

$$(\forall a, b, c \in S) \quad a^{\circ}bc^{\circ} = a^{\circ}b^{\circ\circ}c^{\circ}.$$

$$\tag{2}$$

Suppose that S is a locally inverse semigroup with an inverse transversal S° . Then Blyth and Almeida stated in [5] that the two subsets of E(S)

$$\Lambda = \{x^{\circ}x | x \in S\}, \quad I = \{xx^{\circ} | x \in S\}$$

are right normal subband and left normal subband of E(S), respectively. Consider the following two subsets of S

$$L = \{xx^{\circ}x^{\circ\circ} | x \in S\}, R = \{x^{\circ\circ}x^{\circ}x | x \in S\}.$$

Then, the following statements were given in [5].

(α) L is a left normal orthodox subsemigroup of S and $I = \{xx^{\circ} | x \in S\}$ is the set of all idempotents of L;

(β) R is a right normal orthodox subsemigroup of S and $\Lambda = \{x^{\circ}x | x \in S\}$ is the set of all idempotents of R;

 $\begin{array}{l} (\gamma) \ L \bigcap R = S^{\circ}, \ \Lambda \bigcap I = E(S^{\circ}); \\ (\delta) \ S^{\circ}S \subseteq R, \ SS^{\circ} \subseteq L. \\ \text{Let} \end{array}$

 $\Lambda^* = \{ x \in S | (\forall l \in \Lambda) \, lxl = xl \}, \, I^* = \{ x \in S | (\forall r \in I) \, rxr = rx \}.$

It is easy to see that $\Lambda^*(I^*)$ is a subsemigroup of S and $\Lambda = E(\Lambda^*)(I = E(I^*))$, Furthermore, Blyth and Alemida proved that Λ^* is a subsemigrup of R containing Λ and I^* is a subsemigroup of L containing I (see Theorem 3 in [5]), and after that they introduced the concepts of R-cone and L-cone of S, which generalized the notion of cone in an inverse semigroup. We have the following definition.

Definition 1.3^[5] Let S be a locally inverse semigroup with an inverse transversal S° and Q be a non-empty subset of S. If

- (C1) Q is a full subsemigroup of $\Lambda^*(\Lambda \subseteq Q)$;
- (C2) $Q \cap Q^\circ = E(S^\circ);$
- (C3) $(\forall x \in R) xQx^{\circ} \subseteq Q,$

then Q is called an R-cone. Dually, we can consider the subset $I^* = \{x \in S | (\forall r \in I) rxr = rx\}$ and formulate the L-cone.

It is known that an amenable partial order on S can be constructed by an R-cone P and an L-cone Q. Conversely, every amenable partial order on S can be obtained in this way (see Theorems 8 and 10 in [5]).

In this paper, we give a new characterization of amenable partial order on S by constructing amenable partial order on S by using any R-cone. Conversely, we also show that every amenable partial order on a locally inverse semigroup can be obtained in this way. Thus, a new characterization theorem of the natural partial order on S is obtained. Also, we characterize the locally inverse semigroup with a Clifford transversal. In particular, if S is a locally inverse semigroup with a Clifford transversal, then there is an order-preserving bijection from the set of all amenable partial orders on S to the set of all R-cones of S.

2. Constructing amenable partial orders

We first give a new characterization of amenable partial order on a locally inverse semigroup with an inverse transversal.

The following lemma follows from Theorem 5 in [5].

Lemma 2.1 Let S be a locally inverse semigroup with an inverse transversal S° . If C is an R-cone of S, then

$$(\forall x \in S) \ x \in C \Longrightarrow x^{\circ \circ} \in C.$$

We now prove the following theorem.

Theorem 2.2 Suppose that S is a locally inverse semigroup with an inverse transversal S° and C is an R-cone of S. Then the relation \leq_C defined on S by

$$x \leq_C y \iff xx^\circ \preceq yy^\circ, \, x^\circ x \preceq y^\circ y, \, x^\circ y^{\circ \circ}, \, y^{\circ \circ} x^\circ \in C \tag{(*)}$$

is an amenable partial order on S.

