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Abstract For Lie triple systems in the characteristic zero setting, we obtain by means of the
Killing forms two criterions for semisimplicity and for solvability respectively, and then investi-
gate the relationship among the Killing forms of a real Lie triple system 7o, the complexification
T of Ty, and the realification of T'.
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1. Preliminaries

Throughout the article, we shall be concerned with Lie triple systems and Lie algebras which
are finite dimensional over a field F' of characteristic zero.

First, we recall some definitions, notations and facts which can be found in [1] or [2].

A Lie triple system(L.t.s) is a vector space T over a field F' with a ternary composition [, , ]

which is trilinear and satisfies the following identities:

[zyz] = —[y=z], (1.1)
[zyz] + [yzx] + [z2y] = 0, (1.2)

and
[uv[zyz]] = [[wwalyz] + [2[uvy]z] + [zyluz]] (1.3)

for all u,v,z,y,z € T.
Define L(z,y), R(z,y) € EndgT by L(z,y)z := [zyz], R(z,y)z := [zyz]. We see that (1.1),
(1.2) and (1.3) are equivalent to

L(Iay) = —L(y,:l?), (1'1)/
L(Ia y) = R(xvy) - R(yvx)v (12)/

and
[L(.’L‘, y)v L(uv U)] = L([xyu], U) + L(uv [xyv]), (1'3)/
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for all u,v,z,y € T.

A subspace I of a L.t.s T is called an ideal of T if [ITT] C I.

An ideal I of T is called solvable if there is a positive integer k for which 1) = 0, 1(++1) =0,
where IV = [TT1], I®*) = [TT*=D1*=1] T is called semisimple if the radical R(T) (the unique
maximal solvable ideal) of T is zero.

A derivation of a L.t.s T is a linear transformation D of T into T such that
Dlzyz] = [Dzxyz] + [xDyz] + [zyDz].

Identity (1.3) shows that all L(z,y) are derivations. A derivation D of the form D =
YL(x4,yi), Yoi,y; € T, is said to be inner. The set D(T) of all derivations of T is a Lie al-
gebra of linear transformation acting in 7', the so-called derivation algebra of T

Let H be the subalgebra of D(T') generated by all L(z,y), =, y € T. By (1.3)', H is the
linear span of the L(z,y)’s, which is called the inner derivation algebra of T. We consider the

vector space direct sum L(T)=H @ T.
Define for elements X; = h; ® x;, h; € H, x; € T, 1 =1,2, a product

[Xl, XQ] = ([h,l, hz] —+ L(xl,xg)) D (hlxg — h,QJfl).

Note that, in particular, we have [z,y] = L(x,y), [h,x] = hz, for ,y € T, and h € H. Tt is easy
to prove that L(T') together with the above product is a Lie algebra which is called the standard
imbedding Lie algebra of T,

Clearly, T is the (—1) eigenspace and H is the (+1) eigenspace of § € AutL(T) defined by
O(a+ h) := —a+ h, for a € T, h € H. The automorphism 6 of order 2 is called the main
involution automorphism of L(T).

To conclude this section, we record an important result which will be needed later on.

Theorem 1.1 T is solvable if and only if the standard imbedding algebra L(T) is solvable.

2. The Killing forms of Lie triple systems

Definition 2.1 The Killing form of a Lie triple system T is the bilinear form
p(z,y) == tr(R(x,y) + R(y,x)), =,y €T (tr = trace).
Clearly, the Killing form p(z,y) is symmetric.
Definition 2.2 The Killing form p of a Lie triple system T is called non-degenerate if T+ = 0,
where T+ = {z € T | p(x,y) =0, fory € T}.

Let p, A and Ay be the Killing forms of the Lie triple system T, of the standard imbedding
Lie algebra L(T) and of the inner derivation algebra H of T, respectively. The following theorem
describes the relationship among them.

Theorem 2.1 Suppose p, A and Ay are given as the above. Then
ANH,T) =0, (2.1)
Ah,h')y =Xy (h, ') +tr(h- 1), Vh,h' € H, (2.2)
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Ma,d") = pla,ad’), Va,a’ €T, ie. p=\|rxr - (2.3)

Proof Since 6§ : a+h+—— —a+ h, Vh € H, a € T, is an automorphism of L(T), —A(h,a) =
A(h, —a) = A(h,0a) = A(6h,a) = A(h,a), we have A(h,a) = 0, which proves (2.1).
Since H and T are invariant under adh - adh’ and L(T) = H & T, we obtain

trr,(ry(adh - adh’) = try (adh - adh’) + trr(adh - adh'), Yh,h' € H.

But adh-adh/(a) = [h,[Wa]] = h-}k'(a), for a € T, therefore trp(adh-adh’) = tr(h-h') and hence

(2.2) holds.

