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Abstract This paper deals with the existence of solutions for the problem

{

(φp(u
′))′ = f(t, u, u′), t ∈ (0, 1),

u′(0) = 0, u(1) =
∑n−2

i=1
aiu(ηi),

where φp(s) = |s|p−2s, p > 1. 0 < η1 < η2 < · · · < ηn−2 < 1, ai (i = 1, 2, . . . , n − 2) are

non-negative constants and
∑n−2

i=1
ai = 1. Some known results are improved under some sign

and growth conditions. The proof is based on the Brouwer degree theory.
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1. Introduction

We consider the existence of solutions for multi-point boundary value problem (BVP)

(φp(u
′))′ = f(t, u, u′), t ∈ (0, 1), (1.1)

u′(0) = 0, u(1) =

n−2
∑

i=1

aiu(ηi), (1.2)

where φp(s) = |s|p−2s, p > 1. 0 < η1 < η2 < · · · < ηn−2 < 1, ai (i = 1, 2, . . . , n − 2) are non-

negative constants and
∑n−2

i=1 ai = 1. Eq.(1.1) is widely applied in mechanics and physics[1−3].

When p = 2, Eq.(1.1) reduces to u′′ = f(t, u, u′).

In recent years, p-Laplace equation associated with various boundary value conditions has

been studied[4−10]. For example, Carćıa-huidobro and Gupta[7] discussed (1.1) with boundary

conditions

u′(0) = 0, u(1) = u(η), η ∈ (0, 1)

under the following assumptions

(A1) There are nonnegative functions d1(t), d2(t), and r(t) ∈ L1[0, 1] such that

|f(t, u, v)| ≤ d1(t)|u|
p−1 + d2(t)|v|

p−1 + r(t), for a.e. t ∈ [0, 1], u, v ∈ R;
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(A2) There exists u0 > 0, such that for all |u| > u0, t ∈ [0, 1] and v ∈ R

|f(t, u, v)| ≥ Λ|u|p−1 − A|v|p−1 − B,

where Λ > 0, and A, B ≥ 0 are constants;

(A3) There is R > 0 such that for all |u| > R

uf(t, u, 0) > 0, a.e. t ∈ [0, 1], uf(t, u, 0) < 0, a.e. t ∈ [0, 1]

as well as the other conditions.

In this paper, we discuss the solvability of (1.1)–(1.2) and obtain the following result.

Theorem 3.1 Suppose that f : [0, 1] × R
2 −→ R is continuous and has the decomposition

f(t, u, v) = g(t, u, v) + h(t, u, v)

which satisfies the following assumptions:

(H1) There exist r1 < 0, r2 > 0, such that

f(t, r1, 0) ≤ 0, f(t, r2, 0) ≥ 0, for all t ∈ [0, 1];

(H2) vg(t, u, v) ≤ 0 for all (t, u) ∈ [0, 1]× [r1, r2], |v| > 1;

(H3) |h(t, u, v)| ≤ a(t)|v|m + b(t) for all (t, u, v) ∈ [0, 1] × [r1, r2] × R, where a(t), b(t) ∈

L1([0, 1], R+).

Then there exists at least one solution for BVP (1.1)–(1.2), provided that

p − 1 < m < (1 +
1

‖a‖1 + ‖b‖1 + r
)(p − 1), (1.3)

where r = max{−r1, r2}.

Remark 1.1 When p = 2, n = 3, BVP (1.1)–(1.2) becomes

u′′ = f(t, u, u′), t ∈ (0, 1), (1.4)

u′(0) = 0, u(1) = u(η), η ∈ (0, 1). (1.5)

Feng and Webb in [10] proved that BVP (1.4)–(1.5) has at least a solution under the following

assumptions

(B1) There exists a constant M ≥ 0 such that

uf(t, u, 0) > 0, for all |u| > M, t ∈ [0, 1];

(B2) vg(t, u, v) ≤ 0 for all (t, u, v) ∈ [0, 1]× [−M, M ] × R;

(B3) |h(t, u, v)| ≤ a(t)|u|+b(t)|v|+c(t)|u|r+d(t)|v|k+e(t) for all (t, u, v) ∈ [0, 1]×[−M, M ]×R,

where 0 ≤ r, k < 1, a, b, c, d, e ∈ L1[0, 1] and ‖b‖1 < 1
2 .

It is easy to see that the conditions (A1)–(A3) in [7] and (B1)–(B3) in [10] are stronger than

the ones of Theorem 3.1. To some extent, we improve the results of [7] and [10].

