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Abstract An L(d1, d2, . . . , dt)-labeling of a graph G is a function f from its vertex set V (G)

to the set {0, 1, . . . , k} for some positive integer k such that |f(x) − f(y)| ≥ di, if the distance

between vertices x and y in G is equal to i for i = 1, 2, . . . , t. The L(d1, d2, . . . , dt)-number

λ(G; d1, d2, . . . , dt) of G is the smallest integer number k such that G has an L(d1, d2, . . . , dt)-

labeling with max{f(x)|x ∈ V (G)} = k. In this paper, we obtain the exact values for λ(Cn; 2, 2, 1)

and λ(Cn; 3, 2, 1), and present lower and upper bounds for λ(Cn; 2, . . . , 2, 1, . . . , 1)
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1. Introduction

The channel assignment problem is to assign a channel (nonnegative integer) to each radio

transmitter so that interfering transmitters are assigned channels whose separations are not in a

set of disallowable separations. Hale[1] formulated this problem into the problems of T -coloring

of a graph, which has been extensively studied over the past decades[2−8]. Roberts[9] pointed

that we could assign channels to some radio transmitters with different places so that close

transmitters would get different channels whose difference is at least 2. Griggs and Yeh[10] first

studied the problems of L(2, 1)-labeling. An L(2, 1)-labeling is a function f from its vertex set

V (G) to the set {0, 1, . . . , k} for some integer k such that |f(x) − f(y)| ≥ 2 if d(x, y) = 1 and

|f(x)−f(y)| ≥ 1 if d(x, y) = 2. For positive integer numbers k, d1, d2, a k−L(d1, d2)-labeling of a

graph G is a function f : V (G) → {0, 1, . . . , k} such that |f(x)−f(y)| ≥ di whenever x, y ∈ V (G)

and d(x, y) = i (i = 1, 2). L(d1, d2)-number of the graph is the smallest integer number k such

that k-L(d1, d2)-labeling exists.

Up to now, there are a lot of results for the L(d1, d2)-labeling, especially, the L(2, 1)-labeling.

For example, Griggs and Yeh[10] proved that the L(2, 1)-number of a tree is △ + 1 or △ + 2,

and that the upper bound for the L(2, 1)-number of a graph with the largest degree △ is at

most △2 + 2△ − 3. Further they proposed the following conjecture is △2. In addition, they
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obtain the exact values for the L(2, 1)-number for some special graphs such as paths, cycles

and wheel graphs. Chang and Kuo[11] proved that for a general graph of maximum degree △,

an upper bound of L(2, 1)-number is △2 + △. For more background and information for the

L(d1, d2)-numbers, the readers may refer to an excellent survey[12].

In this survey, Yeh[12] proposed a new notion of L(d1, d2, . . . , dt)-labeling of a graph. An

L(d1, d2, . . . , dt)-labeling of a graph G is a function f from its vertex set V (G) to the set

{0, 1, . . . , k} for some positive integer k such that |f(x)− f(y)| ≥ di, if the distance between ver-

tices x and y in G is equal to i for i = 1, 2, . . . , t. The L(d1, d2, . . . , dt)-number λ(G; d1, d2, . . . , dt)

of G is the smallest integer number k such that G has an L(d1, d2, . . . , dt)-labeling with max{f(x)|x ∈

V (G)} = k. Further, he proposed five problems, one of which was L(d1, d1, . . . , d1, d2, d2, . . . , d2)-

labeling (d1 > d2 ≥ 1).

In this paper, we present the exact values for λ(Cn; 2, 2, 1), λ(Cn; 3, 2, 1) and give lower and

upper bounds for λ(G; 2, 2, . . . , 2, 1, . . . , 1) (t-fold 2 and t-fold 1).

2. Preliminaries

Denote by Cn a cycle with n vertices v1, v2, . . . , vn.

Proposition 1 For a graph G, if λ(G; d1, d2, . . . , dt) and λ(G; d1, d2, . . . , dt, δ1, δ2, . . . , δs) exist,

then λ(G; d1, d2, . . . , dt) ≤ λ(G; d1, d2, . . . , dt, δ1, δ2, . . . , δs).

