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Abstract In this paper, we consider the existence of positive solutions for the singular fourth-
order four point boundary value problem with p-Laplacian operator. By using the fixed point
theorem of cone expansion and compression, the existence of multiple positive solutions is ob-
tained.
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1. Introduction

The nonlinear boundary value problems have been widely studied in recent years. For details,
see [1-3] and references therein. Moreover, the singular problems are also considered in [4-5]. In
a recent paperl% by employing the upper and lower solution method, Zhang and Liu established
the existence of at least one positive solution for the singular fourth order four point boundary
value problem

(@p(u” ()" = f(t u(t)), te(0,1),

u(0) =0, u(1) = au(§),

u”(0) = 0,u"(1) = bu”(n),
where ¢,(t) = [t|P7%t, p>1,0< & n<1,0<a,b< 1, feC((0,1) x (0,+00), [0,+00)) may
be singular at t =0,t =1, u = 0.

However, to the best of our knowledge, the study of multiple positive solutions to the fourth-
order four point boundary value problem with p-Laplacian operator has not been found in liter-

ature. We intend in this paper to discuss the untouched problem

(@p(u”(8)))" = f(t, u(t),w" (1), te(0,1),
u(0) =0, u(1) = au(§), (1.1)
u”(0) = 0,u"(1) = bu"(n),
where ¢,(t) = [tP7%, p > 1,0 < & n < 1,0 < a, b <1 b = ¢pb), f € C(0,1) x
(0, +00) x (—00,0), [0,400)) may be singular at t =0, t = 1, v = 0 and v’ = 0. According to
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prior estimate of positive solutions, we construct a cone to overcome the difficulties caused by
singularity. Moreover, under some reasonable assumptions on f, the existence of multiple positive

solutions is obtained by applying the fixed point theorem of cone expansion and compression.
2. Some preliminaries and lemmas

Defition 2.1 A function u is said to be a solution of the boundary value problem (1.1), if
u € C?(0,1] satisfies ¢, (u”) € C*(0,1) and the BVP(1.1). Furthermore, u is said to be a positive
solution, if again u(t) > 0 for t € (0,1).

Now we consider the following linear boundary value problem

(¢p(u ”( N = y(), t€(0,1),
u(0) =0, wu(l) = au(f), (2.1)
u”(0 =0 ,u’(1) = bu’(n).

~

For BVP(2.1), we have the following lemmas.

Lemma 2.1 Let0<¢,n<1,0<a,b<1, %—l—% =1. Ify € C[0,1] and y > 0, then BVP(2.1)
has a unique solution u(t) > 0 for ¢t € [0, 1], such that

1 1
u(t):/o G(t,s)d)q(/o H(s,r)y(r)dr)ds,

where
scog { TR ol 0sisess
Glt.s) = el =) —al§ 1)), 0<s<t<1,;
Se[m]:{ 1{(15(1—3), 0<t<s<I,
——=[s(1 —1t) + a&(t — s)], 0<s<t<1,

and

se[o,n]:{ Pl -~ =), 0stssst
Hits) = 1_iln[(1—t)—b1(n—t)], 0<s<t<1;
o7 s(1 — 1) + ban(t — s)], 0<s<t<1

are the associated Green’s function for the problem (2.1).

Lemma 2.2 The associated Green’s function G(t, s) and H (t,s) have the following properties.
(a) G(t,s), H(t,s) are continuous on [0,1] x [0,1] and G(t,s) > 0, H(t,s) > 0 for any
t,s € (0,1).
(b) For any t,s € (0,1), G(t,s) < G(s,s), H(t,s) < H(s,s).
(c) Foranyt,s € (0,1), G(t,s) > z(t)G(s,s), H(t,s) > z(t)H(s, s), where z(t) = min {¢,1 — t} .

Proof We can easily get the results from Lemma 2.3 in [6].

We also assume

(Ho) f € C((0,1) x (0,400) x (—00,0), [0,+00)) and 0 < [, H(s,s)frr(s)ds < +oo, for
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any 0 <r < R, where t € (0, 1),
er(t) = max {f(t7 u, U)u u e [fl (f)?‘, f2 (t)R]7 (S [_Ru —g(t)’f']} )

fo (t,8)pq(z(s))ds, fa(t) fo (t,s)ds, g(t) = Pq(2(t)), 2(t) = min{t,1 —t}. It is
easy to see that fi(¢) and f2(t) are continuous on [0,1] and f1(¢) > 0, f2(t) > 0 for ¢t € (0,1).
We suppose that (Hg) holds throughout the remainder of the paper. Let

E = {u e C?[0,1],u(0) = 0,u(1) = au(&)} .
Then E is a Banach space with a norm by || u ||=|| u”() |lo= max,cjo,1) [u” ()], u € E. Define
P={ueE:u®)= fi(t) [ ull,—u" =g(t) [ ull}.