Proof It can be easily seen that \leq_C is reflexive. Suppose that $x \leq_C y$ and $y \leq_C x$. Then, by \leq_C , we have $xx^\circ = yy^\circ$, $x^\circ x = y^\circ y$, $x^\circ y^{\circ\circ}$, $y^\circ x^{\circ\circ} \in C$. Thus $y^\circ x^{\circ\circ} = (x^\circ y^{\circ\circ})^\circ \in C \cap C^\circ = E(S^\circ)$ since C is an R-cone. It follows from $xx^\circ = yy^\circ$ and (1) that $x^{\circ\circ}x^\circ = (xx^\circ)^\circ = (yy^\circ)^\circ = y^{\circ\circ}y^\circ$ and so $y^\circ = y^\circ y^{\circ\circ}y^\circ = y^\circ x^{\circ\circ}x^\circ$, which gives $y^\circ \preceq x^\circ$. Likewisely, $x^\circ \preceq y^\circ$ and so $x^\circ = y^\circ$, furthermore, we have $x^{\circ\circ} = y^{\circ\circ}$. Hence, $x = xx^\circ \cdot x^{\circ\circ} \cdot x^\circ x = yy^\circ \cdot y^{\circ\circ} \cdot y^\circ y = y$. This shows that \leq_C is anti-symmetric. If $x \leq_C y$ and $y \leq_C z$, then $x^\circ x \preceq y^\circ y \leq_Z z$, $xx^\circ \preceq yy^\circ \preceq zz^\circ$ and $x^\circ y^{\circ\circ}$, $y^\circ z^{\circ\circ} \in C$. We obtain from $xx^\circ \preceq yy^\circ$ that $xx^\circ yy^\circ = xx^\circ$. Since C is a subsemigroup of $S, x^\circ y^{\circ\circ}y^\circ z^{\circ\circ} \in C$. Thus, we obtain

$$\begin{aligned} x^{\circ}y^{\circ\circ}y^{\circ}z^{\circ\circ} &= x^{\circ}xx^{\circ}y^{\circ\circ}y^{\circ}z^{\circ\circ} &= x^{\circ}(xx^{\circ}yy^{\circ})z^{\circ\circ} \quad (by\ (2)) \\ &= x^{\circ}z^{\circ\circ}. \end{aligned}$$

Consequently $x^{\circ}z^{\circ\circ} \in C$. Similarly, we have $z^{\circ\circ}x^{\circ} \in C$ and so $x \leq_C z$. Thereby, \leq_C is transitive and \leq_C is a partial order on S.

Suppose that $x \leq_C y$. For any $z \in S$, we have

$$(zx)^{\circ}(zy)^{\circ\circ} = x^{\circ}(zxx^{\circ})^{\circ}(zy)^{\circ\circ} \qquad (by (1))$$
$$= x^{\circ}(zyy^{\circ}xx^{\circ})^{\circ}(zy)^{\circ\circ}$$
$$= x^{\circ}x^{\circ\circ}x^{\circ}y^{\circ\circ}(zy)^{\circ}(zy)^{\circ\circ}$$
$$= x^{\circ}y^{\circ\circ}(zy)^{\circ}(zy)^{\circ\circ}$$
$$\in CE(S^{\circ})$$
$$\subseteq C \qquad (E(S^{\circ}) \subseteq C)$$

and

$$\begin{aligned} (zy)^{\circ\circ}(zx)^{\circ} &= (zy)^{\circ\circ}x^{\circ}(zxx^{\circ})^{\circ} \qquad (by\ (1)) \\ &= (zyy^{\circ}y)^{\circ\circ}x^{\circ}(zxx^{\circ}yy^{\circ})^{\circ} \\ &= (zyy^{\circ})^{\circ\circ}y^{\circ\circ}x^{\circ}(zyy^{\circ}xx^{\circ})^{\circ} \qquad (by\ (2)) \\ &= (zyy^{\circ})^{\circ\circ}y^{\circ\circ}x^{\circ}x^{\circ}x^{\circ}(zyy^{\circ})^{\circ} \qquad (by\ (1)) \\ &= (zyy^{\circ})^{\circ\circ}y^{\circ\circ}x^{\circ}(zyy^{\circ})^{\circ} \\ &\in C. \qquad (y^{\circ\circ}x^{\circ}\in C) \end{aligned}$$

Hence, $(zx)^{\circ}(zy)^{\circ\circ}, (zy)^{\circ\circ}(zx)^{\circ} \in C$. It follows from Theorem 8 in [5] that $zx(zx)^{\circ} \leq zy(zy)^{\circ}$ and $(zx)^{\circ}zx \leq (zy)^{\circ}zy$. Thus, $zx \leq_C zy$, and therefore \leq_C is compatible on the left. Dually, \leq_C is also compatible on the right and so (S, \cdot, \leq_C) is a p.o. semigroup.

