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1. Introduction

Let G = (V, E) be a simple graph on vertices v1, v2, . . . , vn. For each vertex v of G, the degree

of v, denoted by dG(v) or simply d(v), is the number of edges incident with v. The adjacency

matrix of the graph G is defined as A(G) = [aij ] of order n, where aij = 1 if vi is adjacent to vj

and aij = 0 otherwise. The eigenvalues of A(G) can be ordered as:

µn(G) ≤ µn−1(G) ≤ · · · ≤ µ1(G).

Let D(G) be the diagonal matrix of vertex degrees of G, i.e., D(G) = diag{d(v1), d(v2), . . . , d(vn)}.
The Laplacian matrix of G is L(G) = D(G) − A(G). One can find that L(G) is a symmetric,

positive semidefinite, singular matrix, so that its eigenvalues can be arranged as follows:

0 = λn(G) ≤ λn−1(G) ≤ · · · ≤ λ1(G).

We call µ1(G) and λ1(G) the adjacency spectral radius and Laplacian spectral radius of G,

respectively.

Recently, much attention is focused on the work of ordering trees by some extremely Lapla-

cian or adjacency eigenvalues. Let T (n, d) be the set of trees on n vertices with diameter d.

Kirkland and Neumann[10] provided a lower bound on the algebraic connectivity over all such
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trees. Furthermore, Fallat and Kirkland[2] determined the trees with the maximum and minimum

algebraic connectivity in the set T (n, d), respectively. Guo and Shao[8] gave the first ⌊d
2 + 1⌋

adjacency spectral radii of trees in the set T (n, d) (3 ≤ d ≤ n− 4); Guo[9] gave the first ⌊d
2 + 1⌋

Laplacian spectral radii of trees in the set T (n, d) (3 ≤ d ≤ n − 3).

Let T (n, ∆) be the set of trees on n vertices with given maximal degree ∆. Among all trees in

T (n, ∆), Lin and Guo[11] characterized the tree which minimizes the adjacency spectral radius,

and the tree which maximizes the adjacency spectral radius when ∆ ≥ ⌈n−2
2 ⌉. They extend the

order of trees on n vertices by adjacency spectral radius to the 13th tree. With respect to the

Laplacian spectral radius, Zhang, Li[14] and Guo[7] gave the first four trees on n vertices. Yu

et.al.[13] determined the fifth to eighth trees in the above ordering.

In this paper, by using vertex valuation and comparing the quadratic form of the adjacency or

Laplacian matrix, we give a simple method to determine the trees which maximize the Laplacian

(and adjacency) spectral radius among all trees in T (n, ∆). On maximizing the adjacency

spectral radius of trees in T (n, ∆), our result has no limitation on ∆, which extends the result

of Lin and Guo[11].

On the other hand, the idea of this paper is different from some known work on ordering trees

subject to certain graphic invariant, which usually applies the relation between the characteristic

polynomials of the adjacency (Laplacian) matrix of a graph G and that of some subgraph of G

(or a graph obtained from G by some operations) to obtain the desired results.

2. Lemmas and results

Lemma 2.1[5] Let G be a bipartite graph. Then there exists a diagonal matrix D such that

D−1L(G)D = D(G) + A(G).

The matrix D(G) + A(G) =: L̄(G) is also called the unoriented Laplacian matrix of G[6].

Since a tree T is one of bipartite graphs, by Lemma 2.1, the spectral radius of L(T ) equals that

of L̄(T ). So we consider the matrix L̄(T ) instead of L(T ).

Let G = (V, E) be a connected graph with V = {v1, v2, . . . , vn} and let x = (x1, x2, . . . , xn)T ∈
R

n be a nonzero vector. It will be convenient to adopt the following terminology from [4]: x is

said to give a valuation of the vertices of V , that is, for each vertex vi of V , we associate the

value xi, i.e., x(vi) = xi. Then

xTA(G)x = 2
∑

vivj∈E

x(vi)x(vj), (2.1)

xTL̄(G)x =
∑

vivj∈E

[x(vi) + x(vj)]
2. (2.2)

