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Abstract For Lie triple systems in the characteristic zero setting, we obtain by means of the

Killing forms two criterions for semisimplicity and for solvability respectively, and then investi-

gate the relationship among the Killing forms of a real Lie triple system T0, the complexification

T of T0, and the realification of T .
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1. Preliminaries

Throughout the article, we shall be concerned with Lie triple systems and Lie algebras which

are finite dimensional over a field F of characteristic zero.

First, we recall some definitions, notations and facts which can be found in [1] or [2].

A Lie triple system(L.t.s) is a vector space T over a field F with a ternary composition [ , , ]

which is trilinear and satisfies the following identities:

[xyz] = −[yxz], (1.1)

[xyz] + [yzx] + [zxy] = 0, (1.2)

and

[uv[xyz]] = [[uvx]yz] + [x[uvy]z] + [xy[uvz]] (1.3)

for all u, v, x, y, z ∈ T .

Define L(x, y), R(x, y) ∈ EndF T by L(x, y)z := [xyz], R(x, y)z := [zyx]. We see that (1.1),

(1.2) and (1.3) are equivalent to

L(x, y) = −L(y, x), (1.1)′

L(x, y) = R(x, y) − R(y, x), (1.2)′

and

[L(x, y), L(u, v)] = L([xyu], v) + L(u, [xyv]), (1.3)′
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for all u, v, x, y ∈ T .

A subspace I of a L.t.s T is called an ideal of T if [ITT ] ⊆ I.

An ideal I of T is called solvable if there is a positive integer k for which I(k) 6= 0, I(k+1) = 0,

where I(1) = [TII], I(k) = [TI(k−1)I(k−1)]. T is called semisimple if the radical R(T ) (the unique

maximal solvable ideal) of T is zero.

A derivation of a L.t.s T is a linear transformation D of T into T such that

D[xyz] = [Dxyz] + [xDyz] + [xyDz].

Identity (1.3) shows that all L(x, y) are derivations. A derivation D of the form D =

ΣL(xi, yi), ∀xi, yi ∈ T , is said to be inner. The set D(T ) of all derivations of T is a Lie al-

gebra of linear transformation acting in T , the so-called derivation algebra of T .

Let H be the subalgebra of D(T ) generated by all L(x, y), x, y ∈ T . By (1.3)′, H is the

linear span of the L(x, y)′s, which is called the inner derivation algebra of T . We consider the

vector space direct sum L(T ) = H ⊕ T .

Define for elements Xi = hi ⊕ xi, hi ∈ H , xi ∈ T , i = 1, 2, a product

[X1, X2] = ([h1, h2
] + L(x1, x2)) ⊕ (h1x2 − h2x1).

Note that, in particular, we have [x, y] = L(x, y), [h, x] = hx, for x, y ∈ T , and h ∈ H . It is easy

to prove that L(T ) together with the above product is a Lie algebra which is called the standard

imbedding Lie algebra of T [1].

Clearly, T is the (−1) eigenspace and H is the (+1) eigenspace of θ ∈ AutL(T ) defined by

θ(a + h) := −a + h, for a ∈ T , h ∈ H . The automorphism θ of order 2 is called the main

involution automorphism of L(T ).

To conclude this section, we record an important result which will be needed later on.

Theorem 1.1[2] T is solvable if and only if the standard imbedding algebra L(T ) is solvable.

2. The Killing forms of Lie triple systems

Definition 2.1[1] The Killing form of a Lie triple system T is the bilinear form

ρ(x, y) := tr(R(x, y) + R(y, x)), x, y ∈ T (tr = trace).

Clearly, the Killing form ρ(x, y) is symmetric.

Definition 2.2 The Killing form ρ of a Lie triple system T is called non-degenerate if T⊥ = 0,

where T⊥ = {x ∈ T | ρ(x, y) = 0, for y ∈ T }.
Let ρ, λ and λH be the Killing forms of the Lie triple system T , of the standard imbedding

Lie algebra L(T ) and of the inner derivation algebra H of T , respectively. The following theorem

describes the relationship among them.

Theorem 2.1 Suppose ρ, λ and λH are given as the above. Then

λ(H, T ) = 0, (2.1)

λ(h, h′) = λH(h, h′) + tr(h · h′), ∀h, h′ ∈ H, (2.2)
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λ(a, a′) = ρ(a, a′), ∀a, a′ ∈ T, i.e. ρ = λ |T×T . (2.3)

Proof Since θ : a + h 7−→ −a + h, ∀h ∈ H , a ∈ T , is an automorphism of L(T ), −λ(h, a) =

λ(h,−a) = λ(h, θa) = λ(θh, a) = λ(h, a), we have λ(h, a) = 0, which proves (2.1).