In the following, we will show that the partial order \leq_C coincides with the natural partial order on E(S). Suppose that $e, f \in E(S)$ and $e \leq_C f$. Then $e^{\circ}e \leq f^{\circ}f$, $ee^{\circ} \leq ff^{\circ}$. From Theorem 2 in [5], we obtain $e \leq f$. Conversely, if $e \leq f$, by using Theorem 2 in [5], then $e^{\circ}e \leq$

 $f^{\circ}f, ee^{\circ} \leq ff^{\circ}$ and $e^{\circ}f \in \Lambda, fe^{\circ} \in I$. Furthermore, we have $(e^{\circ}f)^{\circ\circ} = e^{\circ}f^{\circ\circ} \in E(S^{\circ}) \subseteq C$, and likewisely, $f^{\circ\circ}e^{\circ} \in C$. Thus $e \leq_C f$, and consequently \leq_C coincides with \leq on idempotents. This shows that \leq_C is an amenable partial order. \Box

Theorem 2.2 shows that an amenable partial order can be constructed by using an R-cone. The following result shows that an R-cone can be obtained from an amenable partial order.

We first prove the following lemma.

Lemma 2.3 Suppose that S is a locally inverse semigroup with an inverse transversal S° . If the partial order \leq is an amenable partial order on S, then

$$(\forall a, b \in S) \ a \leq b \Longrightarrow a^{\circ \circ} \leq b^{\circ \circ}.$$

Proof Suppose that $a \leq b$. Then $aa^{\circ} \leq bb^{\circ}$ and $a^{\circ}a \leq b^{\circ}b$, and whence $aa^{\circ}bb^{\circ} = aa^{\circ}$ and $a^{\circ}ab^{\circ}b = a^{\circ}a$. From (1) and (2), we have $(aa^{\circ}bb^{\circ})^{\circ} = (aa^{\circ}b^{\circ\circ}b^{\circ})^{\circ} = b^{\circ\circ}b^{\circ}a^{\circ\circ}a^{\circ} = (aa^{\circ})^{\circ} = a^{\circ\circ}a^{\circ}$. This shows that $a^{\circ\circ}a^{\circ} \leq b^{\circ\circ}b^{\circ}$. Likewisely, $a^{\circ}a^{\circ\circ} \leq b^{\circ}b^{\circ\circ}$. Since \leq is an amenable partial order, $a^{\circ\circ}a^{\circ} \leq b^{\circ\circ}b^{\circ}$ and $a^{\circ}a^{\circ\circ} \leq b^{\circ}b^{\circ\circ}$, and consequently $a^{\circ\circ} = a^{\circ\circ}a^{\circ}aa^{\circ}a^{\circ\circ} \leq b^{\circ\circ}b^{\circ}bb^{\circ}b^{\circ\circ} = b^{\circ\circ}$, as required.

Lemma 2.4 Suppose that S is a locally inverse semigroup with an inverse transversal S° . If the partial order \leq is an amenable partial order on S, then the set $C = \{x \in \Lambda^* | x^{\circ} x \leq x\}$ is an R-cone of S and $\leq_C = \leq$.

Proof It follows from Theorem 10 in [5] that C is an R-cone of S. Consider the corresponding partial order \leq_C given by

$$x \leq_C y \iff xx^\circ \preceq yy^\circ, \ x^\circ x \preceq y^\circ y, x^\circ y^{\circ\circ}, \ y^{\circ\circ}x^\circ \in C.$$

We can obtain from Theorem 2.2 that \leq_C is an amenable partial order on S.

In the following, we will show that $\leq_C = \leq$.