Then P is a cone in E and fi(t) € P. In fact, | fi(t) ||= max.cp,q11]g9(t)] < 1, so we have

Hr@) = A@) (@) Nl =f1(E) = g@) [| f1(2) || For u € P\ {6}, define an operator A by
1 1
= / G(t, s)¢q(/ H(s,r)f(r,u(r),u” (r))dr)ds. (2.2)
Since u € P\ {6}, we have u(t) = — fo "(s)ds, and

1
U G(t,s)ds || u ||= ull .
@sA (t,5)ds || u = fo(t) || w |
Consequently,
@) Tul<u®) < f2(t) [ w ]l and g(t) || u |< —u"(#) <[ u || .
Together with (Hp), we get
1
/ H(s,r)f(r,u(r),u" (r))dr < +oc.
0

So A is well-defined and A(P\ {#}) C E. Obviously, that u is a positive solution of BVP(1.1) is
equivalent to that Au = u in P\ {6} has a fixed point.

Lemma 2.3 Ifu € P\ {0}, then we have Au € P, i.e., A(P\{6}) C P

Proof For any u € P\ {0}, we have

1 1
Au(t) = /0 G(t, s)(bq(/o H(s,r)f(r,u(r),u” (r))dr)ds,

and

—(Au)"(t qsq/Hts (s,u(s),u"(s))ds) > dg(z /Hss (s, u(s), u"(s))ds)

—y( %/fus (5,u(s), u"(5))ds) > q(2(8)) || Au ||= g(t) || Au | .

Since Au(t) € E, we see that

/G )(Au)(s))ds,
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and )

Au(t) 2/0 G(t,8)Pq(2(s))ds || Au[|= f1(t) | Au || .
Therefore A(P\ {6}) C P. 0

Lemma 2.4 For any Ry > Ry > 0, A : Pg,\Pr, — P is completely continuous, where
P.={ueP|ul<r}(r>0).

Proof For any u € Pg,\Pg,, then fi(t)R1 < u(t) < fo(t)Re and g(t)Ry < —u'(t) < Ry. From
(2.2), we have

—(Au)"(t) = ¢>q(/0 H(t,s)f(s,u(s),u”(s))ds),
and

IMMSMAH@W@M%Wwwﬁ%%fW@m@@MéM

Thus || Au ||< M, which implies that A is bounded on Pg,\Pg, -
Next, we prove that {(Au)”(t),u € V'} is equicontinuous, for all V' C Pg,\ P, . Since ||Aul| <
M and ¢, is uniformly continuous on [0, ¢,(M)], we only need to show {—¢,(Au)"(t),u € V'} is

equicontinuous on [0, 1]. Here, we divide our proof into three steps.

Step 1 {—¢,(Au)"(t),u € V} is equicontinuous on [0, a].
Let t < 7. Then

1
ﬂ%mw%ﬂ:Z;H@ﬂﬂﬁwﬁw%$Ms

:/0 T (L= 8) = baln = D)) (5, u(s), " (5))dst

/" L (1= ) = bu(n — )] (s, uls), u" (s))ds-+

t 1 — bl’I]
! t 1!
/77 T bln(l —8)f(s,u(s),u"(s))ds (2.3)
First, from
| H S i (s)ds < [ Hs.9) (510 = 6,00, (2.4)
0 0
we can easily get
[ 5= 9) s (s < (00, 25)
A@w—wwm—mm%w®s%wx (2.6)
/On 5fr R, (s)ds < nigpy(M) (ny > 0), (2.7)

/ (1 —5)fr, R, (s)ds < nagp(M) (ng > 0). (2.8)
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Again,

< / 51— 5) = ba(n — )] fra (),

t
1—bin

! t 1
/ (1= )£ (5, u(s), " ())ds <

Applying (2.6) and (2.9), we obtain

Jim [ 1= ) = b= ). () = 0,

uniformly with respect to w € V. Employing (2.8) and (2.10), we get

1
lim / ! (1 —8)f(s,u(s),u”(s))ds =0,

t—0t 1-— bl'f]

uniformly with respect to u € V.

Second, from (2.6), for any € > 0, there exists n; > 0, such that

/om 1 —Sbm[(l —8) =b1(n = 8)|frir.(8)ds < e.

