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1. Introduction

We are concerned with the blow up of solutions of the initial boundary value problem for the

following Kirchhoff equation with Lipschitz type continuous coefficient and strong damping:

utt − M
(

‖∇u‖2
2

)

∆u − ω∆ut = f(u), (1.1)

u(0, x) = u0(x), ut(0, x) = u1(x), x ∈ Ω, (1.2)

u(t, x) = 0, (t, x) ∈ [0, T ]× ∂Ω, (1.3)

where ∆ =
∑N

j=1
∂2

∂x2
j

and Ω ∈ RN , N ≥ 1 is a bounded domain with a smooth boundary ∂Ω.

f(u) = |u|p−2u, p > 2 is a nonlinear function and M(s) = m0 + bsγ a positive local Lipschitz

function. Here, m0 > 0, b ≥ 0, γ ≥ 1, s ≥ 0, ω are constants.

When M ≡ 1, the equation (1.1) becomes a nonlinear wave equation which has been exten-

sively studied and several results concerning existence and blowing-up have been established[1−3].

On the contrary, when M is not a constant function, for the case that ω = 0, the equation

(1.1), as a special case, becomes the Kirchhoff equation which has been introduced in order to

describe the nonlinear vibrations of an elastic string. Ono etc. studied this case and some results

concerning existence and blowing-up were obtained[4−6].
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In this paper we shall deal with the energy decaying and the blow up behavior of solutions

for problem (1.1)–(1.3) for the case that M is not a constant function and ω 6= 0. We derive the

blow up properties of solutions of this problem with negative and positive initial energy by the

method different from the references [4]–[6].

The content of this paper is organized as follows. In Section 2, we give some assumptions and

lemmas. In Section 3, we first define an energy function E(t) and show that it is a non-increasing

function of t. Then we obtain the exponent decay estimates of the energy function. In Section

4, we study the blow-up properties of solutions even for positive initial energy. Estimates for the

blow-up time T ∗ (life-span) are also given.

2. Assumptions and preliminaries

In this section, we shall introduce some preliminaries needed in the proof of our result. We

use the standard Lebesgue space Lp(Ω) and Sobolev space H1
0 (Ω) with their usual scalar products

and norms.

Lemma 2.1 (Sobolev-Poincaré inequality[7]) If 2 ≤ p ≤ 2N
N−2 , u ∈ H1

0 (Ω), then ‖u‖ ≤ B‖∇u‖2

holds with some constant B, where ‖ · ‖p denotes the norm of Lp(Ω).

Lemma 2.2
[8] Suppose that δ > 0 and B(t) is a nonnegative C2(0,∞) function such that

B′′(t) − 4(δ + 1)B′(t) + 4(δ + 1)B(t) ≥ 0. (2.1)

If

B′(0) > r2B(0) + K0, (2.2)

then we have ∀t > 0, B′(t) > K0. Here, K0 is a constant and r2 = 2(δ + 1) − 2
√

(δ + 1)δ the

smallest positive root of the equation r2 − 4(δ + 1)r + 4(δ + 1) = 0.

Lemma 2.3
[8] If J(t) is a non-increasing function on [t0,∞), t0 ≥ 0 such that

J ′(t)2 ≥ a + bJ(t)2+
1
δ , ∀t0 ≥ 0, (2.3)

where a > 0, b ∈ R, then there exists a finite time T ⋆ such that limt→T ⋆− J(t) = 0. Moreover, for

the case that b < 0, J(t0) < min {1,
√

a
−b}, an upper bound of T ⋆ is t0+ 1√

−b
ln

√
a
−b√

a
−b

−J(t0)
. If b =

0, we have T ⋆ ≤ t0+ J(t0)√
a

. If b > 0, we have T ⋆ ≤ J(t0)√
a

or T ⋆ ≤ t0 +2
3δ+1

2δ
δc√

a
{1− [1+cJ(t0)]

−1

2δ }.
Here, c = ( b

a )
δ

2+δ is a constant.

Lemma 2.4
[9] Suppose that φ(t) is a non-increasing function on [0, T ], T > 1. If φ(t) ≥ 0 and

φ(t)1+r ≤ ω0 (φ(t) − φ(t + 1)), where ω0 > 0, r ≥ 0 are constants, then we have

(i) φ(t) ≤
(

φ(0)−r + ω−1
0 r max {t − 1, 0}

)− 1
r for r > 0;

(ii) φ(t) ≤ φ(0)e−ω1 max{t−1,0} for r = 0, where ω1 = ln ω0

ω0−1 , ω0 > 1.