Suppose that $x \leq_C y$. Then $xx^{\circ} \leq yy^{\circ}$ and $x^{\circ}y^{\circ\circ} \in C$, from the definition of C, we have $(x^{\circ}y^{\circ\circ})^{\circ}x^{\circ}y^{\circ\circ} = y^{\circ}x^{\circ\circ}x^{\circ}y^{\circ\circ} \leq x^{\circ}y^{\circ\circ}$. Since $x^{\circ}x \leq y^{\circ}y$, $x^{\circ}x^{\circ\circ} = (x^{\circ}x)^{\circ} = (x^{\circ}xy^{\circ}y)^{\circ} = y^{\circ}y^{\circ\circ}x^{\circ}x^{\circ\circ}$, similarly, $x^{\circ\circ}x^{\circ} = x^{\circ\circ}x^{\circ}y^{\circ\circ}y^{\circ}$. Hence, we deduce that

$$\begin{array}{rcl} x^{\circ\circ}x^{\circ} &=& y^{\circ\circ}y^{\circ}x^{\circ\circ}x^{\circ} \\ &=& y^{\circ\circ}y^{\circ}x^{\circ\circ}x^{\circ}y^{\circ\circ}y^{\circ} & (E(S^{\circ}) \text{ is a semilattice}) \\ &=& y^{\circ\circ}(y^{\circ}x^{\circ\circ}x^{\circ}y^{\circ\circ})y^{\circ} \\ &\leq& y^{\circ\circ}(y^{\circ}y^{\circ\circ}x^{\circ}x^{\circ}x^{\circ}y^{\circ\circ})y^{\circ} \\ &=& y^{\circ\circ}x^{\circ}(x^{\circ\circ}x^{\circ}y^{\circ\circ}y^{\circ}) \\ &=& y^{\circ\circ}x^{\circ}x^{\circ\circ}x^{\circ} \\ &=& y^{\circ\circ}x^{\circ}. \end{array}$$

Since \leq is an amenable partial order, $x = xx^{\circ}x^{\circ\circ}x^{\circ}x \leq xx^{\circ}y^{\circ\circ}x^{\circ}x \leq yy^{\circ}y^{\circ}y^{\circ}y = y$. Consequently $\leq_C \subseteq \leq$.

Suppose that $a, b \in S$ and $a \leq b$. It follows from $a \leq b$ that $aa^{\circ} \leq bb^{\circ}$ and $a^{\circ}a \leq b^{\circ}b$. Furthermore, we have $b^{\circ}ba^{\circ} = b^{\circ}ba^{\circ}aa^{\circ} = a^{\circ}$. By Lemma 2.3, we have $a^{\circ\circ} \leq b^{\circ\circ}$. Hence, $(a^{\circ}b)^{\circ}(a^{\circ}b) = b^{\circ}a^{\circ\circ}a^{\circ}b \le b^{\circ}b^{\circ\circ}a^{\circ}b = b^{\circ}ba^{\circ}b = a^{\circ}b.$ Since

$$(a^{\circ}b)^{\circ\circ}(a^{\circ}b)^{\circ}a^{\circ}b = a^{\circ}b^{\circ\circ}b^{\circ}a^{\circ\circ}a^{\circ}b = a^{\circ}(bb^{\circ}aa^{\circ})^{\circ\circ}b$$
$$= a^{\circ}a^{\circ\circ}a^{\circ}b = a^{\circ}b, \quad a^{\circ}b \in R.$$