Let ¢ < n1. We have

/t77 1 —tbln[(l - S) - b1(77 — S)]f(s,u(s),u”(s))ds

— /tnl 1 _tbln[(l —5)—bi(n— S)]f(sau(s),un(s))ds—i-

/: i —tbm[(l — )= bi(n = )] f(s,u(s),u" (s))ds

< [T = = b= s (suls) ) s

L[ - 9) = b 91 s uls) ()

m Jy, 1—0in
t ¢p(M)
nm1—>bin

< [ Tl =) bl o)) +

Therefore,

lim /tn L (1= ) = by(n — 9)If (s, u(s), u”(s))ds = 0,

t—s0F 1—0bin

uniformly with respect to u € V. It follows from (2.11)—(2.13) that

. 7 _
m —¢,(Au)"(t) =0,

1
[ =9 (e)ds

675

(2.11)

(2.12)

(2.13)

uniformly with respect to w € V. Then there exists a > 0 small enough, without loss of generality,

we assume « < 7, such that {—¢,(Au)”(t),u € V'} is equicontinuous on [0, a.
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Step 2 {—¢,(Au)"(t),u € V} is equicontinuous on [3, 1].
Let t > 1. We obtain

—dp(Au)"( / H(t,s)f(s,u(s),u"(s))ds

_/(; 1—bln[(l_t)_bl(n_t)]f(svu(s)yu//(S))ds—F

/n 1 _1b177[8(1 — 1)+ bun(t — 8)]F (s, u(s), u”(s))ds+

1 t "
/t Ty (L~ S (s uls) w(s))ds.

First, notice that

1 t " 1
lwl—mnu_sﬁ@”4$ﬂ(ﬁmsﬁl‘1

This together with (2.5) guarantees that

_ blﬁ(l - S)leRz (S)ds

li 1 !
11m
t—1= Jy 1-— blT]

(1—3)f(s,u(s),u"(s))ds =0, (2.14)

uniformly with respect to u € V.

Secondly, we consider the function

For any t1, to > 7, (2.7) implies that

| /077 1 —Sb177 [(1 - tl) B bl (77 - tl)]f(sv u(s)v ull(s))ds_

A:_Z#“—@—hw—mw@wwwwmm

= |/‘U 1 _Sbln[(l _ bl)(tz — tl)f(SaU(S),u”(s))d5|
= |/ 11__(,?717 (s,u(s),u”(s))ds||t; — ta

< mnléf)p( )|t1 - t2| (2.15)

Thirdly, we consider

/n ﬁ[s(l — ) + ban(t — 5)] f (s, u(s), u"(s))ds

s(1 — 1) f(s, u(s), u" ()ds + —1 /(t—s)f(s,u(s),u”(s)ds.

1—b17’] 1_b177

n
For any € > 0, by (2.5) there exists § > 7, such that

1
/6 (1—=5s)sfrimy(s)ds < e. (2.16)
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Let ¢ > 0. Since

(1 —t)/ sf(s,u(s),u”(s))ds

5 t
<(1- t)/ sf(s,u(s),u”(s))ds + (1 — t)/(s sf(s,u(s),u”(s))ds

<02 / (1= )75, u(s) " ())ds + / (1 8)s (s, u(s), w”(5))ds
<00 / (1= s)sf (svuls)u(5)ds + [ (1 s (s, uls), " (5))ds
<=/ 0 sl + [0 sl
we have )
tl_i)n%(l—t)/n sf(s,uls), u"(s))ds = 0, (2.17)

uniformly with respect to w € V. In view of (2.8), there exists dp > n, such that

1
/6 (1= 9)frr,(s)ds < e.

Let t > dg. We get

t do t
/ (t — )£ (s uls), u"(s))ds = / (t - 8)f(5,u(s), u"(s))ds + /5 (t — $)(s,u(s), u(s))ds
and

t 1
/ (t —s)f(s,u(s),u"(s))ds < / (1= 9)fr R, (s)ds < e. (2.18)
60 50

Let m1 = mingep, s f1(t), M1 = maxyepys0) f2(t) and my = mingep, 5, 9(t). Then u(t) €
[m1 Ry, M1 Ra], —u"(t) € [maR1, Ry, so there exists B > 0 such that max;cy, 51 | f (£, u(t), u” (t)] <
B. Thus for any t1,te > 7, we obtain

8o do
| / (- 5)f (s, u(s), u”(s))ds — / (t2 — 5) (s, u(s), u"(5))ds]

do !
. |/ (t1 — t2) f(s, u(s), 1" (s))ds| < Bltr — ta|. (2.19)

(2.14), (2.15) and (2.17)—(2.19) guarantee that there exists 8 > 0, such that {—¢,(Au)"(t),u € V}

is equicontinuous on [, 1].