2. Auxiliary results

From now on, we use the classical spaces C[0, 1], C1[0, 1] and L1[0, 1]. Define the norm in

C[0, 1] by ‖ · ‖∞ and in L1[0, 1] by ‖ · ‖1. Moreover, we shall need the following lemmas.
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Lemma 2.1[11] Let a < b, u(t) ∈ C([a, b], [0, +∞)) and v(t) ∈ L1([a, b], [0, +∞)). Suppose that

there exists a constant c ≥ 0 and a function ω(t) such that

(1)
∫ b

a
v(t)ω(u(t))dt < +∞;

(2) u(t) ≤ c +
∫ t

a
v(s)ω(u(s))ds, for all t ∈ [a, b].

Then
∫ u(t)

c

ds

ω(s)
≤

∫ t

a

v(s)ds, for all t ∈ [a, b],

where ω ∈ C([0, +∞), [0, +∞)) is increasing.

In Lemma 2.1, if the assumption (2) is replaced by

u(t) ≤ c +

∫ b

t

v(s)ω(u(s))ds, for all t ∈ [a, b],

then
∫ u(t)

c

ds

ω(s)
≤

∫ b

t

v(s)ds, for all t ∈ [a, b].

Consider the auxiliary boundary value problem

(φp(
u′

λ
))′ = f∗(t, u, u′, λ), λ ∈ (0, 1], (2.1)

u′(0) = 0, u(1) =

n−2
∑

i=1

aiu(ηi), (2.2)

where 0 < η1 < η2 < · · · < ηn−2 < 1, ai (i = 1, 2, . . . , n − 2) are non-negative constants and
∑n−2

i=1 ai = 1, f∗ : [0, 1] × R
2 × [0, 1] −→ R is continuous and

f∗(t, r, s, 1) = f(t, r, s), for all (t, r, s) ∈ [0, 1] × R
2. (2.3)

Lemma 2.2 Suppose (2.3) holds. Furthermore, let Ω ⊂ C1[0, 1] be an open bounded set.

Assume that

(C1) There exists no solution u of BVP (2.1)–(2.2), 0 < λ < 1, such that u ∈ ∂Ω;

(C2) The equation

F (s) :=

n−2
∑

i=1

ai

∫ 1

ηi

φ−1
p (

∫ τ

0

f∗(t, s, 0, 0)dt)dτ = 0

has no solution on ∂Ω ∩ R;

(C3) The Brouwer degree degB(F, Ω ∩ R, 0) 6= 0.

Then BVP (1.1)–(1.2) has at least one solution in Ω̄.

The proof of Lemma 2.2 is similar to that of Lemma 2.1 in [7], so we omit it.

3. Existence results

Theorem 3.1 Suppose that the assumptions (H1)–(H3) are satisfied. Then there exists at least

one solution for BVP (1.1)–(1.2), provided that

p − 1 < m < (1 +
1

‖a‖1 + ‖b‖1 + r
)(p − 1),

where r = max{−r1, r2}.
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Proof For all (t, u, v) ∈ [0, 1] × R
2, define the function f̄ by

f̄(t, u, v) =











f(t, r2, v), if u > r2,

f(t, u, v), if r1 ≤ u ≤ r2,

f(t, r1, v), if u < r1.

Then, the modified problem corresponding to BVP (1.1)–(1.2) is

(φp(u
′))′ = f̄(t, u, u′), t ∈ (0, 1), (3.2)

u′(0) = 0, u(1) =

n−2
∑

i=1

aiu(ηi). (3.3)

Consider the homotopy problem (2.1)–(2.2), where

f∗(t, u, u′, λ) = λu + (1 − λ)f̄(t, u, u′).

Step 1. Let u(t) be a solution for BVP (2.1)–(2.2). Then we have

r1 < u(t) < r2 for all t ∈ [0, 1], λ ∈ (0, 1].

Otherwise, there exists a point t0 ∈ [0, 1) such that

u(t0) = min
t∈[0,1]

u(t) ≤ r1 or u(t0) = max
t∈[0,1]

u(t) ≥ r2.

Without loss of generality, we suppose u(t0) = maxt∈[0,1] u(t) ≥ r2 holds, so there are three cases

as follows:

Case 1 Let t0 ∈ (0, 1). We have u′(t0) = 0 and

u(t0)(φp(
u′(t)

λ
))′ |t=t0 = u(t0)f

∗(t0, u(t0), 0, λ)

= λ(u(t0))
2 + (1 − λ)u(t0)f(t0, r2, 0) > 0.