Let {h1,ha,..., hm,a1,a2,...,a,} be a homogeneous basis of L(T') formed from bases of H
and T'. We assume that the elements ada; (i = 1,2,...,n) are expressed by means of these bases
as follows:

[ai, a;] = S, KP hy, [ai, hj] = $1S] .
Then

las, [a;, hi]] = [aiazlsgl‘,kal] = Els;,kszgzhpv
try (ada; - ada;) = EkElSika,la

lai, [aj, ax]] = [aivEpKﬁkhp] = EpKﬁkEle)paz,
trr(ada; - adaj) = EpKﬁkEkap = EpEkKiksip'

Obviously, trr(ada; - ada;) = tru(ada; - ada;). Since H and T are invariant under ada; - ada;,

we obtain
trr(r)(ada; - aday) = try(ada; - adaj) + trr(ada; - adaj)
= trr(ada; - ada;) + tre(ada; - aday). (2.4)
Moreover,
[ai, [aj, al] = —[ai, [a, a5]] = [[a, a;], ai] = L(a, aj)ai = [aa;a;]
= R(ai,a;)a, VaeT.
Therefore,

trr(ada; - adaj) = trR(a;, aj). (2.5)
Combining (2.4) and (2.5), we get
Aai, aj) = tr(R(as, a;) + R(a;, a:)) = plai, a;),
which is the third assertion of the theorem.

Theorem 2.2 Suppose p(x,y) is the Killing form of a Lie triple system T. Then
(1) p(Ax, Ay) = p(x,y) for A € AutT;
(2) p(Dzx,y) + p(z, Dy) =0 for D € DerT;

(3) p(x,y) is right invariant, and left invariant, i.e.,

p(R(CL, b)I, y) = p(:Z?, R(bv a)y)a p(L(CL, b)I, y) = p(:Z?, L(ba a)y);
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(4) If p(x,y) is non-degenerate, then p(z,y) = 2trR(z,y).
Proof (1) VA € AutT, we have A[zyz] = [AzAyAz], or AR(z,y)x = R(Az, Ay)Ax,
AR(z,y) = R(Az, Ay)A, R(Az, Ay) = AR(z,y)A™ ",
then
p(Az, Ay) = tr(R(Az, Ay) + R(Ay, Az))
tr(AR(z,y) A~ + AR(y,2) A1)
tr(A - (R(z,y) + R(y,z))A™")
= tr(R(z,y) + R(y, v))
= p(z,y).

(2) For D € DerT, we have D[zyz] = [Dxyz| + [xDyz] + [zyDz], i.e.,
DR(z,y) = R(z,y)D + R(z, Dy) + R(Dz,y),
then
tr(R(z, Dy) + R(Dz,y)) = tr(DR(z,y) — R(z,y)D) = 0.
So,
p(Dz,y) + p(a, Dy) = tr(R(Dz,y) + R(y, Dx) + R(z, Dy) + R(Dy,x)) = 0.

(3) Notice that the Killing form A of Lie algebra L(T) is invariant and p = A |pxp. For
a,b,x,y € T, we have

p(R(a,b)z,y) = MR(a,b)z,y) = A([zba], y) = A([[z, 0], a],y)
= A([z,0], [a, y]) = Az, [b, [a, y]])
= Az, [ly, al, b]) = A(z, [yab])
= Az, R(b, a)y) = p(z, R(b, a)y)

As for the proof of left invariance of p, we can employ identity L(z,y) = R(z,y) — R(y, z),
or argue by using the invariance of A.

(4) Suppose p(z,y) is non-degenerate. If R(z,y)* denotes the adjoint endomorphism of
R(z,y) in T with respect to p, then we get R(z,y)* = R(y,x) by the right invariancy of p, which
implies p(x,y) = 2trR(z,y), because trR(x,y)* = trR(z, y).

It is well known that a Lie algebra L is solvable if and only if A(z,y) = 0, for x € L,
y € LW = [L, L], where X is the Killing form of L (Cartan’s Criterion). Now we will see that
there is an analogous theorem in the case of Lie triple systems. For this purpose, we first prove

the following theorem:

Theorem 2.3 Let A and p be as in Theorem 2.1. The followings are equivalent:
(a) Az,y) =0, for all z € L(T), y € L(T)V;
(b) p(z,y) =0, forallz € T,y c TM.
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Proof If we assume (a), then we obtain (b) by using
7Y = [TTT) = [H,T) C [L(T), L(T)] = L(T)W.
Conversely, suppose (b) holds. Then for a;,b; € T, i = 1,2, we have by the invariance of A,
A(L(a1,b1), L(az,b2)) = A([a1, b1], [az, ba]) = A(aq, [brazba]) = p(a1, [brazbs]) = 0,

which implies A\(H, H) = 0. Moreover, we have A(H,T) = 0 by Theorem 2.1.

