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Abstract Recently some classical operator quasi-interpolants were introduced to obtain much
faster convergence. A.T. Diallo investigated some approximation properties of Szasz-Mirakjan
Quasi—Interpolants, but he obtained only direct theorem with Ditzian-Totik modulus wir (f,t).
In this paper, we extend Diallo’s result and solve completely the characterization on the rate of
approximation by the method of quasi-interpolants to functions f € Cg0, c0) by making use of
the unified modulus wi& (f,t) (0< AL,
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1. Introduction

For function f € Cp[0,00) (Cpl0,00) denotes the set of continuous and bounded function),

the n-th classical Szasz-Mirakjan operator S,,,n € N, is defined by

> k
Sﬂ(fa I) = Sn,k('r)f <_) ) S [0,00),TL eN
k=0 n
where for £k =0,1,2,...,
(na)*
k!

It is well known that for f € Cg[0,00), ¢(z) = /2 and 0 < a < 1[48]

—nx

snk(x) =e

IS0 f = fll = O(n™*) <= wi(f.t) = O(t*),

where w? (f, t) is Ditzian-Totik modulus. In [3], Ditzian introduced the unified modulus wik (f,t) =
SUPg<p<t HA%@A]“H, 0 <X < 1. With wik (f,t) the following pointwise approximation equivalence

result is obtained in [5]

1_)‘(.%')

b
Su(f,2) = f(@)| = O((F—=
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)a) = Wi (f,t) =0t*) (0<a<?2).
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In order to obtain faster convergence the so-called Szasz-Mirakian quasi-interpolants were
(1,27 We first recall the construction of Sflk)(f, x).

Let II,, denote the space of algebraic polynomials of degree at most n. On II,, the Szasz-

considered

Mirakian operator S,, and its inverse S, ! can be expressed as linear differential operators with
polynomials coefficients in the form S, = > 87 D7 and S, " = A, = Y77 ;o D7 with D = £
and D° = id.

Therefore Szasz-Mirakian quasi-interpolant is defined by!?

Sr)*A(T oS, _Za z)DI S, ( Za Sni(fix), 0<r<mn,

where A\ = Y i—g D7, Of course, SO =g, Sr(L" = id on II,. Moreover, for 0 < r < n,

S’ff)p = p for all p € II,.. Diallo? estimates a?(:v) and obtains expression as follows:

ag(z) =1, af(x)=0 and

22 = i’

+c? +o e —— T j>2 (1.1)

oj (z) = ¢ 252

=151

where j' = [(#)} and c7 are constants independent of n. Some approximation properties of

S have been investigated too.

Theorem 1.112/ Let f € Cp[0,00), p(z) = /2, n > 2r—1,r € N. Then there exists a constant
C > 0 independent of n and f such that

ISE D f = flloo < Cwir(f,%)oo. (1.2)

We note that there are not inverse and equivalent results in [2]. The intention of this paper
is to extend this result and solve completely the characterization on the rate of approximation
by the method of quasi-interpolants to functions f € Cg[0,00) by making use of the unified
modulus wik(f, t). This leads to the following

Theorem 1.2 (Equivalence Result) Let f € Cg[0,00), p(z) =z, n>4r,r € N, 0 <A < 1.

Then for 0 < a < 2r the following two statements are equivalent:
- 517 (@) o
@) 18 - f@ = 0((* 7))
(i) w2 (f,1) = O(12),

where §,,(z) = max {gp(:z:), ﬁ} ~ p(x) + \/LE
In next section, we give a direct theorem which implies Theorem 1.1. Now we give the

(1.3)

definitions of the unified modulus and K-functional

w;* (fa t) = Ssup sup |A}Sw;*(m)f(x)|v (14)

0<h<tz+Lhe*(x)€[0,00]

K (ft) = inf - {f = gl + ]9 [}, (1.5)
gews (¢.[0,00])

Ko (fit) = inf  {If = gl + 09 oo + 1777 9|}, (1.6)
gews (¢.[0,00))
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where w* (i, [0,00)) = {g € C[0,0), g¢~D € A.C.1,c]0,0), ||[¢**9®|| < 00, ||¢g(¥]| < co}.
It was proved in [4] that

=S
wj;)\(fut)NKZX(futS)NKgaA(futs)' (17)
Throughout this paper || - || denotes || - |0, C denotes a positive constant not necessarily the
same at each occurrence.
2. Direct theorem
We will use the following results.

