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Abstract In this paper, we discuss the G-decomposition of λKv into 6-circuits with two chords.

We construct some holey G-designs using sharply 2-transitive group, and present the recursive

structure by PBD. We also give a unified method to construct G-designs when the index equals

the edge number of the discussed graph. Finally, the existence of G-GDλ(v) is given.
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1. Introduction

Let Kv be a complete graph with v vertices, and G=(V (G), E(G)) be a finite simple graph.

A G-decomposition (or G-design) is a pair (X,B), where X is the vertex set of Kv and B is a

collection of subgraphs of Kv, called blocks, such that each block is isomorphic to G and any edge

of Kv occurs in exactly λ blocks of B. For simplicity, such a G-design is denoted by G-GDλ(v).

Obviously, the necessary conditions for the existence of a G-GDλ(v) are

v ≥ |V (G)|, λv(v − 1) ≡ 0 mod 2|E(G)|, λ(v − 1) ≡ 0 mod d, (*)

where d is the greatest common divisor of the degrees of the vertices in V (G).

Let Kn1,n2,...,nt
be a complete multipartite graph with vertex set

⋃t

i=1 Xi, where these Xi

are disjoint and | Xi |= ni, 1 ≤ i ≤ t. For a given graph G, a holey G-design, denoted by G-

HDλ(n1n2 · · ·nt), is a pair (X,B), where X is the vertex set of Kn1,n2,...,nt
and B is a collection

of subgraphs of Kn1,n2,...,nt
called blocks, such that each block is isomorphic to G and any edge

of Kn1,n2,...,nt
occurs in exactly λ blocks of B. When the multipartite graph has ai partite of

size gi 1 ≤ i ≤ r, the holey G-design is denoted by G-HDλ(g1
a1g2

a2 · · · gr
ar ). For λ = 1, the

index 1 is often omitted. A G-HDλ(1vw1) is called an incomplete G-design, denoted by G-

IDλ(v + w, w). Obviously, a G-GDλ(v) can be regarded as a G-HDλ(1v), a G-IDλ(v + 0, 0) or

a G-IDλ((v − 1) + 1, 1).

From [2], there are 6 graphs–6-circuit with two chords, which are listed below:
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Figure 1 Graphs—6-circuit with two chords

For convenience, all graphs above are denoted by (a, b, c, d, e, f).

For λ = 1, we have solved the existence of graph designs for these graphs.

Lemma 1.1[4] For graph Ck, 1 ≤ k ≤ 6, there exists a G-GD(v) if and only if v ≡ 0, 1 (mod 16)

and v ≥ 16.

The graph design C1-GDλ(v) for λ > 1 has been completed in [5]. In this paper, we shall

focus on the left five graphs for λ > 1, i.e., Ck, 2 ≤ k ≤ 6.

By (∗), we need discuss the following v and λ:

λ = 2, v ≡ 0, 1 (mod 8); λ = 4, v ≡ 0, 1 (mod 4); λ = 8, v ≥ 6. (**)

Our main conclusions will be:

Theorem 1.2 The necessary conditions for the existence of Ck-GDλ(v), 2 ≤ k ≤ 6, are also

sufficient.

The following definition and lemmas are important for our constructing methods in this

paper.

A pairwise balanced design B[K, 1; v] is a pair (V,B), where V is a v-set (point set) and B is a

family of subsets (blocks) of V with block sizes from K such that every pair of distinct elements

of V occurs in exactly one block of B. When K = {k}, B[K, 1; v] = B[k, 1; v] is just a balanced

incomplete block design.

Lemma 1.3[3] Let G be a simple graph, K be a set of positive integers, and m, u, v, λ, µ be

positive integers.

(1) If there exist a B[K, 1; v] and a G-HDλ(mk) for each k ∈ K, then there exists a G-

HDλ(mv).

(2) If there exists a G-HDλ(mu), then there exists a G-HDλµ(mu).

Lemma 1.4[5] Let G be a simple graph, and h, m, n, λ be positive integers, w ≥ 0.

(1) If there exist a G-HDλ(mh), a G-IDλ(m+w, w) and a G-GDλ(m+w) (or G-GDλ(w)),

then there exists a G-GDλ(mh + w).

(2) If there exist a G-HDλ(mhn1), a G-IDλ(m + w, w) and a G-GDλ(n + w), then there

exists a G-GDλ(mh + n + w).

Lemma 1.5 Let m be a positive integer, q = 3, 4, 5, w = 0, 1 and i = 1, 2. If there exist a
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G-HD2(m
q) and a G-GD2(im + w), then there exists a G-GD2(v) for v ≡ 0, 1 (mod m) and

v ≥ m.

Note. The above lemma is just the modified version of Theorem 2.2.7 in [4].

Lemma 1.6 Let positive integer w < 8, q=3, 4, 5 and t ∈ {1, 2, 6, 8}. If there exist a G-HDλ(8q),

a G-IDλ(8 + w, w) and a G-GDλ(8t + w), then there exists a G-GDλ(v) for v ≡ w (mod 8) and

v ≥ 8 + w.

Proof Let v = 8t + w, t ≥ 1. From [1], there exists a B[{3, 4, 5}, 1; t] for any t ≥ 3, t 6= 6, 8.

Hence, by Lemma 1.3(1), there exists a G-HDλ(8t) for any t ≥ 3, t 6= 6, 8, from the existence

of G-HDλ(8q) for q = 3, 4, 5. Furthermore, by Lemma 1.4(1), there exists a G-GDλ(8t + w) for

any t ≥ 3, t 6= 6, 8, from the known G-IDλ(8 + w, w) and G-GDλ(8 + w). Adding the given

G-GDλ(8t + w) for t = 1, 2, 6, 8, we obtain the conclusion. 2

2. Construction of HD via sharply 2-transitive group

Let H be a transformation group acting on the n-set N . For any two ordered 2-subsets (x, y)

and (x′, y′) from N , if there exists unique ξ ∈ H satisfying (ξx, ξy)=(x′, y′), then H is called a

sharply 2-transitive group on N .

Lemma 2.1[4] Let Fq be a finite field, where q is a prime power. Then, for the multiplication

of transformations, all linear transformations on Fq

fc,d : x 7−→ cx + d ∀x ∈ Fq

form a sharply 2-transitive group on Fq: Lq = {fc,d : c ∈ F ∗

q , d ∈ Fq}.