Now, we put forward two assumptions as follows.

(A1) f(0) = 0 and ∀u, v ∈ R, ∃k1 such that |f(u) − f(v)| ≤ k1|u − v|(|u|p−2 + |v|p−2) and

2 < p ≤ 2(N−1)
N−2 (∞, N ≤ 2).
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(A2) ∀s ∈ R, ∃δ > 0 such that sf(s) ≥ (2 + 4δ)F (s), where F (s) =
∫ s

0
f(r)dr and ∀s ≥

0, (2δ + 1)M⋆(s) − (M(s) + 2δm0)s ≥ 0, here, M⋆(s) =
∫ s

0 M(r)dr.

3. Exponent decay estimates of the energy function

In this section, we shall discuss the decay estimates of the energy of problem (1.1)–(1.3) with

f(u) = |u|p−2u. For simplicity, we only consider the situation ω = 1. As for the local existence

of solution for this problem, simulating the method put forward in [9], we can easily prove it by

using the contraction mapping principle. We omit it here.

Assume that u(t) ∈ H1
0 (Ω). Let

I1(t) = m0‖∇u(t)‖2
2 − ‖u(t)‖p

p, (3.1)

I2(t) = m0‖∇u(t)‖2
2 + b‖∇u(t)‖2(γ+1)

2 − ‖u(t)‖p
p, (3.2)

J(t) =
1

2
m0‖∇u(t)‖2

2 +
b

2(γ + 1)
‖∇u(t)‖2(γ+1)

2 − 1

p
‖u(t)‖p

p. (3.3)

Now we define the energy of the solution u of (1.1)–(1.3) by

E(t) =
1

2
‖u(t)‖2

2 + J(t). (3.4)

For simplicity, we choose m0 = b = 1. After some simple computation, we have E′(t) =

−‖∇ut‖2
2 < 0. That is to say, E(t) is a non-increasing function on [0,∞). Moreover, we have

the following lemma.

Lemma 3.1 Suppose that u is the solution of (1.1)–(1.3) and (A1) holds. If u0 ∈ H1
0 (Ω)

⋂

H2(Ω),

u1 ∈ L2(Ω), I1(u0) > 0 and

α = B
p
1

( 2p

p − 2
E(0)

)

p−2

2

< 1, (3.5)

then ∀t ≥ 0, I2(t) > 0.

Proof Since I1(u0) > 0, it follows from the continuity of u(t) that

I1(t) > 0, (3.6)

for some interval near t = 0. Let tmax > 0 be a maximal time (possibly tmax = T ), when (3.6)

holds on [0, tmax). From (3.1) and (3.3), we have

J(t) ≥ 1

2
‖∇u‖2

2 −
1

p
‖u‖p

p ≥ 2p

p − 2
‖∇u‖2

2 +
1

p
I1(t). (3.7)

By the definition of E(t), we get

‖∇u‖2
2 ≤ 2p

p − 2
J(t) ≤ 2p

p − 2
E(t) ≤ 2p

p − 2
E(0). (3.8)

Then, from the Poincaré inequality and (3.5), we obtain

‖∇u‖p
p ≤ B

p
1‖∇u‖p

2 ≤ α‖∇u‖2
2 < ‖∇u‖2

2, t ∈ [0, tmax). (3.9)

Thus, I1(t) > 0, t ∈ [0, tmax). This implies that we can take tmax = T . But, from (3.1) and (3.2),

we see that I2(t) ≥ I1(t), t ∈ [0, T ]. Therefore, we have I2(t) > 0, ∀t ∈ [0, T ].
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Next, we want to show that t = ∞. Multiplying (1.1) by −2∆u, and integrating it over Ω,

we get

d

dt

{

‖∆u‖2
2 − 2

∫

Ω

ut∆udx
}

+ 2M
(

‖∇u‖2
2

)

‖∆u‖2
2

≤ 2‖∇ut‖2
2 − 2

∫

Ω

|u|p−2u∆udx. (3.10)

Since 2E′(t) = −2‖∇ut‖2
2, multiplying (3.10) by ε, 0 < ε ≤ 1 and adding them together gives

d

dt
E⋆(t) + 2(1 − ε)‖∇ut‖2

2 + 2εM
(

‖∇u‖2
2

)

