Principally Quasi-Baer Modules

LIU Qiong1,2, OUYANG Bai Yu3, WU Tong Suo2

(1. Department of Mathematics and Physics, Shanghai University of Electric Power, Shanghai 200090, China; 2. Department of Mathematics, Shanghai Jiaotong University, Shanghai 200240, China; 3. Department of Mathematics, Hunan Normal University, Hunan 410081, China)
(E-mail: sky200547@126.com)

Abstract In this paper, we give the equivalent characterizations of principally quasi-Baer modules, and show that any direct summand of a principally quasi-Baer module inherits the property and any finite direct sum of mutually subisomorphic principally quasi-Baer modules is also principally quasi-Baer. Moreover, we prove that left principally quasi-Baer rings have Morita invariant property. Connections between Richart modules and principally quasi-Baer modules are investigated.

Keywords principally quasi-Baer rings (modules); endomorphism rings; annihilators; semi-central idempotents.

Document code A
MR(2000) Subject Classification 03C50; 03C95
Chinese Library Classification O153.3

1. Introduction

The concept of principally quasi-Baer rings was first introduced in [1] by Birkenmeier, and further studied by many authors$^{[2−4]}$. Recall that a ring R is called left (resp. right) principally quasi-Baer (or simply left (resp. right) p.q.-Baer) if the left (resp. right) annihilator of a principal left (resp. right) ideal is generated as a left (resp. right) ideal by an idempotent. This definition is not left-right symmetric. p.q.-Baer rings are the extensions of Baer and quasi-Baer rings$^{[5−11]}$. The class of p.q.-Baer rings include any domain, any semisimple ring, any Baer and quasi-Baer ring. Our work has been greatly motivated by these works, as mentioned above, and we try to extend these investigations to arbitrary modules.

We define principally quasi-Baer modules on the basis of p.q.-Baer rings. For a left R-module M, we call M a principally quasi-Baer (or simply p.q.-Baer) module if the left annihilator in M of any principal left ideal of S is generated by an idempotent of S. It is easy to see that, when $M = R$, the notion coincides with the existing definition of left p.q.-Baer rings. Thus this definition is not left-right symmetric, either. Among examples of p.q.-Baer modules, we include any semisimple module, any Baer and quasi-Baer module, any finitely generated Abelian ring, any ideal direct summand of a left p.q.-Baer ring (Theorem 2.2), and any finitely generated...
projective left \(R \)-module, where \(R \) is a left \(p.q.-\)Baer ring (Corollary 2.1). Obviously, any left \(p.q.-\)Baer ring \(R \) is \(p.q.-\)Baer as an \(R \)-module.

In Section 2, we introduce the concept of a \(p.q.-\)Baer module, and show the equivalent characterizations of \(p.q.-\)Baer modules (Theorem 2.1). We prove that any finite direct sum of mutually subisomorphic \(p.q.-\)Baer modules is also \(p.q.-\)Baer. A natural question arises: for any algebraic property of modules, is the property inherited by direct summands of such a module? We give a positive answer to this question for the case of \(p.q.-\)Baer modules (Theorem 2.2). Among other results, we also include results on when direct sums of \(p.q.-\)Baer modules are \(p.q.-\)Baer (Theorem 2.3) and provide a characterization of \(p.q.-\)Baer modules in terms of the FI-strong summand intersection property.

In Section 3, our focus is on the endomorphism rings of \(p.q.-\)Baer modules and the connections between \(p.q.-\)Baer modules and Richart modules. We show that the endomorphism ring of a \(p.q.-\)Baer module is always left \(p.q.-\)Baer (Theorem 3.1) and that left \(p.q.-\)Baer rings have Morita invariant property. Various conditions on the equivalence of Richart modules and \(p.q.-\)Baer modules are discussed.