To prove $a^{\circ}b \in \Lambda^*$, we first denote the Green's \mathcal{L} relation on R by \mathcal{L} . For any $e \in \Lambda$, it can be easily seen that $(a^{\circ}b)e\mathcal{L}(a^{\circ}b)^{\circ}a^{\circ}be$ since \mathcal{L} is a right congruence on R. Since every \mathcal{L} -class contains a single idempotent, $(a^{\circ}be)^{\circ}(a^{\circ}be) = (a^{\circ}b)^{\circ}a^{\circ}be$. Post-multiplying $(a^{\circ}b)^{\circ}(a^{\circ}b) \leq a^{\circ}b$ by e and pre-multiplying $(a^{\circ}b)^{\circ}(a^{\circ}b) \leq a^{\circ}b$ by $(a^{\circ}b)^{\circ}a^{\circ}be$, we have $(a^{\circ}b)^{\circ}a^{\circ}be \leq (a^{\circ}b)^{\circ}a^{\circ}be \cdot a^{\circ}be$. By Theorem 7 in [4], we have $a^{\circ}be = (a^{\circ}b)^{\circ}a^{\circ}be \cdot a^{\circ}be$. Pre-multiplying this by e, we have $ea^{\circ}be = e(a^{\circ}b)^{\circ}a^{\circ}be \cdot a^{\circ}be$. Since Λ is a right normal band, $ea^{\circ}be = e(a^{\circ}b)^{\circ}a^{\circ}be \cdot a^{\circ}be =$ $(a^{\circ}b)^{\circ}a^{\circ}be \cdot a^{\circ}be = a^{\circ}be$. This shows that $a^{\circ}b \in \Lambda^*$. Thus $(a^{\circ}b)^{\circ}(a^{\circ}b) \leq a^{\circ}b$ and $a^{\circ}b \in \Lambda^*$. It follows from the definition of C that $a^{\circ}b \in C$. By Lemma 2.1, we have $(a^{\circ}b)^{\circ\circ} = a^{\circ}b^{\circ\circ} \in C$. Likewisely, $b^{\circ\circ}a^{\circ} \in C$. Hence, $a \leq_C b$ and so $\leq \subseteq \leq_C$. Therefore $\leq_C = \leq$.

Suppose that S is a locally inverse semigroup with an inverse transversal S° . It can be easily seen that Λ is the smallest R-cone of S. By Lemma 2.4 and Theorem 11 in [5], we obtain a new characterization of the natural partial order on S.

Theorem 2.5 Suppose that S is a locally inverse semigroup with an inverse transversal S° . Then \leq_{Λ} defined by (*) is the smallest amenable partial order on S and $\leq_{\Lambda} = \preceq$.

3. Clifford transversals

Suppose that S is a locally inverse semigroup with an inverse transversal S° . Consider the following subset of S

$$T = \{x \in S | x = x^{\circ} x^2\}.$$

Then, by Theorem 9 in [5], $T \subseteq R$ and $E(T) = \Lambda$, where E(T) is the set of all idempotents of T.

Suppose that S is a locally inverse semigroup with an inverse transversal S° . If S° is a Clifford semigroup, i.e., for any $a \in S^{\circ}$, $a^{\circ}a = aa^{\circ}$, then S° is called a Clifford transversal.

We have the following lemma.

Lemma 3.1 Suppose that S is a locally inverse semigroup with an inverse transversal S° . If T = R, then S° is a Clifford transversal.

Proof For any $x \in S^{\circ}$, by (β) , we have $S^{\circ} \subseteq R = T$ and so $x = x^{\circ}x^{2}$. It can be easily seen that $x = x^{\circ\circ}$ since $x \in S^{\circ}$. Thus $x^{\circ\circ} = x^{\circ}(x^{\circ\circ})^{2}$. Post-multiplying this by x° , we obtain $x^{\circ\circ}x^{\circ} = x^{\circ}x^{\circ\circ} \cdot x^{\circ\circ}x^{\circ}$. Since $x^{\circ} \in S^{\circ} \subseteq R = T$, $x^{\circ} = x^{\circ\circ}(x^{\circ})^{2}$. Post-multiplying this by $x^{\circ\circ}$, we have $x^{\circ}x^{\circ\circ} = x^{\circ\circ}x^{\circ} \cdot x^{\circ}x^{\circ\circ}$. Consequently $x^{\circ\circ}x^{\circ} = x^{\circ}x^{\circ\circ}$ since $E(S^{\circ})$ is a semilattice. Furthermore, we have $xx^{\circ} = x^{\circ}x$. Hence, S° is a Clifford transversal.

Suppose that S is a completely regular semigroup and E(S) is the set of all idempotents of S. If E(S) is a right normal band, then S is called a right normal orthogroup. In the following, we will give a characterization of locally inverse semigroup with a Clifford transversal.

Theorem 3.2 Suppose that S is a locally inverse semigroup with an inverse transversal S° . Then the following conditions are equivalent:

- (i) T = R;
- (ii) S° is a Clifford transversal;
- (iii) R is a right normal orthogroup.