Lemma 2.1% The following estimates hold:
(1) Forz € ES =1[0,1) and j > 2, we have

o (z)] < Cn™. (2.1)

(2) Form>1andx € E, =[1,00), we get

n —m m n 77717l m

03 (8)] € O™ (@), [0 (2)] < O 5 (), (2.2

Lemma 2.2 (1) For z € ES and j > 2, we have
‘DT(ay(x))‘ < On~itr, (2.3)

(2) Form > 1 and x € E,, we get
—m+Z m—r r.n —m+I=t m—r

D705, (2)] < On~" 52 (1), |D 0 (a)] < On TP @) (24)

Proof Let us consider the r-th derivative of o in (1.1) for j = 2m, r < m by

2 m
X
D"(ay,,) = D" (Cgm—IW + Cgm—QW + Czn—m>
1 x T
< C(CgmfrW + C’zszrqw + oy, v ) (2.5)
. . _ 1 1
Firstly, we consider x € Ey, = [0, --), where < . So
T :L.m_"‘
D" (ag,,) < C(Cgmfrw + C’zszrqw +- oy, v )
C
= W (Cgm—r + C;Lm—r—lnx +oeet C%(n‘r)mir)
S On72m+r. (26)

Secondly, we consider z € E,,, where © > % So
1 x e
Dr(agm) < C(cgmfr n2m—r + cgmfrflw +oot Cnm nm )

Cx™™ "

- nm (Cgmfr(nx)r_m + Cgmfril(na:)r_m"‘l 4+t C"m)

<Cn ™M™ T < On M EL™TE (nx) R

< Cn~mFEp?mTr (), (2.7)
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When r > m, (2.4) is valid obviously.

So we proved the estimates for the derivatives of a for the polynomial of even degree j = 2m.

For the polynomial of odd degree j = 2m+1 we can get the estimation with similar computations.

Then the lemma is proved. O
Theorem 2.3 If p(z) = z, d,(x) = max{p(x), ﬁ}, 0 <AX<1,n>2r—1, then for
f € Cgl0,), we have
517>\
SErD(f 1) — f(a:)’ < Cw?, <f7 n\/ﬁ(ff)) . (2.8)

Remark If A =1, then (2.8) is the result in [2].

Proof By the definition of K?&TA (f,t2"), for fixed n, x, \, we can choose g(t) = gx n..(t) such that

SN e en o (@Y
I =all+ (Z2) g+ (222 T gy

< 2KA ( £, (5};\%@;))”) : (2.9)

It is known that2) ||S{")|| < M, where M is a constant independent of n.

Since Sr(Lk) is exact on Iy, i.e., S,(Lk)p =pforpe Hf], we have
ISE(f,2) = f@)] < C (If = gll +1SE Vg, ) - g(a)])

=C (I = gll + 18E D (Rar(g, - 7). 2)])
= C(If - gl + D), (2.10)

where Ra.-(g,-,x) = ﬁ f;(t - u)z’”’lg(%)(u)du.

We only need estimate I. As of =1, = 012, we have

T < 150(Rar(g.,2) )| + | 3 0 (0)D78, (Rar(g,72), )
- 10+} 2 ag(x)fj}. (2.11)

The following estimate is known!®!

(2.12)

1-a
fo < O <f, Oy (x)> .

NG

To estimate I; we have to consider two cases

Case 1 For z € ES, 0, (x) ~ %7 using formulal4(©-4-3)]

Spi(f,z) =n isnk(a@) (X%f) <E> (2.13)
k=0

n
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where Zﬁf (£) are j-th forward differences, and formula [%(39)1[4,(9-6.-1)]

/ 527")\ )

|Rar(g,t,2)| <

52rA

we have

|IJ| = |Dan(R2T(gv ~,$),$)|

e’} J ] % k—|—’L 2r—1
< nJ — (2r)
k=0 i=0
- (s - )"
2r\ (2r)
TS sal) 3182 e
k=0 =0
2r i 2r
< j —27‘>\ 2r\ (2r) no e
< OB @I IS sl (( o) +(2) )
=0 k=0
) 517>‘(:E) 2r
< j n 2rx (2r) ] 2.14
< ot (B) g (2.14)

In the last step we have used that S, ((t — z)*",z) < en™"62"(z). Noting that |of ()] < Cn~
and 9, (z) ~ % for z € EZ, we have by (2.11), (2.13), (2.14)

2r—1 2r
(51_)‘(,@))
a(x)I: SC( n 5ZrAg(2r)
= g( ) J \/ﬁ H ||
B@ N a4 (BENTT e
< i g2 n . 2.1
<o (B D) ey (B ey eas)
Case 2 For x € E,, 6,(x) ~ ¢(z), by the formulal?*!
J+i k i
D7 s i ( SO ( ) — - Snk(T), (2.16)

we have

n k
nok 2r—1
J v (2r)
|I;| = }D E S k( 2r— -1 / (n uw)” g (u)du}

n_ J j z k
<Cc> Y (L) a - —a| sk (@ )%W%\g@r)ﬂ
k=0 1=0

<O (AEY T g £,

n'ts

Hence with (2.2)

2r—1 (1=x) 2r
n (p T T T
Y o] <o (522 g
2
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5 M) o 2rA
— n rA_(2r)
c ( Tn ) g (2.17)

From (2.10), (2.12), (2.15) and (2.16) it follows

SEI(f,0) ~ f(a)] < Cw <f’ 5};x(:v)> .

