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1. Introduction

The stabilization problem for linear systems has been studied within various frameworks.

For a discussion of the origins of the problem, we refer to [1]. In the course of discussion of

stabilization, the coprime factorization is always used. It was shown in [1, 2] that every internally

stabilizable causal linear time-varying system admits doubly coprime factorizations and there is

a Youla-kučera-like parametrization of all stabilizing controllers which is conceptually similar to

the classical result for LTI systems. However, it is shown that internal stabilizability is generally

not equivalent to the existence of doubly coprime factorizations. Many results on stabilization

problems were presented in a number of literatures, for example, see [3–8].

Within the framework of nest algebras (see [9]), the purpose of this paper is to study the

stabilization problem for linear time-varying systems. The several authors have studied the

strong stabilization problems within the framework of nest algebras[10,11]. In this paper we give

a necessary and sufficient condition for the stabilization of the standard feedback system which

does not admit coprime factorizations. We also study the simultaneous and strong stabilization

problems.

This paper is organized as follows. In Section 2, we give some notations and definitions

and introduce the linear system within the framework of nest algebras. In Section 3, we give

a necessary and sufficient condition for the stabilization of the standard feedback system which

does not admit coprime factorizations. Sections 4 and 5 are devoted to simultaneous stabilization

and strong stabilization problems, respectively. The paper ends with cited references.
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2. Preliminaries

We recall some basic concepts[9] that will be useful in this paper. First, we introduce the

definitions about complete nest and nest algebra.

Let H be a separable complex Hilbert space. L(H) denotes the set of all bounded linear

operators on H. For T ∈ L(H), the range R(T ) of T is {Tx : x ∈ H}. T is an orthogonal

projection if T is idempotent (T = T 2) and self-adjoint.

Definition 2.1 A family N of closed subspaces of the Hilbert space H is a complete nest if

(1) {0},H ∈ N .

(2) For N1, N2 ∈ N , either N1 ⊆ N2 or N2 ⊆ N1.

(3) If Nα is a subfamily in N , then ∩αNα and ∨αNα are also in N .

Every closed subspace N of H is identifiable with the orthogonal projection PN with range

N and therefore we can think of a nest as a family of projections.

Every set P of projections in L(H) determines an algebra AlgP of operators,

AlgP = {T ∈ L(H) : (I − P )TP = 0, P ∈ P}.

If N is a nest, and P is its associated family of orthogonal projections, AlgP is called a nest

algebra.

Suppose H is a separable complex Hilbert space, and P is a complete nest on H. We

parametrize P and write P = {Pt : t ∈ Γ}. Let Qt = I − Pt, R = {Qt : t ∈ Γ}. We assume

Pt1 ≤ Pt2 for t1 ≤ t2, and for each t ∈ Γ we define a seminorm on H by ‖x‖t = ‖Ptx‖, x ∈ H,

Pt 6= I. The family {‖ ‖t : t ∈ Γ} of seminorms defines a topology on H, called the resolution

topology. Convergence in this topology is described as follows: a sequence {xn} converges to

x ∈ H if, for all seminorms, ‖xn − x‖t −→ 0. The resolution topology is a metric topology[9].

Let He denote the completion of the metric space H.

Definition 2.2 A linear transformation T on He is causal if for each t ∈ Γ, PtT = PtTPt. A

linear system on He is a causal linear transformation on He, which is continuous with respect to

the resolution topology.

It is clear that the set of linear systems on He is an algebra. We denote this algebra by L.

Definition 2.3 A linear transformation T : He −→ He is stable if there exists M > 0 such that

for each x ∈ He and t ∈ Γ, ‖Tx‖t ≤ M‖x‖t.

We denote the collection of stable linear transformations on He by S. Then S is a weakly

closed algebra containing the identity[12].

The following proposition is Theorem 5.4.2 of [9].

Proposition 2.1 The following are equivalent:

(1) T on He is stable.

(2) T is causal and T |H is a bounded operator.