Throughout this paper, \(R \) denotes a ring with unity. For notation we use \(S_r(R) \) (resp. \(S_l(R) \)), \(\text{Cen}(R) \), \(M_n(R) \) for the right (resp. left) semicentral idempotents of \(R \), the center of \(R \), and the ring of \(n \times n \) matrices over \(R \), respectively. \(M \) is a left \(R \)-module and \(S = \text{End}_R(M) \) is the ring of \(R \)-endomorphisms of \(M \). Submodules of \(M \) will be left \(R \)-modules. Recall that a submodule \(X \) of \(M \) is called fully invariant if for every \(h \in S, h(X) \subseteq X \). So fully invariant submodules will be an \(R-S \)-bimodule. The notations \(l_R(\cdot) \) and \(r_M(\cdot) \) denote the left annihilator of a subset of \(M \) with elements from \(R \) and the right annihilator of a subset of \(R \) with elements from \(M \), respectively; while \(r_S(\cdot) \) and \(l_M(\cdot) \) stand for the right annihilator of a subset of \(M \) with elements from \(S \) and the left annihilator of a subset of \(S \) with elements from \(M \), respectively. Let \(N \subseteq M \). Then we use \(N \leq M, N \leq^e M, N \triangleleft M, N \triangleleft^e M, N \leq^* M \) to denote that \(N \) is a submodule, direct summand, fully invariant submodule, fully invariant direct summand, essential submodule of \(M \), respectively.

Before we discuss the properties of \(p.q.-\)Baer modules in Section 2, let us recall some related concepts.

Definition 1.1 [12] A left \(R \)-module \(M \) is called a (quasi-) Baer module if for all \(I \leq S_S \ (I \leq S_S) \), \(l_M(I) = Me \) where \(e^2 = e \in S \).

Definition 1.2 [14] A ring \(R \) is called a left Richart ring if for any element \(a \in R \), \(l_R(a) = Re \) where \(e^2 = e \in R \).

Definition 1.3 [13] A left \(R \)-module \(M \) is called a Richart module if for any element \(\varphi \in S \), \(l_M(\varphi) = Me \) where \(e^2 = e \in S \).

Definition 1.4 [2] An idempotent \(e \) of a ring \(R \) is called left (resp. right) semicentral if \(xe = exe \) (resp. \(ex = exe \)) for all \(x \in R \).

By [11, Proposition 9] and [1, Example 1.6], we can see that \(p.q.-\)Baer rings and Richart
Lemma 1.1 For an idempotent \(e \in R \), the following conditions are equivalent:

(i) \(e \in S_1(R) \);

(ii) \(1 - e \in S_1(R) \);

(iii) \(Re \) is an ideal of \(R \);

(iv) \((1 - e)R \) is an ideal of \(R \).

2. Principally quasi-Baer modules

In this section, we begin our investigations by first providing the equivalent characterizations of p.q.-Baer modules and give some properties of them.

Theorem 2.1 If \(M \) is a left \(R \)-module, then the following conditions are equivalent:

(i) \(M \) is p.q.-Baer;

(ii) The left annihilator in \(M \) of every finitely generated left ideal of \(S \) is generated by an idempotent of \(S \);

(iii) The left annihilator in \(M \) of every principal ideal of \(S \) is generated by an idempotent of \(S \);

(iv) The left annihilator in \(M \) of every finitely generated ideal of \(S \) is generated by an idempotent of \(S \).

Proof We only have to prove (i) \(\Rightarrow \) (ii) and the rest is clear.

Let \(I = \bigcap_{i=1}^{n} Sx_i \) (\(n \in N \)) be any finitely generated left ideal of \(S \). Then \(l_M(I) = \bigcap_{i=1}^{n} l_M(Sx_i) \). By hypothesis, we have \(l_M(Sx_i) = Me_i \) and \(e_i^2 = e_i \in S_r(S) (i = 1, 2, \ldots, n) \). Thus \(l_M(I) = \bigcap_{i=1}^{n} Me_i \). Then we assert that \(Me_1 \cap Me_2 = Me_1 e_2 \) and \(e_1 e_2 \in S_r(S) \).

First let \(x \in Me_1 \cap Me_2 \). It is easy to check that \(x = xe_1 = xe_2 = xe_1 e_2 \in Me_1 e_2 \). Since \(e_1 \in S_r(S) \), we have \(Me_1 e_2 = (Me_1 e_2)e_1 \) and \(Me_1 e_2 \subseteq Me_1 \cap Me_2 \). It follows that \(Me_1 e_2 = Me_1 \cap Me_2 \). Next, we have \((e_1 e_2)^2 = (e_1 e_2)e_2 = e_1 e_2 \), and \(e_1 e_2 x = e_1 (e_2 x) e_2 = e_1 e_2 xe_1 e_2 (\forall x \in S) \) since \(e_i \in S_r(S) (i = 1, 2) \). Thus \(e_1 e_2 \in S_r(S) \).