The proof is completed. O

3. Inverse theorem
To prove inverse theorem we need the following lemma.

Lemma 3.1 Forn >4r,r € N,r > 2, we have

|* @) D* S (f,2)| < On' 6 AV @) Il (f € CBl0,00), (3.1)
|2 @) D* SEI(f,2)] < Ol I (f € w? (¢, [0, 00)). (3-2)

Proof At first let us prove (3.1). We consider the case A = 1 firstly. Since off = 1, af = 0,
af € II; and A =1, j > 2, we have that for all z € [0, c0)

2 () D S )

= G (@)D (Y o (@)Su; (f,2)
=0
2r—1 J o0
= 902 ( n27‘ fa + Z 90 )Z (k)Dk(a?(x))Snﬁr-l-j—k(fu :E)
k=0
(@) (f ) + 5. (33)

We will use the following known estimate for the derivatives of S,,. From formula (9.4.1) in [4]

and the procedure of the proof of Theorem 9.4.1 in [4] we can get that

0% (2) S 2r (f, )| < Cn”|| f]]
and

1025 () Szrs(fo7)| < O

(3.4)
To estimate S, we have to consider again the following two cases

Case I First let us consider the above sum S in (3.3) for € ES: For S, o,k we use formula
(9.4.3) in [4] with 2r 4+ j — k instead of m, i.e.,

s s k )
Sn,2r+j*k(f7 = n2 +i- kzs n,i AQ - f (E)

and with }Kﬁrﬂ;kf (%) ’ < C||f|| we have

|Sn.2rj—k(f, )| < Cn¥H7E| f|| for j > 2. (3.5)
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With (2.2), i.e., [D¥(a}(x))| < Cn~7tF and ¢*(x) < n~' for z € Ef, we get for the sum S in

n’

(3.3):
2r—1 J
1< @)Y (i) DM@ @) - |Snrss-s(f.2)
= k=0
= 7j+k 2r+j—k
oy Z w2 ]
<ol (36)

Case IT Secondly, we have with (3.4) (for s = j — k) and (2.4), i.e
|D*(af ()] < Cn= U2k (a)

for x € E,:

512 3 e Y (%) pregn)|

Sn,2r+j—k (fu x) ‘

=2 k=0
-1l 2r ji+k
—J —
< C Z <k>n 5 <P2T+J Sn12'r+‘] k(fa )’
Jj=2 k=0
N 2r —'+k 2044k
<oy > (V) 171
j=2 k=0
<on”| £l (3.7)

Combining (3.3), (3.5) and (3.6) for all x € [0, 00), we have
[ (@)D S (f,2)] < O]l
Next we consider the case 0 < A < 1. If z € E¢, using (3.5) and ¢*™(x) < n~", we get
|? DS (f,2)] < On~"n | fl| < On" oD (@) £
If x € E,, then 0,(z) ~ ¢(x) and we have
[ @)D SED(f,0)| = ¢ O ()| () D> S (f2)] < Ot D @) £

which completes the proof of the first inequality (3.1) for all € [0, c0).
Now we come to the proof of the second inequality (3.2). We have as oy = 1,a} = 0 and
af €1, j > 2 that for all z € [0,1]

<p2r)\ (x)DQT‘S7(12’I‘—1) (f; I)
2r—1

= (@)D (Y af(@)Su;(f,7)
)
2r—1 J
= " (@) Snar (frm) + D 97N @) Y < ) 7 (@) Sn2rj—i(f, @)

j=2 =0
= ©*M(2)Sn2r (f, @) + S1. (3.8)
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From formula (5.3) in [5] we have for x € [0, c0)

0% (@) S 2r (£, 2)| < Clle® 7. (3.9)