(3) T ∈ L and is the extension to He of an operator in AlgR.
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This proposition allows us to identify the algebra S of stable operators on He with the nest

algebra AlgR. The restriction of T ∈ S to H is in AlgR and the extension of S ∈ AlgR to He

is in S.

From now, let H = ℓ2 be the usual Hilbert space of square summable sequences with the

standard norm ‖x‖2
2 =

∑

∞

j=0 |xj |2 < ∞, x = 〈x0, x1, x2, . . .〉 ∈ ℓ2. Then H is a Hilbert space

with an inner product

(x, y) =

∞
∑

n=1

xnȳn.

It is easy to check that He = {〈x0, x1, x2, . . .〉 : xi ∈ C}.

For each n ≥ 0, let Pn denote the standard truncation projection defined on H and He by

Pn〈x0, x1, . . . , xn, xn+1, . . .〉 = 〈x0, x1, . . . , xn, 0, 0, . . .〉,

and Qn = I − Pn. Let P−1 = 0 and P∞ = I. Then P = {Pn : n = −1, 0, 1, . . .} is a complete

nest, as is R = {Qn : n = −1, 0, 1, . . .}. We will be concerned with the following nest algebra

AlgR = {T ∈ B(H) : (I − Qn)TQn = 0}.

We also need the notions of right and left strong representations for a linear system. Recall

that the graph of a linear transformation L with domain D(L) in H is

G(L) =
{

(

x

Lx

)

: x ∈ D(L)
}

.

The following definitions are from [9].

Definition 2.4 A plant L has a strong right representation

(

M

N

)

with M and N stable if

(1) G(L) = Ran

(

M

N

)

,

(2)

(

M

N

)

has a stable left inverse, i.e., there exist X , Y stable such that

(Y, X)

(

M

N

)

= I.

A plant L has a strong left representation (−N̂ , M̂) with M̂, N̂ stable if

(1) G(L) = Ker(−N̂ , M̂),

(2) (−N̂ , M̂) has a stable right inverse, i.e., there exist X̂, Ŷ stable such that

(−N̂ , M̂)

(

−X̂

Ŷ

)

= I.

The following result on strong representation was proved in [9] .
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Theorem 2.1 Suppose M, N ∈ S. Then

(

M

N

)

is a strong right representation of L ∈ L if

and only if

(1) There exist X, Y ∈ S such that (Y, X)

(

M

N

)

= I.

(2) M is invertible in L.

Remark We have seen that a right representation

(

M

N

)

for L gives a right fractional rep-

resentation L = NM−1 for L. If the representation is strong, this representation is called a

right coprime factorization for L. The dual representation gives a left fractional representation

L = M̂−1N̂ and if it is strong, we have a left coprime factorization for L.

3. Stabilization problem

In this section, we consider the standard feedback system and study its stabilization problem.
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Figure 1 Standard feedback configuration

In Figure 1, L represents a given system (plant) and C a compensator or controller. u1, u2

denote the externally applied inputs; e1, e2 denote the inputs to the plant and compensator,

respectively; and y1, y2 denote the outputs of the compensator and plants, respectively. The

closed loop system equation is
(

u1

u2

)

=

(

I C

L −I

)(

e1

e2

)

.

The system is well posed if the internal input e =

(

e1

e2

)

can be expressed as a causal function

of the external input u =

(

u1

u2

)

. This is equivalent to requiring that

(

I C

L −I

)

be invertible

[9, Chapter 6]. This inverse is easily computed formally and is given by the transfer matrix

H(L, C) =

(

(I + CL)−1 C(I + LC)−1

L(I + CL)−1 −(I + LC)−1

)

.
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L and C may not be stable. This means that there may be an input u in H such that Lu

or Cu may not be in H. Let D(L) = {u ∈ H : Lu ∈ H} and D(C) = {u ∈ H : Cu ∈ H}. Then
(

I C

L −I

)

can be seen as a linear transformation from D(L)
⊕

D(C) into H
⊕

H.

Definition 3.1 The closed loop system determined by the plant L and the compensator C is

stable if all the entries of H(L, C) are stable systems on H. The plant L is stabilizable if there

exists a linear system C such that the closed loop system determined by L and C is stable.