Then, there exists a positive constant δ > 0 such that (φp(
u′(t)

λ
))′ > 0, for all t ∈ (t0, t0 + δ).

This implies that φp(
u′(t)

λ
)) is increasing in (t0, t0 + δ). Thus

φp(u
′(t)) > φp(u

′(t0)) = φp(0) = 0, for all t ∈ (t0, t0 + δ).

By the monotonicity of φp, we have u′(t) > 0, for all t ∈ (t0, t0 + δ). That is, u(t) is increasing

in (t0, t0 + δ). This is a contradiction.

Case 2 Let t0 = 0. Then we have

u(0)(φp(
u′(t)

λ
))′ |t=0= λ(u(0))2 + (1 − λ)u(0)f(0, r2, 0) > 0.

Similar to above process, we can obtain a contradiction.

Case 3 Let t0 = 1. Combining with the boundary condition (3.3), we know that there exists

η ∈ (0, 1) such that u(1) = u(η). Similar to Case 1, we can obtain a contradiction.

Step 2. We prove that there exists a positive constant M0 such that ‖u′‖∞ ≤ M0.

Let ‖u′‖∞ ≤ 1. Then u′(t) has a prior bounds. Otherwise, let ‖u′‖∞ > 1, that is, there

exists a point t0 ∈ (0, 1] such that |u′(t0)| = ‖u′‖∞ > 1.
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This together with the continuity of u′(t) and u′(0) = 0 implies that there exists an interval

[µ, ν] ⊂ [0, 1], t0 ∈ [µ, ν] such that |u′(µ)| = 1 and |u′(t)| ≥ 1, for all t ∈ [µ, ν]. Without loss of

generality, we assume that u′(t) ≥ 1 holds, for all t ∈ [µ, ν].

Multiplying (2.1) by φp(
u′

λ
) and integrating on both sides of it from µ to t, we obtain

∫ t

µ

φp(
u′

λ
)(φp(

u′

λ
))′ds =

∫ t

µ

φp(
u′

λ
)f∗(s, u, u′, λ)ds,

that is,
1

2
φ2

p(
u′(t)

λ
) −

1

2
φ2

p(
u′(µ)

λ
) =

∫ t

µ

φp(
u′

λ
)[λu + (1 − λ)f̄ (s, u, u′)]ds.

Since r1 < u(t) < r2, for all t ∈ [0, 1], we have

|
u′(t)

λ
|2p−2 =|

1

λ
|2p−2 + 2

∫ t

µ

φp(
u′

λ
)[λu + (1 − λ)f(s, u, u′)]ds

=|
1

λ
|2p−2 + 2

∫ t

µ

φp(
u′(s)

λ
)[λu + (1 − λ)g(s, u, u′)]ds+

2

∫ t

µ

φp(
u′(s)

λ
)[(1 − λ)h(s, u, u′)]ds.

By the assumption (H2) and r1 < u(t) < r2, for t ∈ [0, 1], we get
∫ t

µ

φp(
u′

λ
)g(s, u, u′)ds =

∫ t

µ

|
u′

λ
|p−2 u′

λ
g(s, u, u′)ds ≤ 0,

so

|u′(t)|2p−2 ≤ 1 + 2

∫ t

µ

λ2p−2φp(|
u′

λ
|)|λu(s) + (1 − λ)h(s, u, u′)|ds

≤ 1 + 2

∫ t

µ

|u′|p−1(r + a(s)|u′|m + b(s))ds,

where r = max{|r1|, |r2|}. By |u′(t)| ≥ 1, for t ∈ [µ, ν]

|u′(t)|2p−2 ≤ 1 + 2

∫ t

µ

|u′|m+p−1(r + a(s) + b(s))ds, for all t ∈ [µ, ν].

For convenience, we write

z(t) = |u′(t)|2p−2, ω(t) = t
m+p−1

2p−2 , v(t) = 2(a(t) + b(t) + r).

Then
∫ ν

µ

v(s)ω(z(s))ds < +∞ and z(t) ≤ 1 +

∫ t

µ

v(s)ω(z(s))ds, for all t ∈ [µ, ν].

By Lemma 2.1, we can conclude that
∫ z(t)

1

ds

ω(s)
≤

∫ t

µ

v(s)ds, for all t ∈ [µ, ν].

So
∫ z(t)

1

s−
m+p−1

2p−2 ds ≤

∫ t

µ

v(s)ds ≤ 2

∫ 1

0

(r + a(s) + b(s))ds
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≤ 2(‖a‖1 + ‖b‖1 + r) := M1, for all t ∈ [µ, ν].