Step 3 {—¢,(Au)"(t),u € V} is equicontinuous on [a1, 51](0 < a1 < a,1 > B > (). For any
t1,ts € [al,ﬁl we have

|/Ht1, (s, ds—/th, £ (s, u(s),u"(s))ds]
<|/ Hitr, 5)f (s, ul ds—/ Hita, $) f(s, u(s), u”(s))ds|+
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B1 B1
| H(ty,5)f(s,u(s),u"(s))ds — H(ta,s)f(s,u(s),u’(s))ds|+
1 1
| ; H(ty,s)f(s,u(s),u”(s))ds — ; H(t2, s)f(s,u(s),u”(s))ds]|.
From a; < a < n, we get
|/ H(ty,s)f(s,u(s), ds—/ H(t2,s)f(s,u(s),u”(s))ds|

<)

A 1 _bln[(l—tQ)—bl( _t2)]f(57u(5),u”(s))ds|

[(1 = t2) = bi(n — t1)]f (s, u(s), u” (s))ds—

'/ . K (1= D) (s u(s), ' (5))dsl 12 ol

< 1 — b |/ SledeSHtl - t2| (220)
From 3 > 8 > 7, we obtain
1 1
| ; H(t1,s)f(s;,u(s),u"(s))ds — ; H(ta,5)f(s,u(s),u”(s))ds|
= | 1 _tlbm(l —8)f(s,u(s),u”(s))ds — /ﬁj . —t2b177(1 —8)f(s,u(s),u”(s))ds|
1 1
=1 b |(t1 — t2) /1(1 —8)f(s,u(s),u”(s))ds|
= b177| (1 —8)f(s,u(s),u”(s))ds||t1 — t2

Since f has no singularity on [a, 1], with the same reason as Step 2, ffll H(t,s)f(s,u(s),u”"(s))ds
is equicontinuous on [a1, $1]. Combining (2.20) and (2.21), we know Step 3 holds. From Steps
1 to 3, we see that {—¢,(Au)"(t),u € V} is equicontinuous on [0,1]. By applying the Ascoli-
Arzela theorem, for any (Auy)”(t)(u, € V), there exists ug € C[0,1]. Without loss of gener-
ality, we assume ||(Auy,)”(t) — uollo — 0. Let u(t) = —fo (t,8)up(s)ds. Then u € F, and
[|Awy, — ul| = ||(Aug)” (t) — upllo — 0. Therefore, AV is relatively compact.

In addition, according to the Lebesgue dominated convergence theorem and

1
/ H(s,8)fryRry(8)ds < 400,
0

we can easily get the continuity of A. The proof is completed. O

Lemma 2.5!"1 Suppose that F is a real Banach space and P C E is a cone. Let Q, Qo be
two bounded sets of E, such that 6 € Qy, Q; C Qa. Let operator T : PN (Q2\Q1) — P be
completely continuous. Suppose one of the following two conditions holds

(a) ||Tz|| < ||z|, V& € PNOQu; |Tz| > ||z||, Ve € PN OQs;
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(b) |Tz|| > ||z||, Yo € PN OQu; |[Tz|| < ||z||, Yo € PN OQs. Then T has at least one fixed
point in P N (Q2\Q4).

3. The Main Results

We list the following conditions for convenience.

(Hy) There exist € > 0, o(t) € L(0,1) such that f(¢,u,v) > ¢(¢) for t € (0,1),u € (0,¢],v €
[—¢,0) and 0 < fol H(s,s)p(s)ds < +oo.

(Hz) There exists R > 0, such that fol H(s,s)frr(s)ds < RP™L.

(H3) There exist N > 0,e > 0,N; > 0 such that f(t,u,v) > Nv|P~! for t € [c,d],u €
[e, +00), —v € [Ny, +00), where N = (z(c)IP~? deH(s, s)ds)™t, 1 = mingepe g 9(t).

(Hy) There exists k > 0, such that f(¢t,u,v) > kuP~! for t € (0,1),u € (0,e1],v € [—€1,0),
where k = (3 fol H(s,s)fP " (s)ds)~ L.

(Hs) There exist L > 0, Ny > 0,e; > 0 such that f(¢t,u,v) > LuP~! for t € [e1,d1],u €
[Na, +00), —v € [e1, +00), where L = (z(cl)lff1 fcdll H(s,s)ds)™t I} = mingee, dy) f1(t).
Theorem 3.1 If (Hy)—(Hs) are satisfied, then BVP(1.1) has at least two positive solutions.