Since H and T are invariant under adh · adh′ and L(T ) = H ⊕ T , we obtain

trL(T )(adh · adh′) = trH(adh · adh′) + trT (adh · adh′), ∀h, h′ ∈ H.

But adh ·adh′(a) = [h, [h′a]] = h ·h′(a), for a ∈ T , therefore trT (adh ·adh′) = tr(h ·h′) and hence

(2.2) holds.

Let {h1, h2, . . . , hm, a1, a2, . . . , an} be a homogeneous basis of L(T ) formed from bases of H

and T . We assume that the elements adai (i = 1, 2, . . . , n) are expressed by means of these bases

as follows:

[ai, aj ] = ΣpK
p
i,jhp, [ai, hj ] = ΣlS

l
i,jal.

Then

[ai, [aj, hk]] = [ai, ΣlS
l
j,kal] = ΣlS

l
j,kΣpK

p
i,lhp,

trH(adai · adaj) = ΣkΣlS
l
j,kKk

i,l,

[ai, [aj, ak]] = [ai, ΣpK
p
j,khp] = ΣpK

p
j,kΣlS

l
i,pal,

trT (adai · adaj) = ΣpK
p
j,kΣkSk

i,p = ΣpΣkK
p
j,kSk

i,p.

Obviously, trT (adai ·adaj) = trH(adaj ·adai). Since H and T are invariant under adai ·adaj,

we obtain

trL(T )(adai · adaj) = trH(adai · adaj) + trT (adai · adaj)

= trT (adaj · adai) + trT (adai · adaj). (2.4)

Moreover,

[ai, [aj , a]] = −[ai, [a, aj ]] = [[a, aj ], ai] = L(a, aj)ai = [aajai]

= R(ai, aj)a, ∀a ∈ T.

Therefore,

trT (adai · adaj) = trR(ai, aj). (2.5)

Combining (2.4) and (2.5), we get

λ(ai, aj) = tr(R(ai, aj) + R(aj, ai)) = ρ(ai, aj),

which is the third assertion of the theorem.

Theorem 2.2 Suppose ρ(x, y) is the Killing form of a Lie triple system T . Then

(1) ρ(Ax, Ay) = ρ(x, y) for A ∈ AutT ;

(2) ρ(Dx, y) + ρ(x, Dy) = 0 for D ∈ DerT ;

(3) ρ(x, y) is right invariant, and left invariant, i.e.,

ρ(R(a, b)x, y) = ρ(x, R(b, a)y), ρ(L(a, b)x, y) = ρ(x, L(b, a)y);
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(4) If ρ(x, y) is non-degenerate, then ρ(x, y) = 2trR(x, y).

Proof (1) ∀A ∈ AutT , we have A[xyz] = [AxAyAz], or AR(z, y)x = R(Az, Ay)Ax,

AR(z, y) = R(Az, Ay)A, R(Az, Ay) = AR(z, y)A−1,

then

ρ(Ax, Ay) = tr(R(Ax, Ay) + R(Ay, Ax))

= tr(AR(x, y)A−1 + AR(y, x)A−1)

= tr(A · (R(x, y) + R(y, x))A−1)

= tr(R(x, y) + R(y, x))

= ρ(x, y).

(2) For D ∈ DerT , we have D[xyz] = [Dxyz] + [xDyz] + [xyDz], i.e.,

DR(z, y) = R(z, y)D + R(z, Dy) + R(Dz, y),

then

tr(R(z, Dy) + R(Dz, y)) = tr(DR(z, y) − R(z, y)D) = 0.

So,

ρ(Dx, y) + ρ(x, Dy) = tr(R(Dx, y) + R(y, Dx) + R(x, Dy) + R(Dy, x)) = 0.

(3) Notice that the Killing form λ of Lie algebra L(T ) is invariant and ρ = λ |T×T . For

a, b, x, y ∈ T , we have

ρ(R(a, b)x, y) = λ(R(a, b)x, y) = λ([xba], y) = λ([[x, b], a], y)

= λ([x, b], [a, y]) = λ(x, [b, [a, y]])

= λ(x, [[y, a], b]) = λ(x, [yab])

= λ(x, R(b, a)y) = ρ(x, R(b, a)y).