By the assumption (H3) and (1.3), we have
∫ +∞

1

s−
m+p−1

2p−2 ds > 2(‖a‖1 + ‖b‖1 + r).

This inequality implies that there exists a constant M2 (independent of λ) such that z(t) ≤ M2,

that is, |u′(t)| ≤ (M2)
1

2p−2 := M3, for all t ∈ [µ, ν]. Put M0 = max{1, M3} (independent of λ),

then |u′|∞ ≤ M0.

Step 3. By using Lemma 2.2, we prove that BVP (3.2)–(3.3) has at least one solution. Put

Ω = {u(t) ∈ C1[0, 1] : r1 < u(t) < r2, t ∈ [0, 1]; ‖u′‖∞ < M0 + 1}.

It is clear that the assumption (C1) of Lemma 2.2 is satisfied.

By the assumption (H1) and (3.1), we deduce

f∗(t, r1, 0, 0) = f̄(t, r1, 0) ≤ 0, f∗(t, r2, 0, 0) = f̄(t, r2, 0) ≥ 0.

Combining with the monotonicity of φp yields

F (r1) =

n−2
∑

i=1

ai

∫ 1

ηi

φ−1
p (

∫ τ

0

f∗(t, r1, 0, 0)dt)dτ) ≤ 0,

F (r2) =
n−2
∑

i=1

ai

∫ 1

ηi

φ−1
p (

∫ τ

0

f∗(t, r2, 0, 0)dt)dτ) ≥ 0.

If F (r1) · F (r2) = 0, we can conclude that BVP (1.1)–(1.2) has at least one solution r1 or r2.

Otherwise, F (r1)F (r2) < 0, which implies the assumption (C2) of Lemma 2.2 holds. By the

property of Brouwer degree, we have degB(F, Ω ∩ R, 0) = 1. So the assumption (C3) of Lemma

2.2 is satisfied. By Lemma 2.2, we prove that BVP (3.2)–(3.3) has at least one solution u(t)

satisfying r1 < u(t) < r2, for all t ∈ [0, 1]. This implies that BVP (1.1)–(1.2) has at least one

solution. The proof is completed. 2

Theorem 3.2 Let assumptions (H1)–(H3) be satisfied. Furthermore, suppose the following

inequality

(H4) f(t, u1, v1) > f(t, u2, v2), for all u1, u2, v1, v2 ∈ R, u1 > u2, v1 ≤ v2

holds. Then there exists a unique solution for BVP (1.1)–(1.2).

Proof We have proved that BVP (1.1)–(1.2) has at least one solution in Theorem 3.1. Next,

we will obtain the uniqueness of the solution for BVP (1.1)–(1.2) by (H4).

Assume to the contrary that there exist two different solutions x(t), y(t) of BVP (1.1)–

(1.2). Let z(t) = x(t) − y(t). By the condition (1.2), there exists some t0 ∈ [0, 1) such that

z(t0) = maxt∈[0,1] z(t) > 0.

Case 1 If t0 ∈ (0, 1), then z′(t0) = 0, z(t0) > 0. By the continuity of z′(t), z(t), there exists an

interval [t0, t1] such that z(s) > 0, z′(s) ≤ 0, for all s ∈ [t0, t1].

Since

(φp(x
′) − φp(y

′))′ = f(t, x, x′) − f(t, y, y′),
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by (H4), we have
∫ s

t0

(φp(x
′(t)) − φp(y

′(t)))′dt =

∫ s

t0

(f(t, x(t), x′(t)) − f(t, y(t), y′(t)))dt > 0, for all s ∈ [t0, t1].

Combining with the monotonicity of φp, we have z′(s) = x′(s)− y′(s) > 0, for all s ∈ [t0, t1].

This is a contradiction.

Case 2 If t0 = 0, then z′(0) = 0, z(0) > 0. By the continuity of z′(t), z(t), there exists an

interval [0, t2] such that z(s) > 0, z′(s) ≤ 0, for all s ∈ [0, t2]. Similar to above process, we obtain

z′(s) = x′(s) − y′(s) > 0, for all s ∈ [0, t2]. This is a contradiction.

Combining with the two cases, we deduce that BVP (1.1)–(1.2) has a unique solution.

Especially, let ηi → 1, i = 1, 2, . . . , n − 2. We can obtain the following result. 2

Corollary 3.1 Suppose the assumptions (H1)–(H4) in Theorem 3.2 hold. Then the following

Neumann BVP

(φp(u
′))′ = f(t, u, u′), t ∈ (0, 1),

u′(0) = u′(1) = 0

has at least one solution.
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