It is well known that a given plant is stabilizable if and only if it has a doubly coprime

factorization[9,Chapter 6]. Now we give a necessary and sufficient condition for a class of plants

to be stabilizable.

Theorem 3.1 Suppose L = NM−1, M, N ∈ S. Then L is stabilizable if and only if there exist

X, Y ∈ L such that Y is invertible and

(1) (Y, X)

(

M

N

)

= Y M + XN = I.

(2) Every entry of

(

M

N

)

(Y, X) =

(

MY MX

NY NX

)

is in S. If these conditions are

satisfied, then the controller C = Y −1X stabilizes L.

Proof Suppose that the compensator C stabilizes L, L = NM−1. Then we have

A1 = (I + CL)−1 ∈ S, A2 = C(I + LC)−1 = (I + CL)−1C ∈ S,

A3 = L(I + CL)−1 ∈ S, A4 = (I + LC)−1 ∈ S.

Let X = M−1A2, Y = M−1A1, X, Y ∈ L, and C = A−1
1 A2 = Y −1X . Then

(Y, X)

(

M

N

)

= Y M + XN = M−1(A1M + A2N) = M−1(I + CL)−1(M + CN)

= M−1(I + CL)−1(I + CL)M = I.

This implies that L satisfies the condition (1).

Since

A1 = MY, A2 = (I + CL)−1C = MY Y −1X = MX,

A3 = LA1 = NM−1MY = NY,

A4 = (I + LC)−1 = I − LC(I + LC)−1 = I − NM−1MX = I − NX,

and
(

M

N

)

(Y, X) =

(

MY MX

NY NX

)

=

(

A1 A2

A3 I − A4

)

,

every entry of

(

M

N

)

(Y, X) is in S. This implies that L satisfies the condition (2).
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Conversely, suppose that the plant L satisfies the conditions of the theorem. Let C = Y −1X .

By the condition (1),

(I + CL) = I + Y −1XNM−1 = Y −1(Y M + XN)M−1 = (MY )−1,

we have

(I + CL)−1 = MY, (I + CL)−1C = MY Y −1X = MX,

L(I + CL)−1 = NM−1MY = NY,

and

(I + LC)−1 = I − LC(I + LC)−1 = I − NM−1MX = I − NX.

Since

H(L, C) =

(

(I + CL)−1 C(I + LC)−1

L(I + CL)−1 −(I + LC)−1

)

=

(

MY MX

NY NX − I

)

and by the condition (2), we obtain that every entry of H(L, C) is in S, and thus C = Y −1X

stabilizes L. The proof is completed. 2

The following theorem is just a dual result of Theorem 3.1.

Theorem 3.2 Suppose L = M̂−1N̂ , M̂ , N̂ ∈ S. Then L is stabilizable if and only if there exist

X̂, Ŷ ∈ L such that Ŷ is invertible and

(1) (−N̂ , M̂)

(

−X̂

Ŷ

)

= N̂X̂ + M̂Ŷ = I.

(2) Every entry of

(

−X̂

Ŷ

)

(−N̂ , M̂) =

(

X̂N̂ −X̂M̂

−Ŷ N̂ N̂N̂

)

is in S.

If these conditions are satisfied, then the controller C = X̂Ŷ −1 stabilizes L.

Corollary 3.1 (1) Suppose that L = NM−1 ∈ L and there exist X, Y ∈ L such that

(Y, X)

(

M

N

)

= I. If MY, MX, NX, NY ∈ S and Y is invertible in L, then L is stabiliz-

able and C = Y −1X stabilizes L.

(2) Suppose that L = M̂−1N̂ ∈ L and there exist X̂, Ŷ ∈ L such that (−N̂ , M̂)

(

−X̂

Ŷ

)

=

I. If X̂N̂, X̂M̂, Ŷ N̂ , Ŷ M̂ ∈ S and Ŷ is invertible in L, then L is stabilizable and C = X̂Ŷ −1

stabilizes L.

The following corollary is immediate from Theorems 3.1 and 3.2.