As for the proof of left invariance of ρ, we can employ identity L(x, y) = R(x, y) − R(y, x),

or argue by using the invariance of λ.

(4) Suppose ρ(x, y) is non-degenerate. If R(x, y)∗ denotes the adjoint endomorphism of

R(x, y) in T with respect to ρ, then we get R(x, y)∗ = R(y, x) by the right invariancy of ρ, which

implies ρ(x, y) = 2trR(x, y), because trR(x, y)∗ = trR(x, y).

It is well known that a Lie algebra L is solvable if and only if λ(x, y) = 0, for x ∈ L,

y ∈ L(1) = [L, L], where λ is the Killing form of L (Cartan’s Criterion). Now we will see that

there is an analogous theorem in the case of Lie triple systems. For this purpose, we first prove

the following theorem:

Theorem 2.3 Let λ and ρ be as in Theorem 2.1. The followings are equivalent:

(a) λ(x, y) = 0, for all x ∈ L(T ), y ∈ L(T )(1);

(b) ρ(x, y) = 0, for all x ∈ T , y ∈ T (1).
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Proof If we assume (a), then we obtain (b) by using

T (1) = [TTT ] = [H, T ] ⊆ [L(T ), L(T )] = L(T )(1).

Conversely, suppose (b) holds. Then for ai, bi ∈ T , i = 1, 2, we have by the invariance of λ,

λ(L(a1, b1), L(a2, b2)) = λ([a1, b1], [a2, b2]) = λ(a1, [b1a2b2]) = ρ(a1, [b1a2b2]) = 0,

which implies λ(H, H) = 0. Moreover, we have λ(H, T ) = 0 by Theorem 2.1.

Next, we see that

L(T )(1) = [T + [T, T ], T + [T, T ]] ⊆ T (1) + [T, T ] = T (1) + H.

Let x ∈ L(T ), x = a1 + h1, a1 ∈ T, h1 ∈ H , y ∈ L(T )(1), y = a2 + h2, a2 ∈ T (1), h2 ∈ H . Then

λ(x, y) = λ(a1, a2) = ρ(a1, a2) = 0.

Now we are in a position to state the Cartan’s Criterion for solvability in the case of Lie

triple systems as follows:

Corollary 2.4 A Lie triple system T is solvable if and only if its Killing form ρ(x, y) = 0, for

all x ∈ T , y ∈ T (1).

Proof This follows at once from Theorems 1.1, 2.3 and the Cartan’s Criterion for Lie algebras.

The following two Lemmas are easy to verify.

Lemma 2.5 Let I ⊂ T be an ideal of T . Then I⊥ is also an ideal of T , where

I⊥ = {x ∈ T | ρ(x, y) = 0, ∀y ∈ I}.

Lemma 2.6 Let I be an ideal of T . Denote by ρI(x, y) and ρ(x, y) the Killing forms of I and

T respectively. Then ρI(x, y) = ρ(x, y), ∀x, y ∈ I.

Theorem 2.7 Let T be a finite dimensional Lie triple system over a field of characteristic 0.

Then T is semisimple if and only if its Killing form ρ(x, y) is non-degenerate.

Proof Suppose first that the radical R(T ) = 0. Clearly, ρ(T⊥, T ) = 0, in particular, ρ(T⊥, T⊥(1)) =

0. Considering Lemma 2.6 and applying Corollary 2.4 to the ideal T⊥, we conclude that T⊥ is

solvable, and T⊥ ⊆ R(T ) = 0, i.e., ρ is non-degenerate.

Conversely, suppose that the Killing form ρ(x, y) is non-degenerate, i.e., T⊥ = {0}. To prove

that T is semisimple it suffices to prove that every solvable ideal of T is included in T⊥.

Let I be a solvable ideal of T , such that I(r+1) = 0, I(r) 6= 0 (r ≥ 0). Since I(r+1) =

(I(r))(1), we may assume that there exists an ideal I 6= 0, such that I(1) = 0. Choose a basis

{e1, e2, . . . , er, er+1, . . . , en} for T , r ≤ n, such that {e1, e2, . . . , er} is a basis for I. Notice that

[TIT ] + [TTI] + [ITT ] ⊂ I, [TII] = [IT I] = [IIT ] = 0. (2.6)

Set

R(ei3 , ei2)ei1 = Σn
p=1a

p
i1,i2,i3

ep, a
p
i1,i2,i3

∈ F, 1 ≤ i1, i2, i3 ≤ n.
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From (2.6) we have

a
p
i1,i2,i3

= 0, (2.7)

when p > r and at least one ij ≤ r, or at least two ij ≤ r, among i1, i2, i3.