Similarly, we have \(\bigcap_{i=1}^{n} Me_i = M(e_1 e_2 \cdots e_n) \) and \((e_1 e_2 \cdots e_n) \in S_r(S) \). This completes the proof.

Theorem 2.2 Let \(M \) be a p.q.-Baer module. Then every direct summand \(N \) of \(M \) is also a p.q.-Baer module.

Proof Let \(N = Me \) where \(e^2 = e \in S \). Then \(\text{End}_R(N) = \text{End}_R(Me) \cong eSe \). For any element \(x \in \text{End}_R(N) \), we conclude that \(l_N(eSe \cdot x) \leq N \).

First we have \(x = exe \), and \(y = ye \) for any element \(y \in l_N(eSe \cdot x) \). Then \(l_N(eSe \cdot x) \subseteq l_M(Sx) \cap N \) since \(0 = y \cdot Sx = ye \cdot S \cdot exe = y(eSe)x = 0 \). Secondly, let \(z \in l_M(Sx) \cap N \). We have \(z \in l_N(eSe \cdot x) \) since \(z = ze \in N \) and \(z \cdot eSe \cdot x = (ze)S(exe) = z \cdot Sx = 0 \). This implies \(l_N(eSe \cdot x) = l_M(Sx) \cap N \).

By assumption, we have \(l_M(Sx) = M_f \) where \(f^2 = f \in S_r(S) \). Then \(l_M(Sx) \cap N = \).
\(Mf \cap Me = Me(efe) \), and \(efe \) is an idempotent of \(eSe \) since \(f^2 = f \in S_r(S) \). Therefore,
\[l_N(eSe \cdot x) = Me(efe) \leq^* Me. \]

Example 2.1 Let \(R \) be a left p.q.-Baer ring and let \(e^2 = e \in R \) be any idempotent of \(R \). Then \(M = Re \) is a left \(R \)-module which is p.q.-Baer.

Theorem 2.3 If \(M_1 \) and \(M_2 \) are p.q.-Baer modules, and have the property that for any \(\psi \in \text{Hom}_R(M_i, M_j) \), \(\psi(x) = 0 \) implies \(x = 0 \) (i.e., \(j=1,2 \)). Then \(M_1 \oplus M_2 \) is a p.q.-Baer module.

Proof Let \(S = \text{End}_R(M_1 \oplus M_2) \) and \(I \) be any finitely generated ideal of \(S \). By [12, Lemma 1.10], we have \(l_{M_1 \oplus M_2}(I) \triangleleft M_1 \oplus M_2 \), and there exists \(N_i \triangleleft M_i \) (i = 1, 2) such that \(l_{M_1 \oplus M_2}(I) = N_1 \oplus N_2 \), where \(N_i = l_{M_i \oplus M_2}(I) \cap M_i \) (i = 1, 2).

As mentioned, \(S = S_1 \oplus \text{Hom}_R(M_1, M_2) \oplus \text{Hom}_R(M_2, M_1) \oplus S_2 \), where \(S_i = \text{End}_R(M_i) \) (i = 1, 2). Since \(I \) is a finitely generated ideal of \(S \), we have \(I = I_1 \oplus I_{12} \oplus I_{21} \oplus I_2 \), where \(I_1 \triangleleft S_1 \), \(I_2 \triangleleft S_2 \), \(I_{12} = \{ \varphi \in \text{Hom}_R(M_2, M_1) | \varphi = \xi_{12} \text{ with } (\xi_{ij})_{i,j=1,2} \in I \} \), \(I_{21} = \{ \varphi \in \text{Hom}_R(M_1, M_2) | \varphi = \xi_{21} \text{ with } (\xi_{ij})_{i,j=1,2} \in I \} \). It is easy to see that \(I_i \) is a finitely generated ideal of \(S_i \) (i = 1, 2).

Let us define \(l_{M_i}(I_i) = N_i' \) (i = 1, 2). It is easy to check that \(N_1 = N_1' \cap \bigcap_{\varphi \in I_{12}} \ker \varphi \).

Then we conclude that \(N_1 = N_1' \). For any element \(\psi_{12} \in \text{Hom}_R(M_2, M_1) \), \(\varphi \in I_{12} \), we have \(N_1' \varphi \psi_{12} = 0 \). Thus \(N_1' \varphi = 0 \Rightarrow N_1' \subseteq \bigcap_{\varphi \in I_{12}} \ker \varphi \). It follows that \(N_1 = N_1' \). Similarly, we have \(N_2 = N_2' \). Since \(M_1, M_2 \) are p.q.-Baer modules and \(I_i \) is a finitely generated ideal of \(S_i \), we have \(N_i' = l_{M_i}(I_i) \leq^* M_i \) (i = 1, 2). Therefore \(l_{M_1 \oplus M_2}(I) = N_1' \oplus N_2' \leq^* M_1 \oplus M_2 \). This completes the proof.