Proof Clearly, it follows from the definition that an L(G; d1, d2, . . . , dt, δ1, δ2, . . . , δs)-labeling

of G is also an L(d1, d2, . . . , dt)-labeling. Hence the assertion holds.

Proposition 2 For a graph G, if λ(G; d1, d2, . . . , dt) and λ(G; δ1, δ2, . . . , δt) exist, and di ≤

δi (1 ≤ i ≤ t), then λ(G; d1, d2, . . . , dt) ≤ λ(G; δ1, δ2, . . . , δt).

Proof Since G has an L(δ1, δ2, . . . , δt)-labeling, |f(x) − f(y)| ≥ δi for d(x, y) = i(1 ≤ i ≤ t),

where x, y ∈ V (G). By di ≤ δi (1 ≤ i ≤ t), we have |f(x) − f(y)| ≥ di. Hence G has an

L(d1, d2, . . . , dt)-labeling and λ(G; d1, d2, . . . , dt) ≤ λ(G; δ1, δ2, . . . , δt).

Proposition 3 Let G be a graph. If the L(δ1, δ2, . . . , δt)-number exists, then there exists a

vertex with labeling 0.

Proof Suppose the L(δ1, δ2, . . . , δt)-number exists. Let the vertex v with the smallest labeling

value and f(v) 6= 0. Now let g(u) = f(u)− f(v) for all u in G. Then it is easy to see that g is a

function such that L(δ1, δ2, . . . , δt)-number exists with g(v) = 0.

Proposition 4 Let G be a graph with the diameter at least t+1. If the L(d1, d1, . . . , d1, d2, d2, . . . , d2)-

labelling exists (t-fold d1, and d1 > d2 ≥ 1), then λ(G; d1, d1, . . . , d1, d2, d2, . . . , d2, ) ≥ td1 + 1.

Proof Since the diameter of G is at least t+1, there exists a path with vertices (v1, v2, . . . , vt+1, vt+2, . . .),

and f(v1) = 0. Because G has an L(d1, d1, . . . , d1, d2, d2, . . . , d2)-labeling, the labeling values of

vi (2 ≤ i ≤ t + 1) are different and |f(vi) − f(vj)| ≥ d1 (1 ≤ i 6= j ≤ t + 1). Hence, among the
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vertices vi (2 ≤ i ≤ t+1), there is at least one with a labeling value ≥ td1; if the maximum of the

labeling values of the vertices is td1, then the labeling values of v2, . . . , vt+1 are d1, 2d1, . . . , td1.

But the distance between vt+2 and vi (2 ≤ i ≤ t + 1) is not more than t and f(vt+2) 6= 0. It is

impossible. So

λ(G; d1, d1, . . . , d1, d2, d2, . . . , d2) ≥ td1 + 1.

3. Results

Theorem 1 For Cn(n ≥ 3), there are λ(Cn; 2, 2, 1) =























4, n = 3;

8, n = 5, 9, 13, 17;

7, n = 6, 10;

6, other n.

Proof We first show that λ(Cn; 2, 2, 1) ≥ 6 (n ≥ 4). By Proposition 4, λ(Cn; 2, 2, 1) ≥ 5 (n ≥ 4).

If λ(Cn; 2, 2, 1) = 5 (n ≥ 4), by Proposition 3, we can set f(v1) = 0, thus f(v2) ≥ 2; if

2 ≤ f(v2) ≤ 4, with f(v3) ≥ 2 and |f(v2) − f(v3)| ≥ 2, then f(v3) ∈ {2, 4, 5}. Hence if n = 4,

then there are no labeling values for v4; if n = 5, then there are no labeling values for v4; if

n ≥ 6 with |f(v2) − f(v4)| ≥ 2, |f(v3) − f(v4)| ≥ 2, then there is only one labeling: f(v2) =

3, f(v3) = 5, f(v4) = 1, but, there is no labeling value for v5. If f(v2) = 5, then f(v3) ∈ {2, 3},

but f(v4) ≥ 1. So we have only one labeling, that is, f(v2) = 5, f(v3) = 3, f(v4) = 1. In this

case, there is no labeling value for v5 either. Therefore λ(Cn; 2, 2, 1) ≥ 6 (n ≥ 4).