Let 1 ≤ l, i2 ≤ n , 1 ≤ i1 ≤ r. Then from (2.7) we obtain

R(ei1 , ei2)el = Σn
p=1a

p
l,i2,i1

ep = Σr
p=1a

p
l,i2,i1

ep.

Therefore,

trR(ei1 , ei2) = Σr
l=1a

l
l,i2,i1

= 0.

In other words, trR(I, T ) = 0. Similarly, trR(T, I) = 0, hence ρ(I, T ) = 0, which yields

I ⊆ T⊥ = 0, as desired.

Remark Using the standard imbedding Lie algebras, Meyberg[1] has already proved this the-

orem. Here, we present a direct proof by using the definition of the Killing forms of Lie triple

systems.

3. The complexification of real Lie triple systems

In this section we assume F = R or C, i.e., all Lie triple systems are assumed to be real or

complex. First we introduce a definition for a Lie triple system, which is an analogue in the case

of Lie algebras[3].

Definition 3.1 Let T be a Lie triple system over R. An R-linear endomorphism J of T is called

a compatible complex structure, if J satisfies:

(1) J is a complex structure on the vector space T , that is, J2 = −id.

(2) J [xyz] = [(Jx)yz], for x, y, z ∈ T .

From condition (2) and the definition of L.t.s, we have

J [xyz] = [(Jx)yz] = [x(Jy)z] = [xy(Jz)].

It is easy to verify that a real Lie triple system T0 with a compatible complex structure J

can be turned into a complex Lie triple system, denoted by T0, by putting

(a + ib)x = ax + bJx, i =
√
−1, x ∈ T0, a, b ∈ R,

and with the ternary operation inherited from T0.

Let T0 be an arbitrary real Lie triple system. We form the tensor product T C
0 := C ⊗R T0

and regard it as a vector space over C : α(β ⊗x) := αβ ⊗ x, for any α, β ∈ C, x ∈ T0. Obviously,

T C
0 is a Lie triple system with [α ⊗ x, β ⊗ y, γ ⊗ z] = αβγ ⊗ [xyz].

This complex Lie triple system is called the complexification of T0. We can formally think of

T C
0 as

T C
0 = {x + iy | x, y ∈ T0 and i =

√
−1}.

A real Lie triple system T0 is called a real form of a complex Lie triple system T if its

complexification is isomorphic to T .
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On the other hand, given a complex Lie triple system T , then by restricting the ground field

to the real field, we obtain a real Lie triple system denoted by T R, which will be called the

realification of T .

Let J : x → ix, for any x ∈ T R. Obviously, J is a compatible complex structure of T R, which

is called the regular complex structure on T R. Clearly, T R = T .

Let T0 be an arbitrary real Lie triple system, T the complexification of T0, T R the realification

of T . Notice that T = T0+̇iT0 and T R = T0+̇JT0.

Theorem 3.1 Let ρ0, ρ and ρR denote the Killing forms of Lie triple systems T0, T and T R,

respectively. Then:

(1) ρ0(x, y) = ρ(x, y), for x, y ∈ T0;

(2) ρR(x, y) = 2Reρ(x, y), for x, y ∈ T R (Re=real part).

Proof Let {x1, x2, . . . , xn} be a basis of real Lie triple system T0. Obviously, it is also a basis

of T , and {x1, x2, . . . , xn, Jx1, Jx2, . . . , Jxn} is a basis of T R, where J is the regular complex

structure of T R.

Let x, y ∈ T0, the endomorphism R(x, y) viewed as acting on T0 or as acting on T , has the

same matrix expression with respect to the basis {x1, x2, . . . , xn}. Thus, the first relation is

proved.

For the second, ∀x, y ∈ T R(= T ), let B +
√
−1C denote the matrix of R(x, y) with respect

to the basis {x1, x2, . . . , xn} of T , B and C being real. In other words,

R(x, y)xi = Σn
j=1bjixj +

√
−1Σn

j=1cjixj , i = 1, . . . , n,

B = (bji)n×n, C = (cji)n×n.

Then,

R(x, y)(Jxi) = [(Jxi)yx] = J [xiyx] = JR(x, y)xi

= J(Σn
j=1bjixj +

√
−1Σn

j=1cjixj)

= −Σn
j=1cjixj + Σn

j=1bjiJxj .