‖∆u‖2
2 ≤ −2ε

∫

Ω

|u|p−2u∆udx, (3.11)

where

E⋆(t) = 2E(t) − 2ε

∫

Ω

ut∆udx + ε‖∆u‖2
2. (3.12)

By Young’s inequality, we get |2ε
∫

Ω
ut∆udx| ≤ 2ε‖ut‖2

2 + ε
2‖∆u‖2

2. Hence, choosing ε = 2
5 , we

see that

E⋆(t) ≥ 1

5

(

‖ut‖2
2 + ‖∆u‖2

2

)

. (3.13)

Moreover, we note that

2
∣

∣

∣

∫

Ω

|u|p−2u∆udx
∣

∣

∣
≤ 2(p − 1)

∫

Ω

|u|p−2|∇u|2dx

≤ 2(p − 1)‖u‖p−2
(p−2)θ1

‖∇u‖2
2θ2

, (3.14)

where θ1 + θ2 = θ1θ2. So we put θ1 = 1 and θ2 = ∞, if N = 1; θ1 = 1 + ε1, ∀ε1 > 0, if N = 2;

and θ1 = N
2 , θ2 = N

N−2 , if N ≥ 3.

Then, by the Poincaré inequality, (3.8) and (3.12), we have

2
∣

∣

∣

∫

Ω

|u|p−2u∆udx
∣

∣

∣
≤ 2B

p
1(p − 1)‖∇ut‖p−2

2 ‖∆u‖2
2 ≤ c1E

⋆(t), (3.15)

where c1 = 10B
p
1(p − 1)

(

2p
p−2E(0)

)

p−2

2

.

Substituting (3.15) into (3.11), and then integrating it over (0, t), we obtain

E⋆(t) +
4

5

∫ t

0

‖∆u(s)‖2
2ds ≤ E⋆(0) +

∫ t

0

c1E
⋆(s)ds. (3.16)

By Gronwall’s Lemma, we deduce E⋆(t) ≤ E⋆(0) exp(c1t), ∀t ≥ 0. Therefore by continuity

principle, we have T = ∞.

Taking η = 1 − α in (3.9), we have ‖u(t)‖p
p ≤ (1 − η)‖∇ut‖2

2, ∀t ∈ [0,∞).

Next, we declare the exponent decay estimates of the energy function as follows.

Theorem 3.2 Assume that I1(u0) > 0 and (3.5) holds. Then we have

E(t) ≤ E(0)e−τ1t, (3.17)

where τ1 is a constant.

Proof By integrating E′(t) = −‖∇ut‖2
2 over [t, t + 1], we get

E(t) − E(t + 1) ≡ D(t)2, (3.18)
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where D(t)2 =
∫ t+1

t ‖∇ut‖2
2dt. Thus, there exist t1 ∈ [t, t + 1

4 ], t2 ∈ [t + 3
4 , t + 1] such that

‖∇ut(ti)‖2
2 = 4D(t)2, i = 1, 2. (3.19)

Next, Multiplying (1.1) by u and then integrating it over Ω × [t1, t2], we get
∫ t2

t1

{‖∇u‖2
2 + ‖∇u‖2(γ+1)

2 − ‖u‖p
p}dt

= −
∫ t2

t1

∫

Ω

uttudxdt −
∫ t2

t1

∫

Ω

∇ut · ∇udxdt. (3.20)

Then, by Hölder inequality and Young’s inequality, from (3.2), we obtain

∣

∣

∣

∫ t2

t1

∫

Ω

∇ut · ∇udxdt
∣

∣

∣
≤

∫ t2

t1

‖∇ut‖2‖∇u‖2dt. (3.21)

By Hölder inequality and Poincaré inequality, integrating (3.21) by parts, we have

∣

∣

∣

∫ t2

t1

∫

Ω

uttudxdt
∣

∣

∣
≤ B2

1

2
∑

i=1

‖∇ut(ti)‖2‖∇u(ti)‖2 + B2
1

∫ t+1

t

‖∇ut‖2
2dt. (3.22)

So, we deduce

∫ t2

t1

I2(t)dt ≤B2
1

2
∑

i=1

‖∇ut(ti)‖2‖∇u(ti)‖2+

B2
1

∫ t+1

t

‖∇ut‖2
2dt +

∫ t2

t1

‖∇ut‖2‖∇u‖2dt. (3.23)