Lemma 2.2 Let G be a graph with 2e edges. If

(1) There exists a mapping f (i.e., vertex labeling) from its vertex set V (G) to the set Z2e

such that the induced mapping on its edge set (i.e., edge labeling)

f∗ : {x, y} 7−→ |f(x) − f(y)| ∀{x, y} ∈ E(G)

satisfies {f∗{x, y} : {x, y} ∈ E(G)} = {1, 1, 2, 2, . . . , e − 1, e − 1}
⋃
{0, e}, where |f(x) − f(y)| =

f(y) − f(x) if 0 ≤ f(y) − f(x) ≤ e and |f(x) − f(y)| = f(x) − f(y) if e < f(y) − f(x) < 2e;

(2) G is q-vertex-colorable (the coloring set is Q);

(3) There exists a sharply 2-transitive group on Q,

then there exists a G-HD2((2e)q), where q is a prime power.

Proof We will construct a holey-design G-HD2((2e)q) on Z2e × Q, where the set of partites is

{Z2e ×{i} : i ∈ Q} and Q is just the q-vertex-coloring set. Denote the q-vertex-coloring of G by

C, and the graph is labeled according to condition (1) by B. Let Lq be the sharply 2-transitive

group on Q. Then (B, C) = {(f(x), C(x)) : x ∈ V (G)} mod (Z2e, Lq) forms the block set of

G-HD2((2e)q).

In fact, since C is a q-vertex-coloring graph, the differences in the base blocks are all mixed
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differences between distinct holes (not pure difference in the same hole).

The mixed differences between two distinct holes are 0,±1,±2, . . . ,±(e − 1) and e. In the

block B, each edge valuation of {1, 2, . . . , (e − 1)} appears exactly two times and each edge

valuation of {0, e} appears exactly once. Under the acting of the sharply-2 transitive group Lq,

each edge (x, y) of C takes each ordered pair from Q exactly once. Therefore, in the base blocks

each mixed difference in {0, e,±1,±2, . . . ,±(e − 1)} between any two distinct holes appears

exactly two times. This completes the proof. 2

Lemma 2.3 For graph G ∈ {Ck : 2 ≤ k ≤ 6}, there exists a G-HD2(8
q) for q = 3, 4, 5.

Proof For each graph G(a, b, c, d, e, f), we will construct the desired G-HD2(8
q) on X=Z8×Zq

with partites Z8 × {x}, x ∈ Fq. By Lemma 2.2, we need only to construct the corresponding

vertex labeling and vertex coloring, which are listed below.

C2: B = (0, 1, 4, 5, 3, 3), C = (0, 1, 2, 1, 0, 2); C3: B = (2, 4, 4, 0, 1, 3), C = (0, 1, 2, 1, 0, 2);

C4: B = (0, 1, 4, 6, 6, 2), C = (0, 1, 0, 2, 1, 2); C5: B = (0, 1, 5, 2, 3, 3), C = (0, 1, 2, 1, 0, 2);

C6: B = (0, 1, 5, 2, 3, 3), C = (0, 1, 2, 1, 0, 2). 2

3. λ = 2

In this section, by (∗∗), the scope of order v for the existence of G-GD2(v) is v ≡ 0, 1 (mod 8).

By the known holey designs and recursive constructions in Sections 1 and 2, it is enough to

construct a few GDs with index 2 for some small orders.

Lemma 3.1 For graph G ∈ {Ck : 2 ≤ k ≤ 6}, there exists a G-GD2(v) for v ∈ {8, 9, 16, 17}.

Proof For v ∈ {8, 9}, we list vertex set and blocks below.

v = 8: X=Z7

⋃
{∞}, mod 7.

C2 : (0, 1, 2, 6,∞, 5), C3 : (1, 0,∞, 6, 2, 3), C4 : (1, 0, 6, 2,∞, 3), C5 : (∞, 0, 2, 6, 3, 1),

C6 : (2, 6,∞, 0, 1, 3).

v = 9: X=Z9, mod 9.

C2 : (0, 1, 2, 8, 3, 7), C3 : (1, 0, 4, 8, 2, 3), C4 : (1, 0, 8, 2, 7, 3), C5 : (6, 0, 2, 8, 3, 1),

C6 : (2, 8, 5, 0, 1, 3).

v = 16, 17: The designs can be obtained by Lemmas 1.1 and 1.3(2). 2

Theorem A For graph G ∈ {Ck : 2 ≤ k ≤ 6}, there exists a G-GD2(v) ⇐⇒ v ≡ 0, 1 (mod 8)

and v ≥ 8.

Proof The conclusion holds by Lemmas 1.5, 2.3 and 3.1. 2

4. λ = 4

In this section, by (∗∗), the scope of order v for the existence of G-GD4(v) is v ≡ 0, 1 (mod 4)

and v ≥ 8. By the known G-designs, holey designs and recursive constructions in Section 1–3, it

is enough to construct a few GDs and IDs with index 4 for some small orders.
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Lemma 4.1 There exists a C2-ID2(8 + w, w). Further there exists a C2-ID4(8 + w, w) for

w = 4, 5, too.

Proof For w ∈ {4, 5}, we list vertex set and blocks below.

w = 4: X=Z8

⋃
{A, B, C, D}.

(6, 5, B, 0, 7, D), (5, 4, A, 1, 0, D), (5, 3, 2, 1, D, 7), (6, 4, 3, C, 5, 0), (3, 0, A, 7, 6, C),

(7, 2, A, 3, 4, C), (7, 4, B, 2, 6, C), (7, 5, 4, B, 6, 1), (0, 2, C, 1, 4, D), (3, 2, B, 1, 6, D),

(6, 5, A, 1, B, 0), (7, 3, B, 5, C, 1), (2, 0, 7, 6, A, 4), (4, 2, 1, D, 3, 6), (3, 1, 0, A, 2, 5).

w = 5: X=Z8

⋃
{A, B, C, D, E}.

(6, A, 7, 1, B, 0), (5, A, 1, 4, E, 3), (3, A, 7, 4, C, 2), (4, A, 6, 3, D, 1), (4, D, 7, 5, E, 2),

(6, C, 7, 2, D, 3), (1, C, 0, 3, E, 7), (6, D, 5, 0, A, 4), (1, E, 6, 2, A, 5), (2, B, 7, 0, E, 1),

(5, C, 3, 2, E, 6), (2, B, 6, 1, C, 5), (2, C, 4, 5, D, 0), (2, 0, 5, 4, 3, 1), (0, E, 7, 5, B, 4),

(0, B, 3, 1, D, 6), (3, B, 4, 0, D, 7). 2

Lemma 4.2 For graph G ∈ {Ck : 3 ≤ k ≤ 6}, there exists a G-ID4(8 + w, w) for w = 4, 5.