Proof VY u € 0P, then |jul]| =7, f1(t)r < u(t) < fo(t)r and g(t)r < —u”(t) < r. Suppose r is
small enough, guaranteeing u(t) € (0,¢], v’ € [—¢,0), r < min {qﬁq(%)qﬁq(fol H(s, s)e(s)ds), %}
It follows from (H;) that

(A0) () =yl | H(Ga) (s u(s). 0 ()

1
2002560 | H(s.9)p(5))

Obviously || Au| > ||u].

For any u € OPg, |lul]| = R. From (Hz), we get
|(Aw)” (1)) —%(/O H(t, s)f(s,ul(s), u”"(s))ds)
1
<ou( [ H(5.8) s u(s). 0 ()0
1
<oyl [ H(s.5)frn(s)d5)
<¢q(RP™') =R,

which yields || Au| < ||u.
For any u € OPg,, ||ul| = Ri. Let Ry be large enough, such that Ry > R, mingc. q 9(t)R1 >
Ny, and mingge g) fi(t)R1 > e. Then for ¢ € [¢,d], we have —u" (t) > g(t)]|u]| > minepe, 4 g(@®)|lul
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and u(t) = fi(t)[|ull = mingee,a f1(t)l|ull. (Hs) gives
d
—p((Au)”(c)) EZ(C)/ H(s,s)f(s,u(s),u"(s))ds
d
> (C)N/ H(s,s)|u"(s)[P~'ds
d
ON [ H(s,99(s dslul!
d
Zz(c)lp_lN/ H(s,s)ds||ul[P~!,

thus ||Aul|| > |Ju||. In conclusion, the result of Theorem 3.1 follows from the above and Lemma
2.5.

Theorem 3.2 If (Hy), (Hz), (Hy), (Hs) are satisfied, then BVP(1.1) has at least two positive
solutions.

Proof For any u € OP,, we have |lu|| =7, fi(t)r < ( ) < fa(t)r and g(t)r < —u’(t) <r. Let r
be small enough (r < R), such that u(t) € (0,&1], v’ € [—&1,0). It follows from (H4) that

—dp((Au)"( / H(= ,u(s),u”(s))ds

/Hss plds

/ H(s,s) (s)ds]julP~t > P71,

Obviously, || Au| > ||lu].
For any u € 0Pg, from (Hz), we have ||Au| < ||ul.

For any u € OPg,, we have |lu|| = R;. Let R; be large enough, such that R; > R,
minsepe,,q,] f1(t)R1 > N2, and mingepe, 4,1 9(t)R1 > e1. Then for ¢ € [c1,d1], we have u(t) >
Ol > mingeer o fi(Ollull and —u(t) > g(t)|[ull > minye o a(O)llull- (Hs) yields

dy
—¢p((Au)"(c1)) Z2(cr) [ H(s,5)f(s,u(s),u”"(s))ds
dy
>z(c1)L H(s,s)u(s)[P~'ds
dy
>z(c))L [ H(s,s)fi(s)P ds]|ulP~

C1

dy
>2(e)lPT'L [ H(s,s)ds||ulP7t

C1

Thus ||Aul|| > ||ul|. To sum up, by Lemma 2.5, our conclusion follows.

Corollary 3.1 If (Hy), (Hy), (H2), (Hs) are satisfied, then BVP(1.1) has at least two positive
solutions.
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Corollary 3.2 If (Hy), (Hz), (Hs), (Hy) are satisfied, then BVP(1.1) has at least two positive

solutions.
Remark If (Ho), (H1>, (HQ) or (Ho), (HQ), (H4) or (Ho), (HQ), (Hg) or (Ho), (HQ), (H5) are
satisfied, then BVP(1.1) has at least one positive solution.
4. Examples
Now we provide two examples as applications of our theorems.

Example 1 Counsider the following boundary value problem with p-Laplacian

" 2,1 " _ 1 1 1 " 4
(10" ()P () = b (ks + s + ()Y
u(0) =0, u(l) = zu(y)
u”(0) = 0,u"(1) = 1u”(3).
Let ¢(t) = —-— and R = 3. We can easily find that the conditions of Theorem (3.1) are satisfied,

Vit
so it has at least two positive solutions.

Example 2 Consider the following boundary value problem with p-Laplacian

" " " o__ 1 1 1 3
(" D" (1)) = b (T + s (1)

u(0) =0, u(l) = ju(z)
u’(0) = 0,u"(1) = Lu(1).

Let R = 3. We can easily find that the conditions of Theorem (3.2) are satisfied, so it has at

least two positive solutions.
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