The proof of Theorem 2.3 is similar to [12, Theorem 3.18]. For the completion of this paper, we write down the whole process.

By Theorems 2.2 and 2.3, we have the following result, which provides another source of examples for p.q.-Baer modules.

Proposition 2.1 Let \(M = \bigoplus_{i=1}^n M_i \). If \(M_i \) is subisomorphic to (i.e., isomorphic to a submodule of) \(M_j \), \(\forall i \neq j; \, i, j = 1, 2, \ldots, n \). Then \(M \) is p.q.-Baer if and only if \(M_i \) is p.q.-Baer (i = 1, 2, ..., n).

It is easy to see that Proposition 2.1 also holds true when \(M = \prod_{i=1}^n M_i \). From Proposition 2.1 and Theorem 2.2, we have

Corollary 2.1 A finitely generated projective module over a left p.q.-Baer ring is a p.q.-Baer module.

We know that Baer and quasi-Baer modules are p.q.-Baer modules. A natural question arises, is the p.q.-Baer module also a Baer or a quasi-Baer module? The \(n \times n \) (\(n > 1 \)) upper triangular matrix ring over a domain, which is not a division ring, is a p.q.-Baer ring but not Baer^[3,p16]. Let \(R = \{a_n \in \prod_{n=1}^{\infty} M_n | (a_n)_{n=1}^{\infty} \text{ is eventually constant} \} \), where \(W \) is the \(K \text{th Weyl algebra over a field of characteristic Zero}^{[11, Example 3.13]} \). Then \(R \) is p.q.-Baer but not quasi-Baer. So p.q.-Baer modules might be neither Baer nor quasi-Baer. We will ask: under what conditions might p.q.-Baer modules and quasi-Baer modules be equivalent? The following
Proposition answers this question. We define the FI-(strong) summand intersection property on the basis of (strong) summand intersection property\(^\text{[12]}\).

Definition 2.2 A module \(M\) is said to have the FI-summand intersection property (FI-SIP) if the intersection of two fully invariant direct summands is again a direct summand. \(M\) has the FI-strong summand intersection property (FI-SSIP) if the intersection of any number of fully invariant direct summands is again a direct summand.

Proposition 2.2 A module \(M\) is quasi-Baer if and only if \(M\) is p.q.-Baer and has the FI-strong summand intersection property (FI-SSIP).

Proof The first assertion of the necessary condition is clear.

For the second, let \(Me_i \triangleleft M, e_i^2 = e_i \in S, i \in \Lambda\) (\(\Lambda\) is an index set). Then \(e_i \in S_r(S), (1-e_i)S \triangleleft S, i \in \Lambda\). Let us define \(I = \sum_{i \in \Lambda} (1-e_i)S\). Then \(I \triangleleft S\) and \(l_M(I) = \bigcap_{i \in \Lambda} l_M((1-e_i)S) = \bigcap_{i \in \Lambda} Me_i \leq^\oplus M\). Thus, \(M\) satisfies the FI-SSIP.

Conversely, let \(I\) be any ideal of \(S\). Then we can write \(I = \sum_{i \in \Lambda} Sx_i S (x_i \in I, i \in \Lambda)\). So \(l_M(I) = l_M(\sum_{i \in \Lambda} Sx_i S) = \bigcap_{i \in \Lambda} l_M(Sx_i S)\). Since \(M\) is p.q.-Baer, we have \(l_M(Sx_i S) = Me_i \leq^\oplus M\) where \(e_i^2 = e_i \in S_r(S) (\forall i \in \Lambda)\). By assumption, \(l_M(I) = \bigcap_{i \in \Lambda} Me_i = Me \leq^\oplus M\). Hence \(M\) is quasi-Baer. \(\square\)

Recall from [12] that a module \(M\) is called \(K\)-nonsingular if, for all \(\varphi \in S, l_M(\varphi) = \ker \varphi \leq^e M\) implies \(\varphi = 0\).