Furthermore, by (3.19) and (3.8), we have

‖∇ut(ti)‖2‖∇u(ti)‖2 ≤ c2D(t) sup
t1≤s≤t2

E(s)
1
2 , (3.24)

and
∫ t2

t1

‖∇ut‖2‖∇u‖2dt ≤ c2

2
D(t) sup

t1≤s≤t2

E(s)
1
2 , (3.25)

where c2 = 2( 2p
p−2 )1/2. Thus, we get

∫ t2

t1

I2(t)dt ≤ c3D(t) sup
t1≤s≤t2

E(s)
1
2 + B2

1D(t)2, (3.26)

where c3 = (2B2
1 + 1

2 )c2. On the other hand, by the definition of E(t), we have

E(t) ≤ 1

2
‖ut‖2

2 + c4‖∇u‖2
2 + c5I2(t), (3.27)

where c4 = 1
2 − 1

p , c5 = 1
p + 1

2(γ+1) . Integrating (3.27) over (t1, t2), we get

∫ t2

t1

E(t)dt ≤ 1

2

∫ t2

t1

‖ut‖2
2dt + c5

∫ t2

t1

I2(t)dt (3.28)

and
∫ t2

t1

E(t)dt ≤ B2
1

2
D(t)2 + c5

∫ t2

t1

I2(t)dt. (3.29)
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Next, Multiplying (1.1) (take f(u) = |u|p−2u) by ut and then integrating it over [t, t2] × Ω,

we have

E(t) = E(t2) +

∫ t2

t

‖∇u(t)‖2
2dt. (3.30)

Since t2 − t1 ≥ 1
2 , we get E(t2) ≤ 2

∫ t2
t1

E(t)dt. Thus, we have

E(t) ≤ 2

∫ t2

t1

E(t)dt +

∫ t+1

t

‖∇u(t)‖2
2dt = 2

∫ t2

t1

E(t)dt + D(t)2. (3.31)

So,

E(t) ≤ c6D(t)2 + c7D(t) sup
t1≤s≤t2

E(s)
1
2 , (3.32)

where c6 = (2c5 + 1)B2
1 + 1, c7 = 2c5c3.

By Young’s inequality, we have

E(t) ≤ c8D(t)2, (3.33)

where c8 is a positive constant. Thus, ∀t ≥ 0, E(t) ≤ c9[E(t)− E(t + 1)], here, c9 = max{c8, 1}.
Then, by Lemma 2.4, we obtain

E(t) ≤ E(0)−τ1t, t ∈ [0,∞), (3.34)

where τ1 = ln c9

c9−1 . The proof is completed. 2

4. Blow-up of solutions and the life-span

In this section, we shall discuss the blow-up phenomena of problem (1.1)–(1.3). For simplicity,

we only consider the situation m0 = 1, b = 1.

Definition u is called the blow up solution of (1.1)–(1.3), if ∃T ⋆ < ∞ such that

lim
t→T ⋆−

(

∫

Ω

|∇u|2dx)−1 = 0.

We define the energy function of the solution u of (1.1)–(1.3) by

E(t) =
1

2
‖ut‖2

2 +
1

2
M⋆

(

‖∇u(t)‖2
2

)

−
∫

Ω

F (u(t)) dx, t ≥ 0. (4.1)

Then we have

E(t) = E(0) −
∫ t

0

‖∇ut(t)‖2
2dt. (4.2)

Now, let u be a solution of (1.1)–(1.3) and define

a(t) =

∫

Ω

u2dx +

∫ t

0

∫

Ω

|∇u|2dxdt, t ≥ 0. (4.3)

Then we have

a′(t) = 2

∫

Ω

uutdx + ‖∇u‖2
2. (4.4)

a′′(t) = 2‖ut‖2
2 − 2M

(

‖∇u‖2
2

)

‖∇u‖2
2 + 2

∫

Ω

f(u)udx. (4.5)
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By using Hölder inequality and Young’s inequality, we easily obtain the following lemma.

Lemma 4.1 Suppose that (A1)–(A2) hold. Then we have

a′′(t) − 4(δ + 1)

∫

Ω

u2
t dx ≥ (−4 − 8δ)E(0) + (4 + 8δ)

∫ t

0

‖∇ut‖2
2dt. (4.6)

Next, we consider three different cases on the sign of the initial energy E(0).