Corollary 3.2 (1) Suppose L = NM−1 ∈ L and

(

M

N

)

is a strong right representation of

L, i.e., there exist X, Y ∈ S such that (Y, X)

(

M

N

)

= I. If Y is invertible in L, then L is

stabilizable and C = Y −1X stabilizes L.
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(2) Suppose L = M̂−1N̂ ∈ L and (−N̂ , M̂) is a strong left representation of L, i.e., there

exist X̂, Ŷ ∈ S such that (−N̂, M̂)

(

−X̂

Ŷ

)

= I. If Ŷ is invertible, then L is stabilizable and

C = X̂Ŷ −1 stabilizes L.

(3) Suppose that L ∈ L has a strong left representation (−N̂ , M̂) and a strong right repre-

sentation

(

M

N

)

. If there exist X, Y, X̂, Ŷ ∈ S such that Y, Ŷ are invertible in L and satisfy

the double Bezout identity
(

Y X

−N̂ M̂

)(

M −X̂

N Ŷ

)

=

(

M −X̂

N Ŷ

)(

Y X

−N̂ M̂

)

=

(

I 0

0 I

)

,

then L is stabilizable and C = Y −1X = X̂Ŷ −1 stabilizes L.

4. Simultaneous Stabilization

We now turn to the problem of simultaneous stabilization. Given L1, L2, when does there

exist C ∈ L for which {L1, C}, {L2, C} are both stable?

The following Lemma is Theorem 6.4.8 in [9].

Lemma 4.1 Suppose L ∈ L and there exist M, N, X, Y, M̂, N̂ , X̂, Ŷ ∈ S such that

(

M

N

)

and (−N̂ , M̂) are, respectively, strong right and left representation for L that satisfy the double

Bezout identity
(

Y X

−N̂ M̂

)(

M −X̂

N Ŷ

)

=

(

M −X̂

N Ŷ

)(

Y X

−N̂ M̂

)

=

(

I 0

0 I

)

.

Then

(1) L is stabilizable.

(2) C ∈ L stabilizes L if and only if it has a strong right representation

(

Ŷ − NQ

X̂ + MQ

)

and

a strong left representation (−(X + QM̂), Y − QN̂) for some Q ∈ S.

We denote by S(L) the set of controllers C ∈ L for which {L, C} is stable. Lemma 4.1 gives

us a parametric representation for every element of S(L).

The following Lemma is Theorem 6.3.5 in [9].

Lemma 4.2 Suppose L ∈ L has a strong right representation

(

M

N

)

. Then any strong right

representation

(

M1

N1

)

of L is of the form

(

M

N

)

S with S invertible in S.

Theorem 4.1 Suppose L ∈ L satisfies the condition of Lemma 4.1. Then any C ∈ S(L) is

stabilizable and L stabilizes C.
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Proof If C ∈ S(L), then there exists a Q ∈ S such that

(

Ŷ − NQ

X̂ + MQ

)

and (−(X + QM̂), Y −

QN̂) are strong right representation and strong left representation of C, respectively. Since

M̂Ŷ + N̂X̂ = I, N̂M − M̂N = 0,

we have

(M̂, N̂)

(

Ŷ − NQ

X̂ + MQ

)

= M̂Ŷ + N̂X̂ + (N̂M − M̂N)Q = I.

Since M̂ is invertible, by Corollary 3.2 (1), we obtain that C is stabilizable and L = M̂−1N̂

stabilizes C.

Now we are in a position to state the main result of this section.

Theorem 4.2 Suppose L ∈ L satisfies the conditions of Lemma 4.1 with M , N , X , Y ,

M̂ , N̂ , X̂ , Ŷ ∈ S and L1 ∈ L also satisfies the conditions of Lemma 4.1. Then there ex-

ists C ∈ L which simultaneously stabilizes L, L1 if and only if there exist Q, R ∈ S such that
(

M − (X̂ + MQ)R

N + (Ŷ − NQ)R

)

is a strong right representation and (−(N̂+R(Y −QN̂)), M̂−R(X+QM̂))

is a strong left representation of L1, respectively.