Now we can obtain the results by constructing labeling. If n = 3, set f : v1v2v3 → 024; if

n = 5, set f : v1v2 · · · v5 → 02468; if n = 9, set f : v1v2 · · · v9 → 024681357; if n = 13, 17, the

first 9 vertices are valued as n = 9, the left vertices are valued as 0246, 02460246; if n = 6, set

f : v1v2 · · · v6 → 037146; if n = 10, the first 6 vertices are valued as n = 6, the left vertices are

valued as 0246.

Finally, we show that λ(Cn; 2, 2, 1) = 6 for the remaining case. We now construct the

following labeling.

If n ≡ 0 (mod 4), set f : v1 · · · v4 → 0246, f(vi) = f(vi+4).

If n ≡ 1 (mod 4) and n > 17, set f : v1 · · · v7 → 0246135, f(vi) = f(vi+7), where i =

1, 2, . . . , 14; for the left vertices, the labeling is as n ≡ 0 (mod 4).

If n ≡ 2 (mod 4) and n > 10, set f : v1 · · · v7 → 0246135, f(vi) = f(vi+7), where i =

1, 2, . . . , 7; for the left vertices, the labeling is as n ≡ 0 (mod 4).

If n ≡ 3 (mod 4), set f : v1 · · · v7 → 0246135, for the left vertices, the labeling is as n ≡

0 (mod 4).

By simple calculations, it is easy to see that labeling of the above is L(2, 2, 1)-labeling of

cycle Cn. 2

Theorem 2 For Cn(n ≥ 3), there are (1) λ(Cn; 3, 2, 1) =

{

6, n = 3;

9, n = 7.

(2) λ(Cn; 3, 2, 1) =

{

8, n > 3 (n 6= 7), and is odd;

7, n ≥ 4, and is even.
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Proof By Proposition 1 and some calculations, it is easy to see that λ(Cn; 3, 2, 1) = 6, 7, 8, 7, 9,

corresponding to n = 3, 4, . . . , 7, respectively.

Now we assume that n > 7. If λ(Cn; 3, 2, 1) = 6, f(v1) = 0; if f(v2) = 3, then f(v3) = 6,

f(v4) = 1, f(v5) = 4, but there is also no labeling value for v6; if f(v2) = 4, there is no labeling

value for v3; if f(v2) = 5 or 6, then f(v3) = 2 or 3, there is no labeling value for v4. Hence

λ(Cn; 3, 2, 1) ≥ 7.

If n ≥ 8, and is even, set f :

v1 · · · v4 → 0725, f(vi) = f(vi+4) (i ≥ 1), if n ≡ 0 (mod 4);

v1 · · · v6 → 036147, f(vi) = f(vi+6) (i ≥ 1), if n ≡ 0 (mod 6);

v1 · · · v6 → 036147, f(vi) = f(vi+6) (1 ≤ i ≤ n − 8), vn−1vn → 25, if n ≡ 2 (mod 6);

v1 · · · v6 → 036147, f(vi) = f(vi+6) (1 ≤ i ≤ n − 10), vn−3 · · · vn → 0527, if n ≡ 4 (mod 6),

and n 6= 4k. Hence λ(Cn; 3, 2, 1) = 7.

If n ≥ 9, and is odd, we show that λ(Cn; 3, 2, 1) = 8. In fact, if λ(Cn; 3, 2, 1) = 7, for the

labelings that can be recirculated on Cn are: 0725; 036147; 03614725, the number in each set is

even, and each labeling can be removed. So if we label the vertices of Cn by use of these sets,

we cannot label the remaining odd vertices of Cn by use of the numbers in {0, 1, . . . , 7}. Thus,

we obtain λ(Cn; 3, 2, 1) > 7 when n ≥ 9, and is odd.