Proof For w ∈ {4, 5}, we list vertex set and blocks below.

w = 4: X=Z8

⋃
{A, B, C, D}.

C3 : (A, 4, 0, B, 1, 5), (C, 2, 1, D, 3, 5), (A, 0, 6, A, 2, 7) mod 8;

(0, 3, 6, D, 4, C), (1, 3, 5, C, 7, D), (C, 2, 5, 7, D, 0), (0, 6, 1, C, 3, D),

(C, 1, 4, D, 2, 7), (6, 4, 2, D, 5, C).

C4 : (A, 4, B, 0, 1, 5), (C, 2, D, 0, 3, 5), (A, 0, B, 3, 4, 7) mod 8;

(3, 1, D, 0, 2, C), (0, 6, C, 7, 1, D), (C, 0, 6, 4, D, 2), (2, 4, C, 5, 3, D),

(C, 1, 7, 5, D, 3), (4, 6, D, 7, 5, C).

C5 : (A, 4, 0, B, 1, 5), (C, 2, 0, D, 3, 5), (A, 0, 3, B, 4, 7) mod 8;

(3, C, 2, 0, D, 1), (6, C, 7, 1, D, 0), (C, 1, 3, D, 5, 7), (5, C, 4, 2, D, 3),

(C, 2, 4, D, 6, 0), (4, C, 5, 7, D, 6).

C6 : (4, 1, A, 0, B, 5), (5, 2, C, 7, D, 3), (2, 0, A, 3, B, 7) mod 8;

(0, C, 1, D, 4, 2), (5, C, 3, D, 2, 7), (5, 0, C, 2, D, 3), (1, C, 5, D, 6, 3),

(1, 4, C, 6, D, 7), (4, C, 7, D, 0, 6).

w = 5: X=Z8

⋃
{A, B, C, D, E}.

C3 : (0, A, 4, E, 3, 2), (0, D, 5, 2, 6, 3), (B, 0, 1, C, 4, 2) mod 8;

(4, E, 0, 7, 6, 5), (7, E, 3, 4, 5, 6), (0, D, 3, C, 1, 6), (6, C, 5, D, 2, 4), (3, E, 7, 0, 1, 2),

(1, D, 7, C, 5, 3), (C, 0, D, 7, 5, 2), (C, 7, 2, D, 4, 1), (0, C, 4, D, 6, 3), (0, E, 4, 3, 2, 1).

C4 : (0, A, 2, 3, C, 1), (0, B, 1, 4, D, 3), (0, E, 2, 5, 1, 4) mod 8;

(0, D, 1, 7, C, 6), (C, 2, D, 4, 6, 0), (2, D, 3, 5, C, 4), (7, 6, 5, 4, 2, 0), (C, 3, D, 5, 7, 1),

(3, C, 2, 0, D, 1), (4, C, 5, 7, D, 6), (6, 7, 0, 1, 3, 5), (4, 3, 2, 1, 7, 5), (1, 2, 3, 4, 6, 0).

C5 : (4, A, 1, 5, B, 0), (E, 0, 3, D, 4, 7), (C, 0, 3, E, 4, 7) mod 8;

(6, C, 7, 1, D, 0), (C, 1, 3, D, 5, 7), (5, C, 4, 2, D, 3), (4, C, 5, 7, D, 6), (A, 2, 4, B, 6, 0),

(3, C, 2, 0, D, 1), (B, 2, 4, A, 6, 0), (C, 2, 4, D, 6, 0), (B, 1, 7, A, 5, 3), (A, 1, 7, B, 5, 3).

C6 : (A, 0, D, 2, E, 1), (B, 0, D, 4, E, 3), (C, 0, 3, 5, 6, 4) mod 8;
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(4, C, 1, 3, 2, 7), (5, C, 6, 2, 1, 0), (6, 3, C, 2, 4, 7), (1, B, 6, 3, 5, 7), (0, 3, B, 4, 1, 7),

(2, B, 5, 4, 6, 0), (3, A, 6, 5, 7, 2), (6, 5, A, 7, 0, 1), (0, A, 1, 2, 5, 4), (6, 4, 3, 0, 5, 1). 2

In what follows, for a block B, B × m means m times of the block B for m > 0.

Lemma 4.3 For graph G ∈ {Ck : 2 ≤ k ≤ 6}, there exists G-GD4(v) for v ∈ {12, 13, 20, 21, 52,

53, 68, 69}.

Proof For v ∈ {12, 13, 20, 21, 52, 53, 68, 69}, we list vertex set and blocks below.

v = 12: X = Z11

⋃
{∞}, mod 11.

C2 : (0, 3, 10, 8,∞, 9)× 2, (1, 0, 5, 8, 3, 4); C3 : (10, 1,∞, 2, 0, 4)× 2, (4, 0, 3, 6, 1, 5);

C4 : (∞, 0, 9, 3, 5, 1)× 2, (5, 0, 4, 3, 9, 1); C5 : (∞, 0, 4, 2, 10, 1)× 2, (4, 0, 6, 10, 7, 1);

C6 : (10, 2,∞, 1, 0, 4)× 2, (6, 10, 3, 0, 1, 7).

v = 13: X = Z13, mod 13.

C2 : (0, 1, 5, 8, 2, 6)× 2, (0, 12, 10, 7, 9, 11); C3 : (12, 1, 8, 2, 0, 4)× 2, (4, 0, 3, 6, 1, 5);

C4 : (7, 0, 11, 3, 5, 1)× 2, (5, 0, 4, 3, 11, 1); C5 : (7, 0, 4, 2, 12, 1)× 2, (4, 0, 8, 12, 9, 1);

C6 : (12, 2, 8, 1, 0, 4)× 2, (8, 12, 3, 0, 1, 9).

v = 20: X = Z19

⋃
{∞}, mod 19.

C2 : (4, 0, 2, 9, 16, 8), (2, 0, 8, 9, 14, 5)× 2, (5, 2, 11,∞, 10, 9)× 2;

C3 : (2, 0, 1, 9, 8, 4), (∞, 10, 5, 14, 8, 11)× 2, (4, 0, 7, 14, 6, 9)× 2;

C4 : (2, 0, 3, 6, 10, 4), (∞, 10, 1, 8, 3, 11)× 2, (9, 0, 3, 7, 13, 8)× 2;

C5 : (0, 5, 9, 16, 11, 7), (∞, 10, 1, 7, 3, 11)× 2, (0, 3, 12, 11, 5, 8)× 2;

C6 : (0, 4, 12, 6, 7, 8), (2, 10,∞, 11, 4, 1)× 2, (0, 5, 3, 6, 11, 7)× 2.

v = 21: X = Z21, mod 21.