To estimate S7, we need to consider two differenct cases. The first case, for x € Ef

|Sn 2r+j7i(f7 $)|

27"+j ZZS’IL]C A27‘+] Zf(fb)‘

l:O

oo j—i
2r4j—i 2 ~Nar g k1
<Cn <ank(x) AT f( )}—I—ank(a:) A%f( - )
k=0 k=0 =1
= Cn* M1 + I). (3.10)
Observing!4:P 155, (¢)]
n_r+1/ | £ () du, k=0,

— 2r

0 n

n—r||¢2r)\f(27‘)Hn—r(l—)\), k= 0,

<C kN —7A (3.11)
_27‘HSD27‘>\][(27‘)H(_> 7 k=1,2,...
n
we have
k —7rA
I < C(n~"™n —r(1=X) 2rA p(2r) —2r 2rA p(2r) n )
1<C(n e e+ n72 o 5 H;S @)(5) )
By a simple computation, it is easy to get
= nr = )P B+l k42 E+r 1 1
S — na . B <0,
D () i) =3 e G+ & k k ar =
k=1 k=1
Hence for A # 0 we have
o0 o0 A
nyr —rA
Z M s (@) < (Z (E) snk($)> <Cz
k=1 k=1
and hence
I < C(n_QTHchT)‘f@T) Hnr)\ + n_2T||SD2T>\f(2T) ||(E_T>\
= Cn= (0" + 072 (@) [* 2 7). (3.12)
For A = 0, (3.12) obviously holds too. Thus we get
I < OH@QTAJC@T) Hn72r (nr)\ + 9072TA($))' (313)

From the procedure of the proof (3.12), we can deduce that

I < On_2T||<P2T)\f(2T)HSO_2T>\ (I) (314)
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By (3.8)—(3.10), (3.13), (3.14) and (2.3) with |¢(x)] < % for z € Ef, we have

0N @)D SEV(f,2)| < Ol ), @ € By (3.15)
The secend case, for x € F,,, by (2.16), we have

2N (@)|Sn,2rpj—i(f, )]
= @ N@)| DI S 0 (f )]

= @) DY ) B F(E
k=0

n

=

= (@) S0 DI s (@) AT S
k=0

n

Jj—t o o
2r(1-X) N k| .
¢ 1=0 (QD(I)) (; ‘n r S"vk(x))
S 22 2 X A
Son2r e @) BY ()| susla)
k=0
j—i o
—. Op2r(=X) Vi .
g ) e 3.16)
Noting that
k E+D(k+2)---(k
¥ (x)snp(x) = a’e ™ (n;c!) :( +1)( "‘m) ( +7°)sn,k+r(x)
r!
o (@) k=0,
<

k ks
C (ﬁ) Snotr(T) Kk #£0,
and (3.11) with <p2A(%) < @2)‘(% +y), k>0,0<y< 2r we have

% > E\" k
+07Y " sn ke (@) (—> ‘Z?f(;)

L}A
A

n

k=1

Jo SC{nrsmT(x) ‘ Kin(O)

Sc{nrsn,r(x) <nr+1’ /2*Z urf(zr)(u)duD X—i—
0

) r 27 % A
k n k
n27‘ P (_) n—2r+l‘/ f(27‘) 24w du‘
> s (& " et
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Sc{nr (nfrnfr(lf)\) szmf(zr) H) x i

(e’ 2r % A
z 2 2
2r —2r+1 2ra (M @r) ™
n kE:1sn,k+T(:v) (n }/0 © (n—i-u)f (n—l—u)du‘) }
So{nr(n—rn—r(l—)\)||<P2r)\f(27‘)H)% _|_n27‘ E Sn1k+r(x)(n—2rH¢27‘)\f(2r)||)%})\
k=1

SC”—QT(I—X)HQPQT)\f(Qr)H' (317)

By formula (9.4.14) in [4] we choose ¢ € N such that 2¢(1 — A) > 1. Then

1< (2 E -0 su@) T <O bl(o) (3.18)

n
k=0
Combining (3.8), (3.9), (3.16)—(3.18) together with (2.4) for 0 < A < 1, we have

}wQTA (I)DQTB7(12T71)(f, :E)| < CHSDQTAf(QT) || (319)

From the above procedure we know that for the case A = 0 (the case A = 1 is similar) we need
not use Holder inequality in (3.16) and it is easy to get (3.19).
Combining (3.15) and (3.19) we complete the proof of (3.2). O

Theorem 3.2 Let f € Cp[0,00), n>4r,r € N,0< X <1,0 <« < 2r. Then we have

2r—1 o 5717,7>\($) @
[0, 2) = @) = 0((*2)")

implies

WX (f.t) = O(t").

Proof The proof of Theorem 3.2 is similar to [6, p145 “ <= "] by using Lemma 3.1. The details

are omitted. O
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