If n ≡ 3 (mod 4), set f : v1 · · · v7 → 0741836, v8 · · · v11 → 0825, f(vi) = f(vi+4) (i ≥ 8); If

n ≡ 1 (mod 4), set f : v1 · · · v5 → 04826, v8 · · · v11 → 0826, f(vi) = f(vi+4) (i ≥ 6). Therefore

λ(Cn; 3, 2, 1) = 8. 2

Theorem 3 For Cn(n ≥ 3), there are λ(Cn; 2, . . . , 2, 1, . . . , 1) ≤ 4t (t-fold 2 and 1).

Proof From the proofs of Theorems 1 and 2, we see that the key step in labeling a cycle is how

to construct the labeling of Cn (3 ≤ n ≤ 4t). We will do this.

If 3 ≤ n ≤ 2t + 1, set f(V ) → 024 · · · (2n − 2).

In case of 2t + 2 ≤ n ≤ 4t:

(1) If n is odd, set

f(V ) → 0(4t)(4t − 2) · · · (4t − 2[
n

2
] + 2)1(4t − 1)(4t − 3) · · · (4t − 2[

n

2
] + 3);

(2) If n is even, set

f(V ) → 0(4t)(4t − 2) · · · (4t − 2[
n

2
] + 4)1(4t − 1)(4t − 3) · · · (4t − 2[

n

2
] + 3).

If n = 4t + 1, set

f(V ) → 0(4t)(4t − 2) · · · (2t + 2)(2t − 1)(2t − 3) · · · 31(4t − 1)(4t − 3) · · · 9(2t + 1)24 · · · (2t).

If n > 4t + 1, and n 6= k(2t + 1), k = 2, 3, . . . , we separate the vertices of Cn into two parts.

The number of the vertices in one part is a multiple of 2t + 1, which are circularly labeled by

0(4t)(4t−2) · · ·2. The number of the vertices in other part is between 2t+2 and 4t+1, which are

labeled in the same way as the above case of 2t+2 ≤ n ≤ 4t+1. So L(2, . . . , 2, 1, . . . , 1)-labeling

exists. 2
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Theorem 4 For Cn(n ≥ 3), there are λ(Cn; 2, 1, . . . , 1) =

{

4, n = 3, 4;

2t + 2, other n(t − fold 1).

Proof If n ≤ 2t + 3, the diameter of the cycle is [n
2 ], so the labeling values of vertices are

different from each other and λ(Cn; 2, 1, . . . , 1) must be more than n−1. Next we will show that

except for n = 3, 4, λ(Cn; 2, 1, . . . , 1) = n − 1 ≤ 2t + 2.

(1) n = 3, set f(V ) → 024; n = 4, set f(V ) → 0314.

(2) If 4 ≤ n ≤ 2t + 3, we will do the labeling by the following rule: if n is even, set

f(V ) → 024 · · · (n − 2)13 · · · (n − 1); if n is odd, set f(V ) → 024 · · · (n − 1)13 · · · (n − 2). So, for

Cn, it is obvious that L(2, 1, . . . , 1)-labeling exists.

If n = k(2t + 4) k = 1, 2, . . . , set

f(V ) → 024 · · · (2t + 2)024 · · · (2t + 2)024 · · · (2t + 2).

If n > 2t + 3 (n 6= k(2t + 4), k = 1, 2, . . .), we separate the vertices of Cn into two parts,

the number of the vertices in one part is a multiple of t + 2, and the number of the vertices in

the other part is between t + 3, and 2t + 3. For the first part, if t + 1 is even, the vertices are

circularly labeled by 024 · · · (t + 1)13 · · · t; if t + 1 is odd, the vertices are circularly labeled by

024 · · · t13 · · · (t+1). For the other part, the vertices are labeled in the same way as the above. It

can be proven that for any n and any cycle, by the above labeling L(2, 1, . . . , 1)-labeling exists.

2

Corollary For Cn(n ≥ 3), there are 2t + 2 ≤ λ(Cn; 2, . . . , 2, 1) ≤ 4t (t-fold 2).

Proof By Propositions 1 and 2, the assertion holds.
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