C2 : (5, 2, 11, 0, 10, 9)× 2, (2, 0, 8, 9, 14, 5)× 2, (4, 0, 2, 9, 16, 8);

C3 : (0, 10, 5, 14, 8, 11)× 2, (4, 0, 7, 14, 6, 9)× 2, (2, 0, 1, 9, 8, 4);

C4 : (0, 10, 1, 8, 3, 11)× 2, (9, 0, 3, 7, 13, 8)× 2, (2, 0, 3, 6, 10, 4);

C5 : (0, 10, 1, 7, 3, 11)× 2, (0, 3, 12, 11, 5, 8)× 2, (0, 5, 9, 16, 11, 7);

C6 : (2, 10, 0, 11, 4, 1)× 2, (0, 5, 3, 6, 11, 7)× 2, (0, 4, 12, 6, 7, 8).

v = 52: X = Z51

⋃
{∞}, mod 51.

C2 : (7, 19, 27,∞, 26, 8)× 2, (25, 0, 6, 7, 20, 13)× 2, (14, 0, 21, 6, 9, 4)× 2,

(9, 0, 24, 14, 5, 23)× 2, (22, 0, 17, 6, 23, 3)× 2, (2, 0, 25, 9, 3, 24)× 2,

(8, 0, 4, 20, 18, 16);

C3 : (23, 0, 16, 2, 7, 13)× 2, (20, 0, 18, 1, 13, 22)× 2, (∞, 26, 17, 41, 16, 27)× 2,

(27, 6, 26, 7, 28, 9)× 2, (17, 14, 7, 30, 6, 0)× 2, (12, 0, 15, 30, 5, 16)× 2,

(2, 0, 1, 9, 8, 4);

C4 : (∞, 26, 1, 13, 2, 27)× 2, (10, 0, 15, 23, 17, 24)× 2, (24, 0, 16, 21, 9, 22)× 2,

(4, 0, 19, 20, 5, 21)× 2, (23, 0, 9, 22, 4, 18)× 2, (17, 0, 7, 19, 9, 20)× 2,

(2, 0, 3, 6, 10, 4);

C5 : (3, 27, 4, 16, 1, 13)× 2, (∞, 26, 15, 24, 2, 27)× 2, (0, 9, 5, 24, 1, 25)× 2,

(0, 21, 1, 22, 9, 19)× 2, (22, 0, 16, 19, 33, 15)× 2, (11, 08, 7, 25, 5)× 2,

(0, 5, 11, 18, 13, 7);
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C6 : (2, 26,∞, 27, 3, 1)× 2, (0, 23, 4, 22, 1, 15)× 2, (0, 20, 7, 18, 1, 16)× 2,

(0, 17, 4, 6, 26, 7)× 2, (0, 5, 17, 7, 30, 14)× 2, (0, 12, 33, 11, 6, 3)× 2,

(0, 4, 12, 6, 7, 8).

v = 53: X = Z53, mod 53.

C2 : (7, 19, 27, 0, 26, 8)× 2, (25, 0, 6, 7, 20, 13)× 2, (14, 0, 21, 6, 9, 4)× 2,

(9, 0, 24, 14, 5, 23)× 2, (22, 0, 17, 6, 23, 3)× 2, (2, 0, 25, 9, 3, 24)× 2,

(8, 0, 4, 20, 18, 16);

C3 : (0, 26, 17, 41, 16, 27)× 2, (23, 0, 16, 2, 7, 13)× 2, (20, 0, 18, 1, 13, 22)× 2,

(27, 6, 26, 7, 28, 9)× 2, (17, 14, 7, 30, 6, 0)× 2, (12, 0, 15, 30, 5, 16)× 2,

(2, 0, 1, 9, 8, 4);

C4 : (0, 26, 1, 13, 2, 27)× 2, (10, 0, 15, 23, 17, 24)× 2, (24, 0, 16, 21, 9, 22)× 2,

(17, 0, 7, 19, 9, 20)× 2, (4, 0, 19, 20, 5, 21)× 2, (23, 0, 9, 22, 4, 18)× 2,

(2, 0, 3, 6, 10, 4);

C5 : (0, 26, 15, 24, 2, 27)× 2, (3, 27, 4, 16, 1, 13)× 2, (22, 0, 16, 19, 33, 15)× 2,

(0, 21, 1, 22, 9, 19)× 2, (0, 9, 5, 24, 1, 25)× 2, (11, 08, 7, 25, 5)× 2,

(0, 5, 11, 18, 13, 7);

C6 : (2, 26, 0, 27, 3, 1)× 2, (0, 23, 4, 22, 1, 15)× 2, (0, 20, 7, 18, 1, 16)× 2,

(0, 17, 4, 6, 26, 7)× 2, (0, 5, 17, 7, 30, 14)× 2, (0, 12, 33, 11, 6, 3)× 2,

(0, 4, 12, 6, 7, 8).

v = 68: X = Z67

⋃
{∞}, mod 67.

C2 : (9, 2, 35,∞, 34, 19)× 2, (7, 1, 31, 1, 29, 32)× 2, (11, 6, 38, 7, 6, 34)× 2,

(0, 12, 21, 7, 15, 29)× 2, (13, 11, 29, 2, 9, 0)× 2, (20, 19, 42, 13, 26, 0)× 2,

(24, 22, 12, 17, 20, 0)× 2, (21, 25, 6, 17, 18, 0)× 2, (16, 0, 8, 40, 46, 32);

C3 : (∞, 35, 16, 6, 2, 34)× 2, (31, 0, 18, 7, 30, 8)× 2, (35, 6, 15, 33, 0, 11)× 2,

(38, 10, 23, 7, 0, 17)× 2, (9, 0, 21, 45, 14, 12)× 2, (15, 27, 12, 34, 14, 0)× 2,

(26, 0, 27, 2, 25, 20)× 2, (16, 0, 32, 4, 30, 19)× 2, (2, 0, 1, 9, 8, 4);

C4 : (∞, 34, 1, 32, 2, 35)× 2, (32, 0, 28, 18, 38, 29)× 2, (19, 0, 26, 20, 2, 27)× 2,

(14, 0, 12, 24, 3, 25)× 2, (8, 0, 5, 28, 14, 7, )× 2, (5, 0, 11, 26, 2, 32)× 2,

(17, 0, 16, 31, 2, 21)× 2, (13, 0, 9, 22, 6, 23)× 2, (2, 0, 3, 6, 10, 4);