Next, we see that
L)W = [T+ [T, T, T+ [T, T €TY + [T, T) =TV + H.
Let 2 € L(T), s =a; +hi,a1 €T, hy € H,y € L(T)V, y = ay + hy, ay € TY, hy € H. Then
Az, y) = Maq, a2) = p(a1,az) = 0.

Now we are in a position to state the Cartan’s Criterion for solvability in the case of Lie

triple systems as follows:

Corollary 2.4 A Lie triple system T is solvable if and only if its Killing form p(x,y) = 0, for
alzeT,yeT®,

Proof This follows at once from Theorems 1.1, 2.3 and the Cartan’s Criterion for Lie algebras.

The following two Lemmas are easy to verify.
Lemma 2.5 Let I C T be an ideal of T. Then I is also an ideal of T, where
It ={xeT|plx,y)=0, VyecI}

Lemma 2.6 Let I be an ideal of T. Denote by p;(z,y) and p(z,y) the Killing forms of I and
T respectively. Then pr(z,y) = p(x,y), Vz,y € I.

Theorem 2.7 Let T be a finite dimensional Lie triple system over a field of characteristic 0.

Then T is semisimple if and only if its Killing form p(z,y) is non-degenerate.

Proof Suppose first that the radical R(T) = 0. Clearly, p(T,T) = 0, in particular, p(T+, T+(1)) =
0. Considering Lemma 2.6 and applying Corollary 2.4 to the ideal T, we conclude that T is
solvable, and T+ C R(T) = 0, i.e., p is non-degenerate.

Conversely, suppose that the Killing form p(z,y) is non-degenerate, i.e., T+ = {0}. To prove
that T is semisimple it suffices to prove that every solvable ideal of T is included in T+.

Let I be a solvable ideal of T, such that I"+1) = 0, I(") #£ 0 (r > 0). Since I"+D) =
(I(T))(l), we may assume that there exists an ideal I # 0, such that I = 0. Choose a basis
{e1,€2,...,€r€r41,...,en} for T, r <n, such that {e1,es,...,e.} is a basis for I. Notice that

[TIT)+ [TTI)+ [ITT) C I, [T1I] = [ITI] = [IIT] = 0. (2.6)

Set

. . . = 3" p p i de 4
Roeiy, €i)ei, = Ep:lail,iz,@epa Ay igig € F, 1<iy,ig,i3 < n.
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From (2.6) we have
a . . =0, (2.7)

11,12,13
when p > r and at least one ¢; <, or at least two i; < r, among 41, @2, 3.
Let 1 <l,io <n,1<i4; <r. Then from (2.7) we obtain

. . _ yn p N P
R(eiy,ei,)er = Epzlal)iwlep = Epzlal7i27ilep.

Therefore,
T l
trR(eq,, €i,) = Y10y, ;, = 0.

In other words, trR(I,T) = 0. Similarly, trR(T,I) = 0, hence p(I,T) = 0, which yields
IcTt = 0, as desired.

Remark Using the standard imbedding Lie algebras, Meyberg!! has already proved this the-
orem. Here, we present a direct proof by using the definition of the Killing forms of Lie triple

systems.

3. The complexification of real Lie triple systems

In this section we assume F' = R or C, i.e., all Lie triple systems are assumed to be real or
complex. First we introduce a definition for a Lie triple system, which is an analogue in the case

of Lie algebras!®,

Definition 3.1 Let T be a Lie triple system over R. An R-linear endomorphism J of T is called
a compatible complex structure, if J satisfies:

(1) J is a complex structure on the vector space T, that is, J*> = —id.

(2) Jzyz] = [(Jx)yz], for z,y,z € T.

From condition (2) and the definition of L.t.s, we have
Jaeyz] = [(Ja)yz] = [2(Jy)z] = [zy(J2)].

It is easy to verify that a real Lie triple system Ty with a compatible complex structure J

can be turned into a complex Lie triple system, denoted by Ty, by putting
(a +ib)x =ax+bJx, i =v—1, x €Ty, a,b € R,

and with the ternary operation inherited from Tj.

Let Ty be an arbitrary real Lie triple system. We form the tensor product TOC =C®grTy
and regard it as a vector space over C' : a(f®z) := af @z, for any a, 8 € C,z € Ty. Obviously,
T§ is a Lie triple system with [a ® 2,3 ® y,v ® 2] = afy ® [zyz].

This complex Lie triple system is called the complexification of Ty. We can formally think of
T§ as

TS ={z +iy|z,y € Ty and i=+/—1}.