As A(G) is nonnegative, irreducible and symmetric, by the Perron-Frobenius theory, µ1(G)

is exactly the spectral radius of A(G), and there exists a unique (up to multiples) positive

eigenvector, referred to as Perron vector of A(G), corresponding to the eigenvalue µ1(G). In

addition,

µ1(G) = max
x,‖x‖=1

2
∑

vivj∈E

x(vi)x(vj). (2.3)
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Similarly, L̄(G) has a Perron vector corresponding to λ1(G), and

λ1(G) = max
x,‖x‖=1

∑

vivj∈E

[x(vi) + x(vj)]
2. (2.4)

Denote by NG(v) or simply N(v) the set of neighbors of the vertex v in a graph G. One can

find that µ is an eigenvalue of A(G) corresponding to the eigenvector x if and only if

µx(vi) =
∑

vj∈N(vi)

x(vj), i = 1, 2, . . . , n; (2.5)

and λ is an eigenvalue of L̄(G) corresponding to the eigenvector x if and only if

[λ − d(vi)]x(vi) =
∑

vj∈N(vi)

x(vj), i = 1, 2, . . . , n. (2.6)

Lemma 2.2 Let G be a graph on vertices v1, v2, . . . , vn, with x as a unit Perron vector of L̄(G).

(i) If x(vi) ≥ x(vj), vtvj ∈ E(G) and vtvi /∈ E(G), let G′ = G − vtvj + vtvi. Then

xTL̄(G′)x ≥ xTL̄(G)x, and hence λ1(G
′) > λ1(G).

(ii) If [x(vi)− x(vt)][x(vs)− x(vj)] ≥ 0, and {vivj , vsvt} ⊆ E(G), vivs /∈ E(G), vjvt /∈ E(G),

let G′ = G − vivj − vsvt + vivs + vjvt. Then xTL̄(G′)x ≥ xTL̄(G)x, and hence λ1(G
′) ≥ λ1(G)

with equality if and only if x(vi) = x(vt) and x(vj) = x(vs).

Proof For the result (i), one can find that

λ1(G) = xTL̄(G)x =
∑

vivj∈E(G)

[x(vi) + x(vj)]
2 (using (2.2))

=
(

∑

vkvl∈E(G)−{vtvj}

[x(vk) + x(vl)]
2
)

+ [x(vt) + x(vj)]
2

≤
(

∑

vkvl∈E(G)−{vtvj}

[x(vk) + x(vl)]
2
)

+ [x(vt) + x(vi)]
2

=
∑

vkvl∈E(G′)

[x(vk) + x(vl)]
2

≤ max
x,‖x‖=1

∑

vkvl∈E(G′)

[x(vk) + x(vl)]
2

= λ1(G
′). (using (2.4))

If λ1(G
′) = λ1(G), then x is also a Perron vector of L̄(G′). Applying (2.6) to the vertex vi

in the graph G and in the graph G′, respectively, we have

[λ1(G) − dG(vi)]x(vi) =
∑

vk∈NG(vi)

x(vk),

[λ1(G
′) − dG′(vi)]x(vi) =

∑

vk∈NG′(vi)

x(vk).

As λ1(G
′) = λ1(G) and NG′(vi) = NG(vi) ∪ {vt},

x(vi) = −x(vt),
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which is contradictory to that x is a positive vector. Thus we have proved the result (i).

For the result (ii), by a similar discussion, we have

λ1(G) =
∑

{vi,vj}∈E

[x(vi) + x(vj)]
2

=
(

∑

vkvl∈E(G)−{vivj ,vtvs}

[x(vk) + x(vl)]
2
)

+ [x(vi) + x(vj)]
2 + [x(vt) + x(vs)]

2

≤
(

∑

vkvl∈E(G)−{vivj ,vtvs}

[x(vk) + x(vl)]
2
)

+ [x(vi) + x(vs)]
2 + [x(vj) + x(vt)]

2

=
∑

vkvl∈E(G′)

[x(vk) + x(vl)]
2

≤ λ1(G
′),

where the first inequality holds as [x(vi) − x(vt)][x(vs) − x(vj)] ≥ 0.

If λ1(G) = λ1(G
′), then x is also a Perron vector of L̄(G′). Applying (2.6) to the vertex

vi (and the vertex vj) in the graph G and in the graph G′, respectively, we get x(vj) = x(vs)

(and x(vi) = x(vt)). Conversely, if x satisfies that x(vj) = x(vs) and x(vi) = x(vt), then by

(2.6) x is an eigenvector of L̄(G′) corresponding to the eigenvalue λ1(G). As x is positive, by

Perron-Frobenius theory, λ1(G) is necessarily the spectral radius of L̄(G′). 2

By (2.1), (2.3), (2.5) and a similar discussion of Lemma 2.2, we have

Lemma 2.3 Let G be a graph on vertices v1, v2, . . . , vn, with x as a unit Perron vector of A(G).