C5 : (∞, 34, 15, 20, 2, 35)× 2, (3, 35, 17, 23, 0, 14)× 2, (20, 0, 31, 3, 2, 30)× 2,

(27, 0, 22, 18, 31, 15)× 2, (5, 3, 30, 13, 38, 29)× 2, (24, 0, 32, 16, 36, 3)× 2,

(30, 0, 29, 6, 32, 22)× 2, (31, 0, 15, 1, 26, 19)× 2, (0, 5, 11, 18, 13, 7);

C6 : (2, 34,∞, 35, 9, 7)× 2, (31, 0, 29, 2, 34, 1)× 2, (0, 28, 5, 24, 49, 25)× 2,

(0, 22, 1, 19, 6, 18)× 2, (7, 0, 10, 21, 6, 23)× 2, (0, 12, 38, 10, 1, 21)× 2,

(0, 15, 28, 6, 37, 7)× 2, (20, 0, 16, 5, 3, 17)× 2, (0, 4, 12, 6, 7, 8).

v = 69: X = Z69, mod 69.

C2 : (9, 2, 35, 0, 34, 19)× 2, (7, 1, 31, 1, 29, 32)× 2, (11, 6, 38, 7, 6, 34)× 2,

(0, 12, 21, 7, 15, 29)× 2, (13, 11, 29, 2, 9, 0)× 2, (20, 19, 42, 13, 26, 0)× 2,

(24, 22, 12, 17, 20, 0)× 2, (21, 25, 6, 17, 18, 0)× 2, (16, 0, 8, 40, 46, 32);

C3 : (0, 35, 16, 6, 2, 34)× 2, (31, 0, 18, 7, 30, 8)× 2, (35, 6, 15, 33, 0, 11)× 2,
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(38, 10, 23, 7, 0, 17)× 2, (9, 0, 21, 45, 14, 12)× 2, (15, 27, 12, 34, 14, 0)× 2,

(26, 0, 27, 2, 25, 20)× 2, (16, 0, 32, 4, 30, 19)× 2, (2, 0, 1, 9, 8, 4);

C4 : (0, 34, 1, 32, 2, 35)× 2, (32, 0, 28, 18, 38, 29)× 2, (19, 0, 26, 20, 2, 27)× 2,

(14, 0, 12, 24, 3, 25)× 2, (8, 0, 5, 28, 14, 7, )× 2, (5, 0, 11, 26, 2, 32)× 2,

(17, 0, 16, 31, 2, 21)× 2, (13, 0, 9, 22, 6, 23)× 2, (2, 0, 3, 6, 10, 4);

C5 : (0, 34, 15, 20, 2, 35)× 2, (3, 35, 17, 23, 0, 14)× 2, (20, 0, 31, 3, 2, 30)× 2,

(27, 0, 22, 18, 31, 15)× 2, (5, 3, 30, 13, 38, 29)× 2, (24, 0, 32, 16, 36, 3)× 2,

(30, 0, 29, 6, 32, 22)× 2, (31, 0, 15, 1, 26, 19)× 2, (0, 5, 11, 18, 13, 7);

C6 : (2, 34, 0, 35, 9, 7)× 2, (31, 0, 29, 2, 34, 1)× 2, (0, 28, 5, 24, 49, 25)× 2,

(0, 22, 1, 19, 6, 18)× 2, (7, 0, 10, 21, 6, 23)× 2, (0, 12, 38, 10, 1, 21)× 2,

(0, 15, 28, 6, 37, 7)× 2, (20, 0, 16, 5, 3, 17)× 2, (0, 4, 12, 6, 7, 8). 2

Theorem B For graph G ∈ {Ck : 2 ≤ k ≤ 6}, there exists a G-GD4(v) ⇐⇒ v ≡ 0, 1 (mod 4)

and v ≥ 8.

Proof The conclusion holds by Lemmas 1.6, 2.3 and 4.1–4.3. 2

5. λ = 8

5.1 A constructing method for λ = |E(G)|

Let G be a connected graph, |V (G)| = m and |E(G)| = e. Consider the graph design G-

GDe(v) = (X,B). Let n = 2⌈ v
2 ⌉ − 1, which is odd. The vertex set X is denoted by Zn for odd

v or Zn ∪ {∞} for even v. The block set consists of n · n−1
2 or n · n+1

2 blocks. Let us construct
n−1

2 (for odd v) or n+1
2 (for even v) base blocks as follows.

Step 1. Define a mapping from Zn to {1, 2, . . . , n−1
2 }: a 7→ 〈2a〉, where 〈t〉 = t (if t ≤ n−1

2 ) or

n − t (if t > n−1
2 ). Then, the integers 1, 2, . . . , n−1

2 are partitioned into equivalent classes, each

of which forms a cycle. The cycle contains the integer a (1 ≤ a ≤ n−1
2 ) and its length is denoted

by (a) and l(a) respectively, where the length s = l(a) is the minimal positive integer satisfying

a · 2s ≡ ±a (mod n). Obviously, l(a) ≤ l(1) for 1 ≤ a ≤ n−1
2 . All the cycles form a graph Hn,

which is 2-regular.

Step 2. For any a ∈ [1, n−1
2 ] and l(a) ≥ 3, take an injection f from V (G) to M = {ma :

−n−1
2 ≤ m ≤ n−1

2 } such that for any edge {x, y} ∈ E(G), the integer 〈f(x) − f(y)〉 is in the

cycle (a). Note that f is an injection if and only if f(x) 6= f(y) for any x 6= y ∈ V (G). When

|V (G)| ≤ 7, the set M may be restricted to the 7-set: {−2a,−a, 0, a, 2a}
⋃

T , where T = {3a, 4a}

or {−3a,−4a}, or {3a,−3a}, or {4a,−4a}. Then, for x 6= y ∈ V (G), the equation f(x) = f(y)

holds only for the following cases:

1◦ 0 = ±3a, ± a = ±4a, ± a = ∓2a, ± 2a = ∓4a, 3a = −3a,

=⇒ n = 3a, l(a) = 1 and (a) is the unique 1-cycle;

2◦ ± a = ∓4a, ± 2a = ∓3a,
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=⇒ n = 5a, l(a) = 2 and (a, 2a) is the unique 2-cycle.

Furthermore, there is another related case

3◦ n = 15a, there is a unique 1-cycle (5a) and a unique 2-cycle (3a, 6a).