Proof (i) \Longrightarrow (iii). Assume that $x \in R$. Then $x = x^{\circ}x^{\circ}x$. Since T = R, $x = x^{\circ}x^{2}$. Postmultiplying this by x° , we obtain $xx^{\circ} = x^{\circ}x \cdot xx^{\circ}$. It can be easily seen that $xx^{\circ} \cdot x^{\circ}x = (x^{\circ\circ}x^{\circ}x)x^{\circ} \cdot x^{\circ}x = x^{\circ\circ}(x^{\circ})^{2}x$. From $x^{\circ} \in S^{\circ} \subseteq R = T$, we have $x^{\circ} = x^{\circ\circ}(x^{\circ})^{2}$. Thus, $xx^{\circ} \cdot x^{\circ}x = x^{\circ}x$. We denote by \mathcal{R} and \mathcal{H} the Green's \mathcal{R} relation and Green's \mathcal{H} relation on R, respectively. Then $xx^{\circ}\mathcal{R}x^{\circ}x$. Since $x\mathcal{R}xx^{\circ}$ and $x\mathcal{L}x^{\circ}x$, $x\mathcal{R}x^{\circ}x$ and so $x(\mathcal{L} \cap \mathcal{R})x^{\circ}x$, i.e., $x\mathcal{H}x^{\circ}x$. This shows that every \mathcal{H} -class of R is a group. Consequently R is a completely regular semigroup. From the fact that $E(R) = \Lambda$ is a right normal band, R is a right normal orthogroup.

(iii) \Longrightarrow (i). For any $x \in R$, we denote x^{-1} the inverse of x in \mathcal{H} -class containing x. Then it is clear that $x = xx^{-1}x = x^{-1}x \cdot x$. From the fact that $x\mathcal{L}x^{-1}x\mathcal{L}x^{\circ}x$ and every \mathcal{L} -class of Rcontains a single idempotent, we have $x^{-1}x = x^{\circ}x$. Consequently $x = x^{-1}x \cdot x = x^{\circ}x \cdot x = x^{\circ}x^{2}$, by the definition of T, we have $x \in T$, moreover, $R \subseteq T$. Now, by Theorem 9 in [5], $T \subseteq R$. Hence, T = R.

(ii) \implies (i). For any $x \in R$, we have $x = x^{\circ \circ} x^{\circ} x$. From (1) and (2), we deduce that

Since S° is a Clifford transversal, we deduce that

$$x = x^{\circ\circ}x^{\circ}x = x^{\circ}x^{\circ\circ}(x^{\circ\circ}x^{\circ}x)$$
$$= x^{\circ}(x^{2})^{\circ\circ}x^{\circ}x = x^{\circ}x^{2}x^{\circ}x \quad (by (2))$$
$$= x^{\circ}x^{2}.$$

This shows that $R \subseteq T$. By Theorem 9 in [5], we have $T \subseteq R$, and whence T = R.

(i) \implies (ii). By Lemma 3.1, it can be easily seen that S° is a Clifford transversal.

Suppose that S is a locally inverse semigroup with an inverse transversal S° and C is an R-cone. It follows by Theorem 2.2 that \leq_C is an amenable partial order on S. From Lemma 2.4, the set $\{x \in \Lambda^* | x^{\circ}x \leq_C x\}$ is an R-cone.

Lemma 3.3 Suppose that S is a locally inverse semigroup with a Clifford transversal S° and C is an R-cone. Then $C = \{x \in \Lambda^* | x^{\circ}x \leq_C x\}$, in which \leq_C is an amenable partial order defined by (*).

Proof It follows by Theorem 2.2 that \leq_C is an amenable partial order on S. By Lemma 2.4, the set $D = \{x \in \Lambda^* | x^\circ x \leq_C x\}$ is an R-cone. We now show that C = D.