(i) If x(vi) ≥ x(vj), vtvj ∈ E(G) and vtvi /∈ E(G), let G′ = G − vtvj + vtvi. Then

xTA(G′)x ≥ xTA(G)x, and hence µ1(G
′) > µ1(G).

(ii) If [x(vi)− x(vt)][x(vs)− x(vj)] ≥ 0, and {vivj , vsvt} ⊆ E(G), vivs /∈ E(G), vjvt /∈ E(G),

let G′ = G − vivj − vsvt + vivs + vjvt. Then xTA(G′)x ≥ xTA(G)x, and hence µ1(G
′) ≥ µ1(G)

with equality if and only if x(vi) = x(vt) and x(vj) = x(vs).

Now we specify a tree T #(n, ∆) ∈ T (n, ∆) on vertex set V = {v1, v2, . . . , vn}, which can

be constructed inductively until the resulting tree has n vertices. Let T #
0 = {v1}. Assume that

the tree T #
k (k ≥ 0) is constructed. The tree T #

k+1 is obtained from Tk by joining vertices of

V − V (T #
k ) with subscripts as small as possible to the pendent vertices of T #

k with subscripts

as small as possible such that ∆(T #
k+1) = ∆, where a vertex of a graph is said pendent if it has

degree 1 in that graph. In other words, if vj ∈ V − V (T #
k ) is adjacent to a pendent vertex vi

of V (T #
k ), then each vertex vp ∈ V − V (T #

k ) with p < j is adjacent to some pendent vertex

vq ∈ V (T #
k ) with q ≤ i such that ∆(T #

k+1) = ∆. For example, the tree T #(6, 2), T #(15, 3) are

respectively listed in Figure 1. We adopt the convention that the tree T #(n, ∆) always has the

vertices with subscripts arranged as those in above construction.
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Figure 1 Two trees T#(6, 2) and T#(15, 3)

For the class T #(n, ∆), if ∆ = 1, then T #(n, ∆) contains exactly one tree, i.e., an edge

joining two vertices. In the following we assume ∆ ≥ 2.

Theorem 2.4 T #(n, ∆) is the unique tree in T (n, ∆) which has the maximal Laplacian spectral

radius.

Proof Suppose that T ⋆ ∈ T (n, ∆) has maximal Laplacian spectral radius, which has vertices

v1, v2, . . . , vn. Let x be the unit Perron vector of L̄(T ⋆) such that

x(v1) ≥ x(v2) ≥ · · · ≥ x(vn) > 0.

We first consider the vertex v1, and assert that v1 has following property.

(1) d(v1) = ∆.

If d(v1) < ∆, then there exists a vertex u not adjacent to v1, and a path P joining u and v1.

Let w be the vertex on P that is adjacent to u. Deleting the edge uw and adding the edge v1u,

we obtain a tree T . By Lemma 2.2(i), λ1(T ) > λ1(T
⋆), a contradiction.

(2) v1 is adjacent to ∆ vertices respectively with values x(v2), . . . , x(v∆+1), that is, v1 is

adjacent to vertices respectively with the 2nd to the (∆ + 1)th largest values of the entries of x.

If not, then v1 is adjacent to some vertex vk (k > ∆ + 1) and is not adjacent to some vertex

vt (t ≤ ∆ + 1), and x(vk) < x(vt)). Let P be a path joining v1 to vt. We divide the discussion

into two cases.

Case 1 P does not contain vk. Let w be the vertex on P adjacent to vt. Deleting the edges

vtw and v1vk, and adding new edges vtv1 and wvk, we obtain a tree T ′, and by Lemma 2.2(ii),

λ1(T
′) > λ1(T

⋆) as x(vk) < x(vt), a contradiction.