A real Lie triple system Ty is called a real form of a complex Lie triple system 7' if its

complexification is isomorphic to T'.
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On the other hand, given a complex Lie triple system 7', then by restricting the ground field
to the real field, we obtain a real Lie triple system denoted by T, which will be called the
realification of T'.

Let J : x — iz, for any = € T®. Obviously, J is a compatible complex structure of T, which
is called the regular complex structure on T'%. Clearly, TR =T,

Let T, be an arbitrary real Lie triple system, T the complexification of Ty, TF the realification
of T. Notice that T = Ty+iTy and T® = Ty+JTp.

Theorem 3.1 Let py, p and p® denote the Killing forms of Lie triple systems Ty, T and T%,
respectively. Then:

(1) pola,y) = pla,y), for a,y € To;

(2) p®(z,y) = 2Rep(x,y), for z,y € T (Re=real part).

Proof Let {z1,22,...,2,} be a basis of real Lie triple system Tj. Obviously, it is also a basis
of T, and {z1,2s,...,2n, J21,J20,...,J2,} is a basis of T, where .J is the regular complex
structure of TF.

Let z,y € Ty, the endomorphism R(x,y) viewed as acting on Ty or as acting on T, has the
same matrix expression with respect to the basis {z1,22,...,2,}. Thus, the first relation is
proved.

For the second, Yx,y € TR(=T), let B + +/—1C denote the matrix of R(z,y) with respect
to the basis {x1,23,...,2,} of T, B and C being real. In other words,

R(x,y)z; = Xj_1bjiz; + \/—_lxg-lzlcjixj, i=1,...,n,
B = (bji)nxn, C = (cji)nxn-
Then,
R(x,y)(Jri) = [(Joi)ya] = J[ziyz] = JR(z, y)z;
= J(Z]_ bjizy + V=157 cjiw;)
= —E}l:lcjixj + Z?zlbjinj.

This shows that as an endomorphism on T, the matrix of R(x,y) with respect to the basis

(&)

Then, trpr R(z,y) = 2Retrr R(7,y), and pf(x,y) = 2Rep(z, y).

{z1, 29, ..., xn, Ja1, JHa, ..., Jr,} is

Theorem 3.2 The Killing forms pg, p and p are all non-degenerate if and only if one of them

is.

Proof (1) Assume that pg is non-degenerate. Suppose = + iy € T, where x,y € Tp, such that
p(x +1iy,T) = 0. Then
p(Ia TO) + Zp(yv TO) =0.
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From Theorem 3.1(1), po(x,To) = po(y,To) = 0. Since pg is non-degenerate, we have z = y = 0,
then x + iy = 0. Therefore, p is non-degenerate.

(2) Assume p is non-degenerate. For any z,y € T, by Theorem 3.1(2),
p"(Jx,y) = 2Rep(iz,y) = —2Imp(z, y).

Let y € TE, such that, pf(y,z) = 0, for all z € TE. Then by Theorem 3.1(2), Rep(z,y) =
0. Moreover, Imp(z,y) = —1p"(Jz,y) = —3p%(y, Jx) = 0, so p(z,y) = 0, Vo € T, then
p(y, T®) = 0. That is, p(y,T) = 0, hence y = 0. Therefore, p* is non-degenerate.

(3) Assume p? is non-degenerate. Let z € Ty, such that po(z,7p) = 0. From Theorem
3.1(1), p(z,Tp) = 0, hence, p(z,T) = 0. i.e.,

p(z,y) =0, VyeT.

From Theorem 3.1(2), p%(z,y) = 2Rep(z,y) = 0, Vy € TE. Since p? is non-degenerate, x = 0.

Therefore, po(z,y) is non-degenerate.

Corollary 3.3 Ty, T and T® are all semi-simple if and only if one of them is.
This Corollary follows from Theorems 2.7 and 3.2.

Theorem 3.4 Suppose pg, p and p'* are given as the above. Then the following are equivalent:
(a) po(x,y) =0, forallz € Ty, y € To(l);
(b) p(z,y) =0, forallz € T,y € TW;
(c) pf(z,y) =0, forallz € TE, y e (TH)M),

Proof (a)=(b). This follows from the identities: T = To+iTp, T = T\ +iT(" and Theorem
3.1(1).
(b)=-(c). This follows from Theorem 3.1(2) and the fact that T and TF agree set theoretically.
(c)=>(a). If (c) holds, then pf(z,y) =0, for all z € T, y € To(l), because T® = Ty+JTp and
(TRYD = 71TV Therefore, by Theorem 3.1,

po(x,y) = p(a,y) = Rep(z,y) = %pR(:v, y) =0.

Corollary 3.5 Ty, T and T are all solvable if and only if one of them is.
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