(i) If E(0) < 0, then by Lemma 4.1, we have a′(t) ≥ a′(0) − 4(1 + 2δ)E(0)t, t ≥ 0. Thus

∀t ≥ t⋆, we have a′(t) > ‖∇u0‖2
2, where

t⋆ = max
{a′(0) − ‖∇u0‖2

2

4(1 + 2δ)E(0)
, 0

}

. (4.7)

(ii) If E(0) = 0, then ∀t ≥ 0, we have a′′(t) ≥ 0. Moreover, if a′(0) > ‖∇u0‖2
2, then ∀t ≥ 0,

we have a′(t) > ‖∇u0‖2
2.

(iii) For the case that E(0) > 0, we first note that

2

∫ t

0

∫

Ω

∇u · ∇utdxdt = ‖∇u(t)‖2
2 − ‖∇u0‖2

2. (4.8)

By using Hölder inequality and Young’s inequality, we have

‖∇u(t)‖2
2 ≤ ‖∇u0‖2

2 +

∫ t

0

‖∇u(t)‖2
2dt +

∫ t

0

‖∇ut(t)‖2
2dt. (4.9)

By using Hölder inequality and Young’s inequality in (4.4) and by (4.9), we obtain

a′(t) ≤ a(t) + ‖∇u0‖2
2 + ‖ut‖2

2 +

∫ t

0

‖∇ut(t)‖2
2dt. (4.10)

Thus, we have a′′(t)−4(δ+1)a′(t)+4(δ+1)a(t)+K1 ≥ 0, here, K1 = (4+8δ)E(0)+4(δ+1)‖∇u0‖2
2.

Let

b(t) = a(t) +
K1

4(δ + 1)
, t > 0. (4.11)

Then b(t) satisfies (2.1). By (2.2), we see that if

a′(0) > r2

[

a(0) +
K1

4(δ + 1)

]

+ ‖∇u0‖2
2, (4.12)

then a′(t) > ‖∇u0‖2
2, t > 0.

Consequently, we have

Lemma 4.2 Assume that (A1)–(A2) hold and that either one of the following conditions is

satisfied:

(i) E(0) < 0,

(ii) E(0) = 0 and a′(0) > ‖∇u0‖2
2,

(iii) E(0) > 0 and (4.12) holds.

Then a′(t) > ‖∇u0‖2
2, ∀t > t0. where t0 = t⋆ is given by (4.7) in case (i) and t0 = 0 in cases (ii)

and (iii).

Now, we find the estimate for the life span of a(t). Let

J(t) =
(

a(t) + (T1 − t)‖∇u0‖2
2

)−δ
, t ∈ [0, T1], (4.13)



714 YANG Z F and QIU D H

where T1 > 0 is a certain constant which will be specified later.

Then we have J ′(t) = −δJ(t)1+
1
δ

(

a′(t) − ‖∇u0‖2
2

)

and

J ′′(t) = −δJ(t)1+
2
δ V (t). (4.14)

where

V (t) = a′′(t)
(

a(t) + (T1 − t)‖∇u0‖2
2

)

− (1 + δ)
(

a′(t) − ‖∇u0‖2
2

)2
. (4.15)

For simplicity of calculation, we denote that P =
∫

Ω u2dx, Q =
∫ t

0 ‖∇u(t)‖2
2dt, R =

∫

Ω u2
t dx and

S =
∫ t

0
‖∇ut(t)‖2

2dt. Thus, we get

a′(t) ≤ 2
(√

RP +
√

QS
)

+ ‖∇u0‖2
2. (4.16)

By Lemma 4.1, we have

a′′(t) ≥ (−4 − 8δ)E(0) + 4(1 + δ)(R + S). (4.17)

Then, we obtain

V (t) ≥ [(−4 − 8δ)E(0) + 4(1 + δ)(R + S)]
(

a(t) + (T1 − t)‖∇u0‖2
2

)

−

4(1 + δ)
(√

RP +
√

QS
)2

.

By (4.13), we have

V (t) ≥(−4 − 8δ)E(0)J(t)−
1
δ + 4(1 + δ)(R + S)(T1 − t)‖∇u0‖2

2+

4(1 + δ)
[

((R + S)(P + Q) −
(√

RP +
√

QS
)2 ]

.