If $x \in C$, then $x \in \Lambda^*$ from (C1). Since Λ^* is a subsemigroup of R, $x = x^{\circ \circ} x^{\circ} x$. From that

 S° is a Clifford transversal, we obtain

$$x^{\circ}x(x^{\circ}x)^{\circ} = x^{\circ}xx^{\circ}x^{\circ\circ} \quad (by (1))$$
$$= x^{\circ}x^{\circ\circ} = x^{\circ\circ}x^{\circ}$$
$$= (x^{\circ\circ}x^{\circ}x)x^{\circ} = xx^{\circ}.$$

It is easy to see that $(x^{\circ}x)^{\circ}x^{\circ\circ} = x^{\circ}x^{\circ\circ}x^{\circ\circ}$. Since S° is a Clifford transversal, $x^{\circ}x^{\circ\circ}x^{\circ\circ} = x^{\circ\circ}x^{\circ}x^{\circ}x^{\circ\circ} = x^{\circ\circ}x^{\circ}x^{\circ\circ} = x^{\circ\circ}$. It follows from Lemma 2.1 and $x \in C$ that $x^{\circ\circ} \in C$, i.e., $(x^{\circ}x)^{\circ}x^{\circ\circ} = x^{\circ\circ} \in C$. From $x^{\circ\circ} \in C$, we have $x^{\circ\circ}(x^{\circ}x)^{\circ} = x^{\circ\circ} \in C$. Consequently $x^{\circ}x \leq_{C} x$ by Theorem 2.2. This shows that $x \in D$ and so $C \subseteq D$.

If $x \in D$, then $x \in R$. Furthermore, we have $x = x^{\circ \circ} x^{\circ} x$. From $x^{\circ} x \leq_C x$ and Theorem 2.2, we have $x^{\circ \circ} = x^{\circ \circ} (x^{\circ} x)^{\circ} \in C$. It is obvious that $x^{\circ} x \in \Lambda$ and Λ is the smallest *R*-cone, so we have $x^{\circ} x \in C$. Consequently, $x = x^{\circ \circ} x^{\circ} x \in CC \subseteq C$. This shows that $D \subseteq C$. Hence, C = D.

The following theorem is the main theorem of this paper.

Theorem 3.4 Let S be a locally inverse semigroup with a Clifford transversal S° . Then there is an order-preserving bijection from the set $\mathbf{RC}(S)$ of all R-cones of S to the set $\mathbf{AO}(S)$ of all amenable partial orders on S.

Proof For any $C \in \mathbf{RC}(S)$, it follows by Theorem 2.2 that \leq_C is an amenable partial order on S. Hence, we can define a mapping ψ from the set $\mathbf{RC}(S)$ of all R-cones on S to the set $\mathbf{AO}(S)$ of all amenable partial orders on S by:

$$\psi : \mathbf{RC}(S) \longrightarrow \mathbf{AO}(S), \ \psi(C) = \leq_C.$$

Suppose that $C_1, C_2 \in \mathbf{RC}(S)$ but $C_1 \neq C_2$. Then, by Lemma 3.3, we have $C_1 = \{x \in \Lambda^* | x^{\circ}x \leq_{C_1} x\}, C_2 = \{x \in \Lambda^* | x^{\circ}x \leq_{C_2} x\}$. If $\leq_{C_1} = \leq_{C_2}$, then it can be easily seen that $C_1 = C_2$. This contradicts $C_1 \neq C_2$. Hence, ψ is injective..

If \leq is an amenable partial order on S. It follows by Lemma 2.4 that $C = \{x \in \Lambda^* | x^\circ x \leq x\}$ is an R-cone and $\leq = \leq_C$. Thus ψ is surjective. If $C_1, C_2 \in \mathbf{RC}(S)$ and $C_1 \subseteq C_2$, then it is easy to see that $\leq_{C_1} \subseteq \leq_{C_2}$. Hence, ψ is an order-preserving bijection. The proof is completed. \Box

References

- [1] PETRICH M, REILLY N R. Completely Regular Semigroups [M]. John Wiley & Sons, Inc., New York, 1999.
- [2] HOWIE J M. Fundamentals of Semigroup Theory [M]. Oxford University Press, New York, 1995.
- [3] MCALISTER D B. Amenably ordered inverse semigroups [J]. J. Algebra, 1980, 65(1): 118–146.
- [4] BLYTH T S, ALMEIDA-SANTOS M H. Amenable orders on orthodox semigroups [J]. J. Algebra, 1994, 169(1): 49–70.
- [5] BLYTH T S, ALEMIDA-SANTOS M H. Amenable orders associated with inverse transversals [J]. J. Algebra, 2001, 240(1): 143–164.