Proof If L, L1 are simultaneously stabilized by C, then by Lemma 4.1 there exists a Q ∈ S

such that C = (X̂ + MQ)(Ŷ − NQ)−1 ∈ S(L) and C ∈ S(L1). By Theorem 4.1, we know that

L1 must stabilize C, namely, L1 ∈ S(C). Since

(M̂, N̂)

(

Ŷ − NQ

X̂ + MQ

)

= I

and

(−(X + QM̂), Y − QN̂)

(

−N

M

)

= XN + Y M = I,

the double Bezout identity
(

M̂ N̂

−(X + QM̂) Y − QN̂

)(

Ŷ − NQ −N

X̂ + MQ M

)

=

(

Ŷ − NQ −N

X̂ + MQ M

)(

M̂ N̂

−(X + QM̂) Y − QN̂

)

=

(

I 0

0 I

)

holds.

By Lemma 4.1, C is stabilizable and a controller stabilizes C if and only if it has a strong

right representation

(

M − (X̂ + MQ)R

N + (Ŷ − NQ)R

)

and a strong left representation (−(N̂ + R(Y −

QN̂)), M̂ − R(X + QM̂)) for some R ∈ S. So L1 has the strong left representation and the

strong right representation in the theorem.
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On the other hand, suppose L1 has the representations in the theorem. Since M̂N −N̂M = 0

and

((Y − QN̂), X + QM̂)

(

−(X̂ + MQ)

Ŷ − NQ

)

= 0,

we have

((Y − QN̂), X + QM̂)

(

M − (X̂ + MQ)R

N + (Ŷ − NQ)R

)

= I.

By Corollary 3.2, C = (Y − QN̂)−1(X + QM̂) stabilizes L1 and by Lemma 4.1, this C also

stabilizes L. So L and L1 can be simultaneously stabilized by C. The proof is completed. 2

If L is given and satisfies the condition of Lemma 4.1, the theorem above gives a parametric

representation of L1 which can be simultaneously stabilized with L. In other words, any linear

system can be simultaneously stabilized with L by a C = (X̂ + MQ)(Ŷ − NQ)−1 = (Y −

QN̂)−1(X + QM̂) if it has the strong left and strong right representations in Theorem 4.2 for

some Q, R ∈ S.

5. Strong stabilization

Practicing control engineers are reluctant to use unstable compensators for the purpose of

stabilization. This motivates us to consider whether there exists a stable compensator for a given

plant L.

Definition 5.1 L ∈ L is strongly stabilizable if L can be stabilized by a C ∈ S.

The following lemma is Theorem 6.6.4 in [9].

Lemma 5.1 Suppose C ∈ L stabilizes L. Then (−(I + LC)−1L, (I + LC)−1) is a strong left

representation for L and

(

(I + CL)−1

L(I + CL)−1

)

is a strong right representation for L if and only if

C ∈ S.

Theorem 5.1 Suppose L ∈ L is stabilizable and C0 ∈ S is a known controller of L. Then

C ∈ L stabilizes L if and only if it has a strong right representation

(

I − LQ

C0 + Q

)

and a strong

left representation (−(C0 + Q), I − QL) for some Q ∈ S.

Proof Since C0 ∈ S stabilizes L, by Lemma 5.1,

(

(I + C0L)−1

L(I + C0L)−1

)

is a strong right represen-

tation for L and (−(I + LC0)
−1L, (I + LC0)

−1) is a strong left representation for L. Clearly, L

satisfies the following double Bezout identity:
(

I C0

−(I + LC0)
−1L (I + LC0)

−1

)(

(I + C0L)−1 −C0

L(I + C0L)−1 I

)

=

(

(I + C0L)−1 −C0

L(I + C0L)−1 I

)(

I C0

−(I + LC0)
−1L (I + LC0)

−1

)

=

(

I 0

0 I

)

.
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Then by Lemma 4.1, if C ∈ L stabilizes L, then it has a strong right representation
(

I − L(I + C0L)−1R

C0 + (I + C0L)−1R

)

and a strong left representation (−(C0 + R(I + LC0)
−1, I − R(I + LC0)

−1L) for some R ∈ S.