By [12, Lemma 2.15] and [13, Theorem 2.4], we know that both Baer and Richart modules are \(K\)-nonsingular. The following theorem shows that under a certain condition, a p.q.-Baer module is also \(K\)-nonsingular.

Proposition 2.3 Let \(M\) be a p.q.-Baer module. If every essential submodule of \(M\) is an essential extension of a fully invariant submodule of \(M\), then \(M\) is \(K\)-nonsingular.

Proof Let \(0 \neq \varphi \in S\) and \(l_M(\varphi) = \ker \varphi \leq^e M\). By hypothesis, there exists a fully invariant submodule \(N \triangleleft M\) such that \(N \leq^e l_M(\varphi)\). Then \(N \subseteq l_M(S\varphi) = Me (e^2 = e \in S)\) since \(NS\varphi = N\varphi = 0\) and \(M\) is p.q.-Baer. It follows that \(Me \leq^e M\). This implies that \(e = 1, \varphi = 0\), contradicting our assumption that \(\varphi \neq 0\). Thus \(M\) is \(K\)-nonsingular. \(\square\)

3. Endomorphism rings, connections between p.q.-Baer and Richart modules

In [12, 13] we can see that the endomorphism rings of any Baer, quasi-Baer and Richart modules are Baer, quasi-Baer and left Richart rings, respectively. This suggests that these modules property may be carried over to their endomorphism rings. In this section, we study the endomorphism rings of p.q.-Baer modules and the connections between p.q.-Baer modules and Richart modules.

Theorem 3.1 If \(M\) is a p.q.-Baer module with \(S = \text{End}_R(M)\). Then \(S\) is a left p.q.-Baer ring.
Proof Let I be any principal left ideal of S. We have $l_M(I) = Me$ where $e^2 = e \in S$. Then we conclude that $l_S(I) = Se$.

First, $Se \subseteq l_S(I)$ since $MSeI = MeI = 0$. Next, for any $0 \neq \varphi \in l_S(I)$, we have $M\varphi \subseteq l_M(I)$. Thus $\varphi = \varphi e$. This implies that $l_S(I) \subseteq Se \Rightarrow l_S(I) = Se$. This completes the proof. \qed

Corollary 3.1 Let R be a left p.q.-Baer ring and e is an idempotent of R. Then eRe is also a left p.q.-Baer ring.

Theorem 3.2 The left p.q.-Baer condition is a Morita invariant property.

Proof Let R be a left p.q.-Baer ring. By Proposition 2.1, we have $R^{(n)}$ is left p.q.-Baer. Since $M_n(R) \cong \text{End}_R(R^{(n)})$, we know that $M_n(R)$ is also left p.q.-Baer. \qed

Proposition 3.1 Let R be a commutative ring. Then the following conditions are equivalent:

(i) R is left p.q.-Baer;

(ii) R is left Richart;

(iii) R is VN-regular.

Proof It is easy to see that when R is commutative, left p.q.-Baer rings and left Richart rings are equivalent, and the rest is immediate from [13, Theorem 3.2]. \qed

Corollary 3.2 Let M be a left p.q.-Baer module. Then $\text{Cen}(S)$ is VN-regular.

Definition 3.1[13] A module M is called quasi-retractable if $\text{Hom}_R(M, N) \neq 0$, where $N = Rm$, $\forall 0 \neq m \in M$ (or, equivalently, $\exists 0 \neq \varphi \in S$ with $M\varphi \subseteq N = Rm$).

Proposition 3.2 Let M be quasi-retractable. Then M is p.q.-Baer if and only if S is a left p.q.-Baer ring.

Proof We only have to prove the sufficient condition. Let I be any principal left ideal of S. we assert that $l_M(I) = Me$.

First, by assumption, we have $l_S(I) = Se$ where $e^2 = e \in S$. Thus $Me \subseteq l_M(I)$ since $MeI \subseteq MSeI = 0$. Next, if $\exists 0 \neq m \in l_M(I) \setminus Me$, by quasi-retractability, there exists $0 \neq \beta \in S$ such that $M\beta \subseteq Rm$. It follows that $\beta = \beta(1 - e) \in S(1 - e)$. Also, we have $\beta \in l_S(I) = Se$ since $M\beta I \subseteq RmI = 0$. This implies that $\beta = 0$, a contradiction. Therefore, $l_M(I) = Me$. \qed

In the rest, we will consider the connections between p.q.-Baer modules and Richart modules. Similarly to the definitions of the insertion of factors property (IFP)\cite{16} and strongly bounded property \cite{1} of rings, we give the following definitions.