Therefore, we only need to discuss the four cases:

Case 1 gcd(n, 15) = 1, and the length l(a) ≥ 3 for any cycle (a) in Hn. The injection f here

gives a base block Ba. But the base blocks Ba (1 ≤ a ≤ n−1
2 ) will cover all differences in Zn e

times. In fact, let the cycle (a) be (a, 2a, 4a, . . . , 2s−1a) and each 2ja, as edge-value 〈f(x)−f(y)〉,

appear ij times in the base block Ba, where 0 ≤ j ≤ s− 1 and
∑s−1

j=0 ij = e. Then, all the edges

in Ba, B2a, . . . , B2s−1a will take edge-values as follows.

a 2a 22a · · · 2s−2a 2s−1a

Ba i0 i1 i2 · · · is−2 is−1

B2a is−1 i0 i1 · · · is−3 is−2

...
...

...
...

...
...

...

B2s−1a i1 i2 i3 · · · is−1 i0

Table 1 Difference distribution

Thus, the base blocks Ba, B2a, . . . , B2s−1a corresponding a, 2a, . . . , 2s−1a in the cycle (a) cover

the differences a, 2a, . . . , 2s−1a e times.

Case 2 n = 3b and b 6= 0 (mod 5), there is a unique 1-cycle (b).

Case 3 n = 5b and b 6= 0 (mod 3), there is a unique 2-cycle (b, 2b).

Case 4 n = 15b, there are a unique 1-cycle (5b) and a unique 2-cycle (3b, 6b).

Step 3. For the Cases 2, 3 and 4, the method stated in step 2 cannot be used for 1-cycle or

2-cycle because, replacing a by b, 2b, 3b, 5b or 6b, the number of the available integers in the

set M is less than six. We may change a few base blocks in A corresponding to cycle (1) (or b

when n = 15b) and add some base blocks relating to the elements b, 2b, 3b, 5b, 6b. Note that

the edges in these changed and added base blocks belong not yet to one cycle (but two or three

cycles).

Step 4. For odd order v, the graph design G-GDe(v) will be obtained after Steps 2 and 3. For

even order v = n + 1, we need to add one vertex ∞ to the vertex set Zn, to change some base

blocks in A corresponding to cycle (1), and to add some base blocks containing ∞.

Lemma 5.1 There exists a Ck-GD8(v) for v ≥ 6, k = 4, 5, 6.

Proof Using the method mentioned above, we list the following table. First, the base block Ba

for odd v and l(a) ≥ 3, i.e., case 1 (odd), is given in the first row. The vertex sets are obviously

in {0,±a,±2a}
⋃

T pointed in Step 2. We denote A = {Ba : 1 ≤ a ≤ n−1
2 } for the Ba listed in

the first row, then the base blocks for other cases will be uniformly denoted as (A\C)
⋃
C′

⋃
D,
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where C is a few base blocks in A like B1, B2, B4 or Bb, B2b, . . ., which is changed to C′ (denoted

by →), and D is a few added base blocks.

C4 C5 C6

odd v A (a, 0, 2a, 4a, 3a,−a) (−a, a, 3a, 4a, 2a, 0) (−2a, 0, a,−a, 3a, 2a)

Case 1

odd v C B1 B1 B1

Case 2 D′ (−b, 0, 2, 1, b + 1, b) (2b, b, b + 2, 2b + 2, 2, 0) (−2, 2, b + 2, b − 2, b, 0)

n = 3b (−b, 0, 2, 4, b + 4, b) (2, 1, b + 1, b + 2, b, 0) (0, 2b, 2b + 1, 1, b + 1, b)

odd v C B1, B2 B1, B2 B1, B2

Case 3 D (3ib, 0, 2i, 4i, ib + 4i, ib) (−2, 0, b, b + 1, b + 2, 2) × 2 (ib, 3ib, 3ib + i, ib + i, i, 0)

n = 5b (3ib, 0, 2i, i, ib + i, ib) (2b, 0, i, 2b + i, 4b + i, 4b) (2i, −2i, ib − 2i, ib + 2i, ib, 0)

i = 1, 2 i = 2, 4 i = 1, 2

odd v C Bb Bb Bb

Case 4 D (2b,−b,−3b, −5b, 0, 5b) (3b, 6b, 11b, 8b, 5b, 0) (3b, b, 13b, 7b, 12b, 0) × 2

n = 15b (6b, 0, 9b, 3b, b,−3b) (2b, 3b, 8b, 7b, 5b, 0) (−5b,−6b, 4b, b, 6b, 0)

(9b, 0,−5b, 5b, 2b, 3b) (2b, 5b, 11b, 8b, 6b, 0) (−5b,−3b, 7b, b, 6b, 0)

(6b, 0,−5b, 5b, 4b, 3b) (−b, 5b, 11b, 12b, 6b, 0, )

Table 2 Some blocks of Ck-GD8(v), k = 4, 5, 6, for odd v

C4 C5 C6

even v C′ B1 : 0 → ∞ Bi : (i = 1, 2) B1 : −1 → ∞

Case 1 0 → ∞ B2 : 2 → ∞

D (0, ∞, 2, 3,−1, 1) (∞,−1, 0, 4, 2, 1) (0, 2,−2,∞, 3, 4)

even v C B1 B1 B1

Case 2 D (−b,∞, 2, 4, 0, b) × 2 (2b, b,∞, 3, 1, 0) × 2 (−b, b, b + 2,∞, 4, 0) × 2

n = 3b (−b, 0, 2, 1, b + 1, b) (1, 2, b + 2,∞, b, 0) (1, 0, b, b + 1,∞, 2)

even v D (b, 0, 3b, 4b,∞, 2b) × 2 (3b, 4b, 2b, b, 0,∞) × 2 (∞, 4b, 2b, 3b, b, 0) × 2

Case 3 (0,∞, 3b, b, 4b, 2b) (∞, b, 3b, 2b, 0, 4b) (0, 3b, b, 4b,∞, 2b)

n = 5b

even v D (∞, 0, 9b, 3b, 8b, 5b) × 4 (∞, 8b, 5b, −5b, 0, 3b) × 2 (−5b, 5b, ∞,−2b, 3b, 0) × 2

Case 4 (∞, 12b, 9b, 3b, 0, 6b) (0, 9b, 12b, 6b, ∞, 3b) × 2

n = 15b

Table 3 Some blocks of Ck-GD8(v), k = 4, 5, 6, for even v

In what follows, we point out some facts:

1) Obviously, the necessary condition for the existence of a Ck-GD8(v), k = 4, 5, 6, is v ≥ 6.