Let

Q = (I + C0L)−1R

or

Q = R(I + LC0)
−1.

Then C admits a strong right representation

(

I − LQ

C0 + Q

)

and a strong left representation

(−(C0 + Q), I − QL) for some Q ∈ S.

If C has a strong right representation

(

I − LQ

C0 + Q

)

and a strong left representation (−(C0 +

Q), I − QL) for some Q ∈ S, by Corollary 3.2 we verify directly that C ∈ L stabilizes L. The

proof is completed. 2

The theorem above gives a parametric representation for C without giving the known coprime

factorization of L first, instead, a known C0 ∈ S stabilizes L.

We now turn to the problem on simultaneous stabilization. Given L0, L1 ∈ L, we consider

their simultaneous stabilization problem.

Theorem 5.2 Given L0, L1 ∈ L stabilizable and suppose C0 ∈ S stabilizes L0 and C1 ∈ S

stabilizes L1. Then there exists a C ∈ L which simultaneously stabilizes L0, L1 if and only if

there exists T ∈ S such that (I + C0L1)(I + C1L1)
−1 + T (L1 − L0)(I + C1L1)

−1 is invertible in

S.

Proof By Theorem 5.1, the controllers that stabilize L0, L1, respectively, have the strong left

representations (−(C0 + Q), I − QL0) and (−(C1 + R), I − RL1) for some Q, R ∈ S. Thus

by Theorem 6.3.5 in [9], L0 and L1 can be simultaneously stabilized if and only if there exist

Q0, R1 ∈ S such that

(−(C0 + Q0), I − Q0L0) = Z(−(C1 + R1), I − R1L1)

for some invertible Z in S. This is equivalent to

(C0 + Q0) = Z(C1 + R1), I − Q0L0 = Z(I − R1L1).

Rewrite this as

(I, Q0)

(

C0 I

I −L0

)

= Z(I, R1)

(

C1 I

I −L1

)

or

(I, Q0)

(

C0 I

I −L0

)(

C1 I

I −L1

)

−1

= Z(I, R1).
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Since
(

C1 I

I −L1

)

−1

=

(

L1(I + C1L)−1 (I + L1C1)
−1

(I + C1L1)
−1 −C1(I + L1C1)

−1

)

,

we have

(I, Q0)

(

(C0L1 + I)(I + C1L1)
−1 (C0 − C1)(I + L1C1)

−1

(L1 − L0)(I + C1L1)
−1 (I + L0C1)(I + L1C1)

−1

)

= Z(I, R1).

Thus (C0L1 + I)(I + C1L1)
−1 + Q0(L1 − L0)(I + C1L1)

−1 = Z is invertible in S.

Conversely, if there exists T ∈ S such that

(I + C0L1)(I + C1L1)
−1 + T (L1 − L0)(I + C1L1)

−1

is invertible in S, then taking

Z = (C0L1 + I)(I + C1L1)
−1 + Q0(L1 − L0)(I + C1L1)

−1

Q0 = T,

and

R1 = Z−1((C0 − C1)(I + L1C1)
−1 + Q0(I + L0C1)(I + L1C1)

−1)

leads to the following equation

(−(C0 + Q0), I − Q0L0) = Z(−(C1 + R1), I − R1L1).

This implies that L0 and L1 can be simultaneously stabilized. The proof is completed. 2

Similarly to Theorem 5.2, we immediately get the following theorem for the simultaneous

stabilization problem of L0, L1, . . . , Ln ∈ L.

Theorem 5.3 Suppose that Li ∈ L and Ci is a known stable controller that stabilizes Li for

i = 0, 1, . . . , n. Then there exists a C ∈ L which simultaneously stabilizes L0, L1, . . . , Ln if and

only if there exists Ti ∈ S such that (I +C0Li)(I +CiLi)
−1+Ti(Li−L0)(I +CiLi)

−1 is invertible

in S for i = 0, 1, . . . , n.