Definition 3.2 A left R-module M is said to satisfy the IFP (insertion of factors property) if $l_M(\varphi)$ is a fully invariant submodule of M for all $\varphi \in S$ (or, equivalently, $r_s(m) \triangleleft S$ for all $m \in M$).

Definition 3.3 A left R-module M is strongly bounded if every nonzero submodule of M contains a nonzero fully invariant submodule.
Proposition 3.3 Let M be p.q.-Baer and strongly bounded. Then M is Richart and satisfies the IFP.

Proof Let $\varphi \in S$. We have $Me = l_M(S\varphi S) \subseteq l_M(\varphi)$ ($e^2 = e \in S$). Hence, $l_M(\varphi) = Me \oplus A$ for some $A \subseteq M$. If $A \neq 0$, by assumption, there exists a fully invariant submodule $0 \neq B \subseteq A$. Then, $B \subseteq l_M(\varphi) \Rightarrow BS \subseteq l_M(\varphi) \Rightarrow BS\varphi = 0 \Rightarrow BS\varphi S = 0$. Thus $B \subseteq Me$, this is impossible. Therefore, $l_M(\varphi) = l_M(S\varphi S) \triangleleft M$. M is Richart and satisfies the IFP.

Proposition 3.4 Let M be a left R-module that satisfies the IFP. Then
(i) M is Richart if and only if M is p.q.-Baer;
(ii) S is Abelian.

Proof (i) First, for any $\varphi \in S$, we have $l_M(S\varphi) \subseteq l_M(\varphi)$. Next, for any element $m \in l_M(\varphi)$, we have $\varphi \in r_S(m)$. It follows that $m \in l_M(S\varphi)$ since $r_S(m) \triangleleft M$ and $S\varphi \subseteq r_S(m)$. Thus $l_M(S\varphi) = l_M(\varphi)$, Richart and p.q.-Baer modules are equivalent;
(ii) The proof is routine.

Theorem 3.3 Let M be a left R-module, $S = \text{End}_R(M)$. Then the following conditions are equivalent:
(i) M is a Richart module and S is Abelian;
(ii) M is a p.q.-Baer module which satisfies the IFP.

Proof (i)\Rightarrow(ii). First, for any $\varphi \in S$, we have $l_M(S\varphi) \subseteq l_M(\varphi)$ and $l_M(\varphi) = Me$ ($e^2 = e \in \text{Cen}(S)$). Then, $eS\varphi = 0$ since $eS\varphi = Se\varphi$ and $e\varphi \subseteq Me\varphi = 0$. It follows that $Me \subseteq l_M(S\varphi)$. Thus $l_M(S\varphi) = Me$. Since S is Abelian, we have $l_M(S\varphi) = Me \triangleleft M$;
(ii)\Rightarrow(i). This is immediate from Proposition 3.4.

Proposition 3.5 Let M be a left R-module, $S = \text{End}_R(M)$. Consider the following conditions:
(a) M satisfies the IFP;
(b) S is reduced;
(c) S satisfies the IFP;
(d) S is Abelian.

The following statements hold true:
(i) If S is a left Richart ring, then (b) through (d) are equivalent;
(ii) If M is a Richart module, then (a) through (d) are equivalent;
(iii) If S is a VN-regular ring, then (a) through (d) are equivalent.

Proof (i) For any ring S, it is easy to get (b)\Rightarrow(c)\Rightarrow(d). Now, we only have to prove (d)\Rightarrow(b). Let $x^2 = 0$. Then $r_R(x) = eS$ where $e^2 = e \in \text{Cen}(S)$. Thus $x = ex = xe = 0$ since $x \in r_R(x) = eS$;
(ii) By [13, Theorem 3.1], we know that S is left Richart. Thus, we only have to prove that (a)\Rightarrow(d). By Proposition 3.4 and Theorem 3.3, we know that (a)\Leftrightarrow(d);
(iii) We only have to prove that if S is VN-regular, then M is Richart.
For any \(\varphi \in S \), there exists \(\psi \in S \) such that \(\varphi = \varphi \psi \varphi \). Let us define \(\pi = \varphi \psi \varphi \). Then \(\pi^2 = \pi \) and \(\varphi = \pi \varphi \). This implies that \(\ker \varphi = \ker \pi = M(1-\pi) \leq M \). \(\square \)

References