This shows that as an endomorphism on T R, the matrix of R(x, y) with respect to the basis

{x1, x2, . . . , xn, Jx1, Jx2, . . . , Jxn} is
(

B −C

C B

)

.

Then, trT RR(x, y) = 2Re trT R(x, y), and ρR(x, y) = 2Reρ(x, y).

Theorem 3.2 The Killing forms ρ0, ρ and ρR are all non-degenerate if and only if one of them

is.

Proof (1) Assume that ρ0 is non-degenerate. Suppose x + iy ∈ T , where x, y ∈ T0, such that

ρ(x + iy, T ) = 0. Then

ρ(x, T0) + iρ(y, T0) = 0.
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From Theorem 3.1(1), ρ0(x, T0) = ρ0(y, T0) = 0. Since ρ0 is non-degenerate, we have x = y = 0,

then x + iy = 0. Therefore, ρ is non-degenerate.

(2) Assume ρ is non-degenerate. For any x, y ∈ T R, by Theorem 3.1(2),

ρR(Jx, y) = 2Reρ(ix, y) = −2Imρ(x, y).

Let y ∈ T R, such that, ρR(y, x) = 0, for all x ∈ T R. Then by Theorem 3.1(2), Reρ(x, y) =

0. Moreover, Imρ(x, y) = − 1
2ρR(Jx, y) = − 1

2ρR(y, Jx) = 0, so ρ(x, y) = 0, ∀x ∈ T R, then

ρ(y, T R) = 0. That is, ρ(y, T ) = 0, hence y = 0. Therefore, ρR is non-degenerate.

(3) Assume ρR is non-degenerate. Let x ∈ T0, such that ρ0(x, T0) = 0. From Theorem

3.1(1), ρ(x, T0) = 0, hence, ρ(x, T ) = 0. i.e.,

ρ(x, y) = 0, ∀y ∈ T.

From Theorem 3.1(2), ρR(x, y) = 2Reρ(x, y) = 0, ∀y ∈ T R. Since ρR is non-degenerate, x = 0.

Therefore, ρ0(x, y) is non-degenerate.

Corollary 3.3 T0, T and T R are all semi-simple if and only if one of them is.

This Corollary follows from Theorems 2.7 and 3.2.

Theorem 3.4 Suppose ρ0, ρ and ρR are given as the above. Then the following are equivalent:

(a) ρ0(x, y) = 0, for all x ∈ T0, y ∈ T
(1)
0 ;

(b) ρ(x, y) = 0, for all x ∈ T , y ∈ T (1);

(c) ρR(x, y) = 0, for all x ∈ T R, y ∈ (T R)(1).

Proof (a)⇒(b). This follows from the identities: T = T0+̇iT0, T (1) = T
(1)
0 +̇iT

(1)
0 and Theorem

3.1(1).

(b)⇒(c). This follows from Theorem 3.1(2) and the fact that T and T R agree set theoretically.

(c)⇒(a). If (c) holds, then ρR(x, y) = 0, for all x ∈ T0, y ∈ T
(1)
0 , because T R = T0+̇JT0 and

(T R)(1) = T
(1)
0 +̇JT

(1)
0 . Therefore, by Theorem 3.1,

ρ0(x, y) = ρ(x, y) = Reρ(x, y) =
1

2
ρR(x, y) = 0.

Corollary 3.5 T0, T and T R are all solvable if and only if one of them is.

References

[1] MEYBERG K. Lectures on Algebras and Triple Systems [M]. The University of Virginia, Charlottesville, Va.,

1972.
[2] LISTER W G. A structure theory of Lie triple systems [J]. Trans. Amer. Math. Soc., 1952, 72: 217–242.

[3] HELGASON S. Differential Geometry, Lie Groups, and Symmetric Spaces [M]. Academic Press, Inc., New

York-London, 1978.
[4] ZHANG Zhixue, SHI Yiqian, ZHAO Lina. Invariant symmetric bilinear forms on Lie triple systems [J].

Comm. Algebra, 2002, 30(11): 5563–5573.
[5] ZHANG Zhixue, LI Huajun, DONG Lei. Invariant bilinear forms on anti-Lie triple systems [J]. Chinese Ann.

Math. Ser. A, 2004, 25(4): 429–436. (in Chinese)

[6] ZHAO Li’na, LI Xuewen, ZHANG Zhixue. Non-degenerate invariant bilinear forms on nonassociative triple

systems [J]. Chinese Ann. Math. Ser. B, 2005, 26(2): 275–290.