By Schwarz inequality, we get

V (t) ≥ (−4 − 8δ)E(0)J(t)−
1
δ , t ≥ t0. (4.18)

Therefore, we get

J ′′(t) ≤ δ(4 + 8δ)E(0)J(t)1+
1
δ , t ≥ t0. (4.19)

Note that by Lemma 4.2, J ′(t) < 0, t > t0. Multiplying (4.19) by J ′(t) and integrating it from

t0 to t, we have J ′(t)2 ≥ α + βJ(t)2+
1
δ , t ≥ t0. Where

α = δ2J(t0)
2+ 1

δ

[

(a′(t0) − ‖∇u0‖2
2)

2 − 8E(0)J(t0)
− 1

δ

]

, (4.20)

β = 8δ2E(0). (4.21)

We observe that α > 0 if and only if E(0) <
(a′(t0)−‖∇u0‖2

2)
2

8[a(t0)+(T1−t0)‖∇u0‖2
2]

.

Then by Lemma 2.3, there exists a finite time T ⋆ such that limt→T ⋆− J(t) = 0 and the upper

bounds of T ⋆ are estimated respectively according to the sign of E(0). This will imply that

limt→T ⋆−{
∫

Ω u2dx +
∫ t

0 ‖∇u‖2
2dt}−1 = 0. Thus by Poincaré inequality, we deduce

lim
t→T ⋆−

(

∫

Ω

|∇u|2dx
)−1

= 0. (4.21)

So, we have our results as follows.
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Theorem 4.3 Assume that (A1)–(A2) hold and that either one of the following conditions is

satisfied:

(i) E(0) < 0,

(ii) E(0) = 0, and a′(0) > ‖∇u0‖2
2,

(iii) 0 < E(0) <
(a′(t0)−‖∇u0‖2

2)
2

8[a(t0)+(T1−t0)‖∇u0‖2
2]

and (4.12) holds.

Then the solution u blows up at finite time T ⋆. And in case (i), we have T ⋆ ≤ t0 − J(t0)
J′(t0)

.

Furthermore, if J(t0) < min{1,
√

α
−β}, then we have T ⋆ ≤ t0 +

√

1
−β ln

√
α

−β√
α

−β
−J(t0)

. In case (ii),

T ⋆ ≤ t0 − J(t0)
J′(t0)

or T ⋆ ≤ t0 + J(t0)√
α

. In case (iii), T ⋆ ≤ J(t0)√
α

or T ⋆ ≤ t0 + 2
3δ+1

2δ
δc√
α
{1 − [1 +

cJ(t0)]
−1

2δ }, where c = (β
α )

δ
2+δ , here α and β are in (4.20) and (4.21), respectively.

Remark The choice of T1 in (4.13) is possible under some conditions.

(i) In the case E(0) = 0, we can choose T1 ≥ ‖u0‖2
2

δ2B2
1‖u1‖2

2

. In particular, we choose T1 =

‖u0‖2
2

δ2B2
1‖u1‖2

2

, then we get T ⋆ ≤ ‖u0‖2
2

δ2B2
1‖u1‖2

2

.

(ii) In the case E(0) < 0, we can choose T1 as in (i) if
∫

Ω u0u1dx > 0 or T1 ≥ t⋆ − J(t⋆)
J′(t⋆) if

∫

Ω
u0u1dx ≤ 0.

(iii) For the case E(0) > 0. Under the condition E(0) < min {k1, k2}, here

k1 =
(1 + δ)[a′(0) − r2a(0) − (r2 + 1)‖∇u0‖2

2]

r2(1 + 2δ)
, k2 =

[4(
∫

Ω
u0u1dx)2 − 1][δ − ‖∇u0‖2

2]

8δ‖∇u0‖2
2

,

if ‖∇u0‖2
2 < δ, T1 is chosen to satisfy k3 ≤ T1 ≤ T4, here

k3 =
‖u0‖2

2

δ − ‖∇u0‖2
2

, k4 =
4(

∫

Ω
u0u1dx)2 − 8E(0)‖u0‖2

2 − 1

8E(0)‖∇u0‖2
2

.

Therefore we have T ≤ T ⋆ ≤ k3√
4(

∫

Ω
u0u1dx)2−8E(0)k3

.
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