In addition, let n = 2⌈ v
2⌉ − 1. Then we have n ≥ 7, n ≥ 9, n ≥ 25 or n ≥ 15 for odd v or even v

in Case 1, 2, 3, 4, in which n = 2⌈ v
2⌉ − 1 ≥ 5 for even v in Case 3.

2) For Case 2 (n = 3b, odd b , b ≥ 3, b 6≡ 0 mod 5). Consider the blocks containing b.

We know that the vertex-values are obviously distinct each other for odd v or even v with the



784 KANG Q D, LIU S X and YUAN L D

exception (b, Ck) = (3, C5) and even v. Here is C5-GD8(10) = (X,B), where X = Z9

⋃
{∞},

B : (4, 2, 6, 1, 3,∞)× 2, (1, 0, 3, 7, 6, 2)× 2, (∞, 0, 1, 2, 4, 6) mod 9.

3) For Case 3 (n = 5b, odd b, b 6≡ 0 mod 3) and Case 4 (n = 5b, odd b), the vertex-values

are obviously distinct each other for odd v or even v. 2

5.2 Graphs Ck, 2 ≤ k ≤ 3

Lemma 5.2 There exists a C2-ID8(8 + w, w) for w=2, 3, 6, 7.

Proof Let X=Z8

⋃
{∞1, . . . ,∞w}.

w=2: (2, x1, 4, x2, 3, 0), (1, x1, 2, 4, 3, 0), (1, 0, 4, 5, 7, 3), (3, x2, 4, x1, 2, 0), (4, x2, 7, 6, 3, 0) mod 8;

(7, 3, 5, 4, 0, 1), (0, 4, 6, 5, 1, 2), (1, 5, 7, 6, 2, 3), (2, 6, 0, 7, 3, 4).

w=3: (2, x1, 5, x2, 4, 0), (3, x1, 0, 1, 4, 7), (1, x3, 3, x1, 2, 0), (3, x2, 4, x3, 1, 0), (4, x2, 6, 5, 3, 0),

(6, x3, 1, 0, 2, 5) mod 8; (7, 3, 5, 4, 0, 1), (0, 4, 6, 5, 1, 2), (1, 5, 7, 6, 2, 3), (2, 6, 0, 7, 3, 4).

w=6: (1, 0, x1, 2, 4, x2), (3, 0, x2, 1, 4, x3), (1, 0, x3, 2, 4, x4), (1, x4, 0, 2, x1, 4), (3, x5, 0, 1, x2, 6),

(1, x6, 0, 4, x3, 3), (3, x1, 0, 1, x4, 7), (3, x6, 0, 2, x5, 7), (1, x5, 0, 5, x6, 3) mod 8;

(7, 3, 5, 4, 0, 1), (0, 4, 6, 5, 1, 2), (1, 5, 7, 6, 2, 3), (2, 6, 0, 7, 3, 4).

w=7: (5, 2, x2, 0, 3, x3), (4, 2, x3, 0, 1, x4), (4, x4, 3, 0, x7, 6), (4, x5, 3, 0, x6, 6), (4, x6, 3, 0, x5, 6),

(2, x7, 1, 0, x4, 4), (3, x1, 1, 0, x3, 6), (7, x7, 4, 0, x2, 5), (3, x6, 1, 0, x1, 6) mod 8;

(4, 0, x1, 1, 5, x5) + i, (4, 0, x2, 5, 1, x5) + i, (4, 0, x1, 5, 1, x2) + i mod 8, i = 0, 1, 2, 3. 2

Lemma 5.3 There exists a C3-ID8(8 + w, w) for w=2, 3, 6, 7.

Proof It suffices to give the following constructions. X=Z8

⋃
{x1, . . . , xw}.

C3-ID2(8 + 2, 2): (∞1, 0, 4,∞2, 3, 1) mod 8; (1, 0, 7, 5, 6, 3), (7, 1, 2, 5, 4, 6), (7, 2, 0, 5, 3, 4).

C3-ID2(8 + 3, 3): (x1, 0, 4, x2, 3, 1) mod 8; (7, 0, 5, 4, 1, x3), (5, 2, 1, 6, 3, x3), (5, 6, 0, 2, 4, x3),

(6, 7, 5, 3, 1, x3), (0, x3, 2, 7, 4, 3).

C3-ID4(8 + 6, 6): (0, x5, 1, x3, 6, 3), (0, x2, 2, 4, 5, 1), (4, x1, 6, 5, 2, 0), (0, x6, 2, x4, 3, 1) mod 8;

(0, x3, 4, x4, 6, 3), (0, x4, 3, x3, 1, 6), (6, x3, 5, x4, 2, 4), (x3, 0, x4, 7, 5, 2),

(1, x4, 7, x3, 5, 3), (x3, 7, 2, x4, 4, 1).

C3-ID4(8 + 7, 7): (0, x1, 3, x3, 2, 1), (0, x2, 1, x4, 4, 2), (0, x6, 1, x5, 6, 3), (4, x7, 5, 7, 3, 0) mod 8;

(0, x3, 4, x4, 6, 3), (0, x4, 3, x3, 1, 6), (6, x3, 5, x4, 2, 4), (0, x5, 4, 3, 2, 1),

(x3, 0, x4, 7, 5, 2), (x3, 7, 2, x4, 4, 1), (1, x4, 7, x3, 5, 3), (4, x5, 0, 7, 6, 5),

(7, x5, 3, 4, 5, 6), (3, x5, 7, 0, 1, 2). 2

Lemma 5.4 (1) There exists a C2-GD8(v) for all v > 6 except for (v, 15) = 3 or (v, 15) = 5

when v is odd and v ≡ 1 (mod 15) when v is even;

(2) There exists a C3-GD8(v) for all v > 6 except for (v, 15) = 3 when v is odd and

v ≡ 1 (mod 15) when v is even.