Case 2 P contains vk. If d(vt) < ∆, deleting the edge v1vk, and adding a new edge vtv1, we

obtain a tree T ′ ∈ T (n, ∆). By Lemma 2.2(i), λ1(T
′) > λ1(T

⋆), a contradiction. If d(vt) =

∆(≥ 2), there exists a vertex w not on P , which is adjacent to vt. Deleting the edges v1vk and
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vtw, and adding new edges v1vt and wvk to T ⋆, then we get a new tree T ′. By Lemma 2.2(ii),

λ1(T
′) > λ1(T

⋆) as x(vk) < x(vt), a contradiction.

Next we consider the vertex v2. If |V (T ⋆)−N(v1)∪{v1}| ≥ ∆−1, then by a similar discussion

to (1) we can prove that d(v2) = ∆, where |S| denotes the cardinality of a finite set S. Next we

assert that v2 is adjacent to the vertices (except v1) with the (∆ + 2)nd to the (2∆)th largest

values of the entries of x; otherwise, by a similar discussion to Case 1 or Case 2, there exists

a tree with Laplacian spectral radius greater than λ1(T
⋆). If |V (T ⋆) − N(v1) ∪ {v1}| < ∆ − 1,

then v2 is adjacent to all vertices of V (T ) − N(v1) ∪ {v1} also by a similar discussion to Case 1

or Case 2.

Continue above procedure inductively. Assume we know N(vk) for k ≥ 2. If |V (T ⋆) −
∪k

i=1N(vk)∪{v1}| ≥ 1, then we consider the vertex vk+1 by a similar discussion to v2; otherwise

the procedure is finished. We finally find that T ⋆ is exactly the tree T #(n, ∆). 2

By a similar discussion, we have

Theorem 2.5 T #(n, ∆) is the unique tree in T (n, ∆) which has the maximal adjacency spectral

radius.

From the proof of Theorem 2.4, we also find

Corollary 2.6 Let x, y be respectively the Perron vectors of L̄(T #(n, ∆)) and A(T #(n, ∆)).

Then

x(v1) ≥ x(v2) ≥ · · · ≥ x(vn) > 0,

y(v1) ≥ y(v2) ≥ · · · ≥ y(vn) > 0.

Theorem 2.7 For each integer n (n ≥ 4) and each integer ∆ (2 ≤ ∆ ≤ n − 2), we have

λ1(T
#(n, ∆)) < λ1(T

#(n, ∆ + 1)),

or equivalently,

λ1(T
#(n, n − 1)) > λ1(T

#(n, n − 2)) > · · · > λ1(T
#(n, 3)) > λ1(T

#(n, 2)).

Proof Let x be a unit Perron vector of L̄(T #(n, ∆)). By Corollary 2.6, we have x(v1) ≥ x(v2) ≥
· · · ≥ x(vn) > 0. Note that there exists a pendant vertex u of T #(n, ∆) adjacent to the vertex

w 6= v1. Deleting the edge uw and adding an edge uv1, we get a tree T ∈ T (n, ∆ + 1). By

Lemma 2.2(i) and Theorem 2.4, we obtain

λ1((T
#(n, ∆)) < λ1(T ) ≤ λ1(T

#(n, ∆ + 1)).

2

Similarly, we have the following result.

Theorem 2.8 For each integer n (n ≥ 4) and each integer ∆ (2 ≤ ∆ ≤ n − 2), we get

µ1(T
#(n, ∆)) < µ1(T

#(n, ∆ + 1)),

or equivalently,

µ1(T
#(n, n − 1)) > µ1(T

#(n, n − 2)) > · · · > µ1(T
#(n, 3)) > µ1(T

#(n, 2)).
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Note that T #(n − 1, n) is a star and T #(n, 2) is a path, both on n vertices.

Corollary 2.9[3,12] Let T be an arbitrary tree on n (n ≥ 4) vertices. Then

2(1 + cos
π

n
) = λ1(T

#(n, 2)) ≤ λ1(T ) ≤ λ1(T
#(n, n − 1)) = n

with left equality if and only if T = T #(n, 2), and with right equality if and only if T =

T #(n, n − 1).

Corollary 2.10[1] Let T be an arbitrary tree on n (n ≥ 4) vertices. Then

2 cos
π

n + 1
= µ1(T

#(n, 2)) ≤ µ1(T ) ≤ µ1(T
#(n, n − 1)) =

√
n − 1

with left equality if and only if T = T #(n, 2), and with right equality if and only if T =

T #(n, n − 1).
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