Proof If there exists a C which stabilizes L0, L1, . . . , Ln, then there exist Q0, Ri ∈ S such that

(−(C0 + Q0), I − Q0L0) = Z1(−(C1 + R1), I − R1L1) = · · · = Zn(−(Cn + Rn), I − RnLn)

for some invertible Zi (i = 1, 2, . . . , n) in S. Rewrite this as

(I, Q0)

(

C0 I

I −L0

)

= Zi(I, Ri)

(

Ci I

I −Li

)

,

or

(I, Q0)

(

C0 I

I −L0

)(

Ci I

I −Li

)

−1

= Zi(I, Ri).

The remainder proof is just similar to that of Theorem 5.2. The proof is completed. 2
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Theorem 5.4 Suppose L0, L1 ∈ L are stabilizable and C0 ∈ S stabilizes L0. Then L0 and L1

can be simultaneously stabilized if and only if there exist Q, R ∈ S such that
(

(I + C0L0)
−1 − (C0 + (I + C0L0)

−1Q)R

L0(I + C0L0)
−1 + (I − L0(I + C0L0)

−1Q)R

)

is a strong right representation and

(−((I + L0C0)
−1L0 + R(I − Q(I + L0C0)

−1L0), (I + L0C0)
−1 − R(C0 + Q(I + L0C0)

−1)))

is a strong let representation for L1.

Proof Since L0 ∈ L is stabilized by a known C0 ∈ S, by Theorem 5.1 and its proof, C ∈ L

stabilizes L0 if and only if it has a strong right representation
(

I − L0(I + C0L0)
−1Q

C0 + (I + C0L0)
−1Q

)

and a strong left representation

(−(C0 + Q(I + L0C0)
−1), I − Q(I + L0C0)

−1L0)

for some Q ∈ S. If C ∈ S(L0) stabilizes L1, then there is a Q ∈ S such that

C = (C0 + (I + C0L0)
−1Q)(I − L0(I + C0L0)

−1Q)−1

stabilizes L1. By Theorem 4.1, L1 stabilizes C. Since the following double Bezout equation is

satisfied:
(

(I + L0C0)
−1 (I + L0C0)

−1L0

−(C0 + Q(I + L0C0)
−1) I − Q(I + L0C0)

−1L0

)(

I − L0(I + C0L0)
−1Q −L0(I + C0L0)

−1

C0 + (I + C0L0)
−1Q (I + C0L0)

−1

)

=

(

I − L0(I + C0L0)
−1Q −L0(I + C0L0)

−1

C0 + (I + C0L0)
−1Q (I + C0L0)

−1

)(

(I + L0C0)
−1 (I + L0C0)

−1

−(C0 + Q(I + L0C0)
−1) I − Q(I + L0C0)

−1L0

)

=

(

I 0

0 I

)

,

by Lemma 4.1, L1 stabilizes C if and only if it has a strong right representation
(

(I + L0C0)
−1 − (C0 + (I + C0L0)

−1Q)R

L0(I + C0L0)
−1 + (I − L0(I + C0L0)

−1Q)R

)

and a strong left representation

(−((I + L0C0)
−1L0 + R(I − Q(I + L0C0)

−1L0)), (I + L0C0)
−1 − R(C0 + Q(I + L0C0)

−1))

for some R ∈ S.

Conversely, suppose L1 has the strong right representation
(

(I + L0C0)
−1 − (C0 + (I + C0L0)

−1Q)R

L0(I + C0L0)
−1 + (I − L0(I + C0L0)

−1Q)R

)

.
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Since

(I−Q(I+L0C0)
−1L0, C0+Q(I+L0C0)

−1)

(

(I + L0C0)
−1 − (C0 + (I + C0L0)

−1Q)R

L0(I + C0L0)
−1 + (I − L0(I + C0L0)

−1Q)R

)

= I,

by Corollary 3.1,

C = (I − Q(I + L0C0)
−1L0)

−1(C0 + Q(I + L0C0)
−1)

stabilizes L1 and by the proof of Theorem 5.1, C also stabilizes L0. The proof is completed. 2
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