Proof Similarly to the proof of Lemma 5.1, we can list the following table.
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C2 C3

odd v A (0, a, 2a, −2a,−3a,−a) (a, 0,−a,−3a,−2a, 2a)

Case 1

odd v C B1, B2

Case 3 D (2b, 0, 1, b + 1, b, 3b) × 2

v = 5b (−1, , 0, b, b + 2, 2,−2) × 2

odd v C Bb Bb

Case 4 D (3b, 0, 6b, b, 4b, 9b) × 2 (b, 0, 3b, 8b, 5b,−5b)

v = 15b (0, 5b, −5b,−3b,−2b, 3b) (−b, 0,−6b,−4b, 2b,−2b)

(3b, 0, b, 7b,−2b,−b) (3b, 0, −3b, 2b, 5b, 6b)

(3b, 0,−5b, b, 6b, 9b)

even v C′ B1, B2 : 0 → ∞ B1 : 0 → ∞

Case 1 D (2, 0, 4,∞,−1, 1) (0,∞, 2, 3,−1, 1)

even v C B1 B1

Case 2 D (b,−b,∞, b + 1, 1, 0) × 2 (∞, 0, 1, b + 1, b,−b) × 2

v = 3b + 1 (2, 0, 1,−1,∞,−2) (2,∞,−4,−2, 0, 4)

even v D (2b, b, ∞, 4b, 3b, 0) × 2 (3b, 0, b, ∞, 2b, 4b) × 2

Case 3 (0, 2b, 4b,∞, b, 3b) (0,∞, 2b, 4b, 3b, b)

v = 5b + 1

Table 4 Some blocks of Ck-GD8(v), k = 2, 3

Lemma 5.5 There exist a Ck-GD8(v) for k = 2, 3, v = 6, 10, 51, and a C2-GD8(55).

Proof For each case, we list vertex set and blocks below.

v=6: X=Z5

⋃
{∞}, mod 5.

C2 : (∞, 0, 4, 1, 3, 2)× 2, (1, 0, 4, 3,∞, 2); C3 : (4, 0, 3, 1, 2,∞)× 2, (∞, 0, 4, 3, 1, 2).

v=10: X=Z9

⋃
{∞}, mod 9.

C2 : (3, 0, 8, 1, 4, 5)× 2, (∞, 3, 2, 0, 4, 1)× 2, (4, 0, 3, 6,∞, 8);

C3 : (4, 0, 3, 1, 2, 8)× 2, (4, 2, 7, 0, 3,∞)× 2, (4, 3, 6,∞, 8, 0).

v=51: X=Z51, mod 51.

C2 : (4, 0, 17, 36, 18, 15), (2, 0, 23, 48, 25, 24), (3, 0, 20, 41, 21, 19), (6, 0, 10, 17, 23, 8),

(7, 0, 12, 35, 21, 10), (4, 0, 24, 48, 44, 23), (5, 0, 14, 30, 15, 12), (23, 0, 1, 11, 5, 21),

(20, 0, 17, 5, 10, 19), (7, 0, 18, 39, 34, 15), (3, 0, 20, 42, 29, 19), (8, 0, 9, 26, 50, 25),

(7, 0, 13, 19, 20, 12), (7, 0, 18, 11, 36, 17), (2, 0, 20, 8, 10, 19), (4, 0, 15, 7, 21, 14),

(1, 0, 24, 11, 6, 22), (6, 0, 15, 29, 17, 14), (6, 0, 22, 4, 19, 21), (2, 0, 24, 1, 19, 23),

(8, 0, 14, 6, 23, 13), (4, 0, 14, 34, 25, 13), (1, 0, 25, 3, 2, 26), (5, 0, 18, 31, 27, 16),

(9, 0, 12, 23, 3, 25),

C3 : (19, 0, 24, 50, 21, 22), (23, 0, 22, 1, 15, 20), (19, 0, 2, 1, 18, 16), (18, 0, 17, 2, 24, 25),

(12, 0, 23, 48, 24, 25), (23, 0, 25, 6, 22, 19), (14, 0, 23, 3, 8, 10), (16, 0, 13, 1, 12, 11),

(20, 0, 14, 10, 13, 15), (20, 0, 8, 21, 9, 15), (24, 0, 9, 21, 10, 22), (21, 0, 9, 3, 8, 14),
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(19, 0, 18, 36, 20, 11), (11, 0, 14, 3, 13, 23), (17, 0, 24, 2, 25, 9, (20, 0, 17, 37, 18, 5),

(16, 0, 32, 34, 17, 7), (10, 0, 3, 8, 4, 18), (24, 0, 8, 17, 7, 18), (21, 0, 19, 1, 16, 14)

(15, 0, 16, 2, 17, 21), (23, 0, 21, 1, 22, 13), (23, 0, 7, 3, 9, 16), (1, 0, 25, 1, 4, 2),

(11, 0, 1, 4, 25, 8).

C2-GD8(55): X=Z55, mod 55.

(1, 0, 27, 47, 11, 25), (2, 0, 23, 1, 12, 22), (3, 0, 19, 1, 10, 18), (11, 0, 26, 2, 1, 24),

(4, 0, 17, 20, 27, 14), (5, 0, 12, 23, 32, 11), (8, 0, 9, 26, 3, 27), (13, 0, 27, 2, 29, 25),

(5, 0, 15, 40, 21, 14), (3, 0, 22, 45, 29, 21), (4, 0, 20, 2, 22, 17), (9, 0, 14, 1, 27, 10),

(12, 0, 23, 1, 17, 22), (14, 0, 20, 16, 8, 19), (5, 0, 21, 1, 11, 20), (7, 0, 20, 47, 23, 17),

(2, 0, 26, 4, 19, 25), (6, 0, 12, 26, 28, 11), (8, 0, 7, 10, 11, 2), (4, 0, 23, 11, 3, 22),

(3, 0, 27, 1, 13, 26), (4, 0, 25, 51, 24, 22), (3, 0, 17, 1, 7, 18), (9, 0, 21, 3, 24, 7),

(8, 0, 16, 1, 11, 15), (9, 0, 12, 16, 14, 11), (1, 0, 27, 2, 9, 25). 2

Theorem C For graph G ∈ {Ck : 2 ≤ k ≤ 6}, there exists a G-GD8(v) for v ≥ 6.

Proof From the following table, the existence of G-GD8(v) for v ≡ 2, 3 (mod 4) can be gotten,

where w = 2, 3, 6, 7.

Graph G C2, C3 C4, C5, C6

G-GD8(v) v = 6, 7, 10, 11, 14, 15, 18, 19,

22, 23, 50, 51, 54, 55, 66, 67,

70, 71 (Lemma 5.4, 5.5)

G-ID8(8r + w, w) r = 1 (Lemma 5.2, 5.3)

G-HD2(−) (8q) : q = 3, 4, 5

=⇒ G-HD4(−) (Lemma 2.3)

Conclusion by Lemma 1.6 by Lemma 5.1

Table 5 Proof of Theorem C

Furthermore, by Theorem B, the conclusion follows. 2

6. Conclusion

Proof of Theorem 1.2 Summarizing Lemma 1.1, Theorems A, B and C, we obtain the

conclusion. 2
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